The Structures and Bioactivities of Fatty Acid Synthase Inhibitors

Author(s): Hezhong Jiang, Tian Gan, Jiasui Zhang, Qingyun Ma, Yan Liang*, Youxing Zhao*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 39 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Fatty Acid Synthase (FAS or FASN) is a vital enzyme which catalyzes the de novo synthesis of long chain fatty acids. A number of studies have recently been reported that FAS was combined targets for the discovery of anti-obesity and anti-cancer drugs. Great interest has been developed in finding novel FAS inhibitors, and result in more than 200 inhibitors being reported.

Methods: The reported research literature about the FAS inhibitors was collected and analyzedsised through major databases including Web of Science, and PubMed. Then the chemical stractures, FAS inhibitory activities, and Structure-Activity Relationships (SAR) were summarized focused on all these reported FAS inhibitors.

Results: The 248 FAS inhibitors, which were reported during the past 20 years, could be divided into thiolactone, butyrolactone and butyrolactam, polyphenols, alkaloids, terpenoids, and other structures, in view of their structure characteristics. And the SAR of high inhibitory structures of each type was proposed in this paper.

Conclusion: A series of synthetic quinolinone derivatives show strongest inhibitory activity in the reported FAS inhibitors. Natural polyphenols, existing in food and herbs, show more adaptive in medicine exploration because of their safety and efficiency. Moreover, screening the FAS inhibitors from microorganism and marine natural products could be the hot research directions in the future.

Keywords: Fatty acid synthase (FAS), inhibitors, structures, inhibitory activities, structure-activity relationships (SAR), anti-obesity, anti-cancer.

[1]
Onat, A. Metabolic syndrome: nature, therapeutic solutions and options. Expert Opin. Pharmacother., 2011, 12(12), 1887-1900.
[http://dx.doi.org/10.1517/14656566.2011.585462] [PMID: 21756201]
[2]
Smith, S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J., 1994, 8(15), 1248-1259.
[http://dx.doi.org/10.1096/fasebj.8.15.8001737] [PMID: 8001737]
[3]
Cui, W.; Liang, Y.; Tian, W.; Ji, M.; Ma, X. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in de novo fatty acid synthesis. Biochim. Biophys. Acta, 2016, 1861(3), 149-155.
[http://dx.doi.org/10.1016/j.bbalip.2015.12.002] [PMID: 26680361]
[4]
Loftus, T.M.; Jaworsky, D.E.; Frehywot, G.L.; Townsend, C.A.; Ronnett, G.V.; Lane, M.D.; Kuhajda, F.P. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science, 2000, 288(5475), 2379-2381.
[http://dx.doi.org/10.1126/science.288.5475.2379] [PMID: 10875926]
[5]
Carvalho, M.A.; Zecchin, K.G.; Seguin, F.; Bastos, D.C.; Agostini, M.; Rangel, A.L.; Veiga, S.S.; Raposo, H.F.; Oliveira, H.C.; Loda, M.; Coletta, R.D.; Graner, E. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Int. J. Cancer, 2008, 123(11), 2557-2565.
[http://dx.doi.org/10.1002/ijc.23835] [PMID: 18770866]
[6]
Murata, S.; Yanagisawa, K.; Fukunaga, K.; Oda, T.; Kobayashi, A.; Sasaki, R.; Ohkohchi, N. Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice. Cancer Sci., 2010, 101(8), 1861-1865.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01596.x] [PMID: 20491775]
[7]
Kwan, H.Y.; Yang, Z.; Fong, W.F.; Hu, Y.M.; Yu, Z.L.; Hsiao, W.L. The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J. Gastroenterol., 2013, 48(2), 182-192.
[http://dx.doi.org/10.1007/s00535-012-0612-1] [PMID: 22722903]
[8]
Li, P.; Tian, W.; Ma, X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol. Cancer, 2014, 13(1), 138.
[http://dx.doi.org/10.1186/1476-4598-13-138] [PMID: 24894151]
[9]
Arimura, N.; Kaneda, T. Type selective inhibition of microbial fatty acid synthases by thiolactomycin. Arch. Microbiol., 1993, 160(2), 158-161.
[http://dx.doi.org/10.1007/BF00288719] [PMID: 8379811]
[10]
Makowski, K.; Mir, J.F.; Mera, P.; Ariza, X.; Asins, G.; Hegardt, F.G.; Herrero, L.; García, J.; Serra, D. (-)-UB006: A new fatty acid synthase inhibitor and cytotoxic agent without anorexic side effects. Eur. J. Med. Chem., 2017, 131(1), 207-221.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.012] [PMID: 28324785]
[11]
Jones, A.L.; Herbert, D.; Rutter, A.J.; Dancer, J.E.; Harwood, J.L. Novel inhibitors of the condensing enzymes of the type II fatty acid synthase of pea (Pisum sativum). Biochem. J., 2000, 347(Pt 1), 205-209.
[http://dx.doi.org/10.1042/bj3470205] [PMID: 10727420]
[12]
McFadden, J.M.; Medghalchi, S.M.; Thupari, J.N.; Pinn, M.L.; Vadlamudi, A.; Miller, K.I.; Kuhajda, F.P.; Townsend, C.A. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. J. Med. Chem., 2005, 48(4), 946-961.
[http://dx.doi.org/10.1021/jm049389h] [PMID: 15715465]
[13]
Wang, X.; Lin, J.; Chen, Y.; Zhong, W.; Zhao, G.; Liu, H.; Li, S.; Wang, L.; Li, S. Novel fatty acid synthase (FAS) inhibitors: design, synthesis, biological evaluation, and molecular docking studies. Bioorg. Med. Chem., 2009, 17(5), 1898-1904.
[http://dx.doi.org/10.1016/j.bmc.2009.01.050] [PMID: 19223187]
[14]
Zhang, W.; Yu, L.; Leng, W.; Wang, X.; Wang, L.; Deng, X.; Yang, J.; Liu, T.; Peng, J.; Wang, J.; Li, S.; Jin, Q. cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genet. Biol., 2007, 44(12), 1252-1261.
[http://dx.doi.org/10.1016/j.fgb.2007.03.002] [PMID: 17442600]
[15]
Mansour, M.; Schwartz, D.; Judd, R.; Akingbemi, B.; Braden, T.; Morrison, E.; Dennis, J.; Bartol, F.; Hazi, A.; Napier, I.; Abdel-Mageed, A.B. Thiazolidinediones/PPARγ agonists and fatty acid synthase inhibitors as an experimental combination therapy for prostate cancer. Int. J. Oncol., 2011, 38(2), 537-546.
[http://dx.doi.org/10.3892/ijo.2010.877] [PMID: 21170507]
[16]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res., 2004, 64(6), 2070-2075.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]
[17]
Ma, G.; Zancanella, M.; Oyola, Y.; Richardson, R.D.; Smith, J.W.; Romo, D. Total synthesis and comparative analysis of orlistat, valilactone, and a transposed orlistat derivative: Inhibitors of fatty acid synthase. Org. Lett., 2006, 8(20), 4497-4500.
[http://dx.doi.org/10.1021/ol061651o] [PMID: 16986934]
[18]
Purohit, V.C.; Richardson, R.D.; Smith, J.W.; Romo, D. Practical, catalytic, asymmetric synthesis of beta-lactones via a sequential ketene dimerization/hydrogenation process: inhibitors of the thioesterase domain of fatty acid synthase. J. Org. Chem., 2006, 71(12), 4549-4558.
[http://dx.doi.org/10.1021/jo060392d] [PMID: 16749788]
[19]
Richardson, R.D.; Ma, G.; Oyola, Y.; Zancanella, M.; Knowles, L.M.; Cieplak, P.; Romo, D.; Smith, J.W. Synthesis of novel beta-lactone inhibitors of fatty acid synthase. J. Med. Chem., 2008, 51(17), 5285-5296.
[http://dx.doi.org/10.1021/jm800321h] [PMID: 18710210]
[20]
Zhang, W.; Richardson, R.D.; Chamni, S.; Smith, J.W.; Romo, D. Beta-lactam congeners of orlistat as inhibitors of fatty acid synthase. Bioorg. Med. Chem. Lett., 2008, 18(7), 2491-2494.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.043] [PMID: 18343106]
[21]
Nie, F.Y.; Liang, Y.; Xun, H.; Sun, J.; He, F.; Ma, X.F. Inhibitory effects of tannic acid in the early stage of 3T3-L1 preadipocytes differentiation by down-regulating PPAR gamma expression. Food Funct., 2015, 6(3), 894-901.
[http://dx.doi.org/10.1039/c4fo00871e] [PMID: 25623997]
[22]
Wang, X.; Tian, W. Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase. Biochem. Biophys. Res. Commun., 2001, 288(5), 1200-1206.
[http://dx.doi.org/10.1006/bbrc.2001.5923] [PMID: 11700039]
[23]
Wang, X.; Song, K.S.; Guo, Q.X.; Tian, W.X. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem. Pharmacol., 2003, 66(10), 2039-2047.
[http://dx.doi.org/10.1016/S0006-2952(03)00585-9] [PMID: 14599562]
[24]
Zhang, Y.M.; Rock, C.O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J. Biol. Chem., 2004, 279(30), 30994-31001.
[http://dx.doi.org/10.1074/jbc.M403697200] [PMID: 15133034]
[25]
Tian, W.X. Inhibition of fatty acid synthase by polyphenols. Curr. Med. Chem., 2006, 13(8), 967-977.
[http://dx.doi.org/10.2174/092986706776361012] [PMID: 16611078]
[26]
Li, X.C.; Joshi, A.S.; ElSohly, H.N.; Khan, S.I.; Jacob, M.R.; Zhang, Z.; Khan, I.A.; Ferreira, D.; Walker, L.A.; Broedel, S.E. Jr.; Raulli, R.E.; Cihlar, R.L. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. J. Nat. Prod., 2002, 65(12), 1909-1914.
[http://dx.doi.org/10.1021/np020289t] [PMID: 12502337]
[27]
Li, B.H.; Tian, W.X. Inhibitory effects of flavonoids on animal fatty acid synthase. J. Biochem., 2004, 135(1), 85-91.
[http://dx.doi.org/10.1093/jb/mvh010] [PMID: 14999013]
[28]
Wang, Y.; Zhang, S.Y.; Ma, X.F.; Tian, W.X. Potent inhibition of fatty acid synthase by parasitic loranthus [Taxillus chinensis (dc.) danser] and its constituent avicularin. J. Enzyme Inhib. Med. Chem., 2006, 21(1), 87-93.
[http://dx.doi.org/10.1080/14756360500472829] [PMID: 16570511]
[29]
Li, B.H.; Ma, X.F.; Wang, Y.; Tian, W.X. Structure-activity relationship of polyphenols that inhibit fatty acid synthase. J. Biochem., 2005, 138(6), 679-685.
[http://dx.doi.org/10.1093/jb/mvi171] [PMID: 16428296]
[30]
Zhao, Y.X.; Liang, W.J.; Fan, H.J.; Ma, Q.Y.; Tian, W.X.; Dai, H.F.; Jiang, H.Z.; Li, N.; Ma, X.F. Fatty acid synthase inhibitors from the hulls of Nephelium lappaceum L. Carbohydr. Res., 2011, 346(11), 1302-1306.
[http://dx.doi.org/10.1016/j.carres.2011.04.028] [PMID: 21605850]
[31]
Jiang, H.Z.; Quan, X.F.; Tian, W.X.; Hu, J.M.; Wang, P.C.; Huang, S.Z.; Cheng, Z.Q.; Liang, W.J.; Zhou, J.; Ma, X.F.; Zhao, Y.X. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg. Med. Chem. Lett., 2010, 20(20), 6045-6047.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.061] [PMID: 20817450]
[32]
Turrado, C.; Puig, T.; García-Cárceles, J.; Artola, M.; Benhamú, B.; Ortega-Gutiérrez, S.; Relat, J.; Oliveras, G.; Blancafort, A.; Haro, D.; Marrero, P.F.; Colomer, R.; López-Rodríguez, M.L. New synthetic inhibitors of fatty acid synthase with anticancer activity. J. Med. Chem., 2012, 55(11), 5013-5023.
[http://dx.doi.org/10.1021/jm2016045] [PMID: 22559865]
[33]
Na, M.; Jang, J.; Min, B.S.; Lee, S.J.; Lee, M.S.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Fatty acid synthase inhibitory activity of acylphloroglucinols isolated from Dryopteris crassirhizoma. Bioorg. Med. Chem. Lett., 2006, 16(18), 4738-4742.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.018] [PMID: 16870425]
[34]
Bao, L.; Ma, X.; Song, X.; Wang, M.; Liu, H. Two new resveratrol tetramers isolated from Cayratia japonica (Thunb.) Gagn. with strong inhibitory activity on fatty acid synthase and antioxidant activity. Chem. Biodivers., 2010, 7(12), 2931-2940.
[http://dx.doi.org/10.1002/cbdv.200900394] [PMID: 21162006]
[35]
Jiang, H.Z.; Ma, Q.Y.; Fan, H.J.; Liang, W.J.; Huang, S.Z.; Dai, H.F.; Wang, P.C.; Ma, X.F.; Zhao, Y.X. Fatty acid synthase inhibitors isolated from Punica granatum L. J. Braz. Chem. Soc., 2012, 23(5), 889-893.
[http://dx.doi.org/10.1590/S0103-50532012000500014]
[36]
Liu, H.; Li, J.; Zhao, W.; Bao, L.; Song, X.; Xia, Y.; Wang, X.; Zhang, C.; Wang, X.; Yao, X.; Li, M. Fatty acid synthase inhibitors from Geum japonicum Thunb. var. chinense. Chem. Biodivers., 2009, 6(3), 402-410.
[http://dx.doi.org/10.1002/cbdv.200700462] [PMID: 19319862]
[37]
Wu, D.; Ma, X.F.; Tian, W.X. Pomegranate husk extract, punicalagin and ellagic acid inhibit fatty acid synthase and adipogenesis of 3T3-L1 adipocyte. J. Funct. Foods, 2013, 5(2), 633-641.
[http://dx.doi.org/10.1016/j.jff.2013.01.005]
[38]
Fan, H.; Wu, D.; Tian, W.; Ma, X. Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte. Biochim. Biophys. Acta, 2013, 1831(7), 1260-1266.
[http://dx.doi.org/10.1016/j.bbalip.2013.04.003] [PMID: 24046866]
[39]
Na, M.; Hung, T.M.; Oh, W.K.; Min, B.S.; Lee, S.H.; Bae, K. Fatty acid synthase inhibitory activity of dibenzocyclooctadiene lignans isolated from Schisandra chinensis. Phytother. Res., 2010, 24(Suppl. 2), S225-S228.
[http://dx.doi.org/10.1002/ptr.3149] [PMID: 20544979]
[40]
Chen, Q.; Luo, X.; Ma, X.; Jiang, T.; Lu, B.; Shen, J.; Zhang, Y. Fatty acid synthase inhibitors separated from oiltea camellia by high-speed counter-current chromatography. J. Food Sci., 2011, 76(5), C750-C754.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02167.x] [PMID: 22417422]
[41]
Lee, K.H.; Lee, M.S.; Cha, E.Y.; Sul, J.Y.; Lee, J.S.; Kim, J.S.; Park, J.B.; Kim, J.Y. Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol. Med. Rep., 2017, 15(4), 2163-2173.
[http://dx.doi.org/10.3892/mmr.2017.6254] [PMID: 28260110]
[42]
Oh, J.; Hwang, I.H.; Hong, C.E.; Lyu, S.Y.; Na, M. Inhibition of fatty acid synthase by ginkgolic acids from the leaves of Ginkgo biloba and their cytotoxic activity. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 565-568.
[http://dx.doi.org/10.3109/14756366.2012.658786] [PMID: 22380770]
[43]
Naik, R.; Harmalkar, D.S.; Xu, X.; Jang, K.; Lee, K. Bioactive benzofuran derivatives: Moracins A-Z in medicinal chemistry. Eur. J. Med. Chem., 2015, 90, 379-393.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.047] [PMID: 25461329]
[44]
Fan, H.; Tian, W.; Ma, X. Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase. Target. Oncol., 2014, 9(3), 279-286.
[http://dx.doi.org/10.1007/s11523-013-0286-5] [PMID: 23821378]
[45]
Liang, Y.; Tian, W.; Ma, X. Inhibitory effects of grape skin extract and resveratrol on fatty acid synthase. BMC Complement. Altern. Med., 2013, 13(1), 361.
[http://dx.doi.org/10.1186/1472-6882-13-361] [PMID: 24341420]
[46]
Li, P.; Tian, W.; Wang, X.; Ma, X. Inhibitory effect of desoxyrhaponticin and rhaponticin, two natural stilbene glycosides from the Tibetan nutritional food Rheum tanguticum Maxim. ex Balf., on fatty acid synthase and human breast cancer cells. Food Funct., 2014, 5(2), 251-256.
[http://dx.doi.org/10.1039/C3FO60484E] [PMID: 24362821]
[47]
Rivkin, A.; Kim, Y.R.; Goulet, M.T.; Bays, N.; Hill, A.D.; Kariv, I.; Krauss, S.; Ginanni, N.; Strack, P.R.; Kohl, N.E.; Chung, C.C.; Varnerin, J.P.; Goudreau, P.N.; Chang, A.; Tota, M.R.; Munoz, B. 3-Aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(17), 4620-4623.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.014] [PMID: 16784844]
[48]
de Melo, E.B. Multivariate SAR/QSAR of 3-aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase (FAS) inhibitors. Eur. J. Med. Chem., 2010, 45(12), 5817-5826.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.044] [PMID: 20965618]
[49]
Ngo, S.C.; Zimhony, O.; Chung, W.J.; Sayahi, H.; Jacobs, W.R., Jr; Welch, J.T. Inhibition of isolated Mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother., 2007, 51(7), 2430-2435.
[http://dx.doi.org/10.1128/AAC.01458-06] [PMID: 17485499]
[50]
Richardson, R.D.; Smith, J.W. Novel antagonists of the thioesterase domain of human fatty acid synthase. Mol. Cancer Ther., 2007, 6(7), 2120-2126.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0187] [PMID: 17620441]
[51]
Wu, M.; Singh, S.B.; Wang, J.; Chung, C.C.; Salituro, G.; Karanam, B.V.; Lee, S.H.; Powles, M.; Ellsworth, K.P.; Lassman, M.E.; Miller, C.; Myers, R.W.; Tota, M.R.; Zhang, B.B.; Li, C. Antidiabetic and antisteatotic effects of the selective fatty acid synthase (FAS) inhibitor platensimycin in mouse models of diabetes. Proc. Natl. Acad. Sci. USA, 2011, 108(13), 5378-5383.
[http://dx.doi.org/10.1073/pnas.1002588108] [PMID: 21389266]
[52]
Kley, J.T.; Mack, J.; Hamilton, B.; Scheuerer, S.; Redemann, N. Discovery of BI 99179, a potent and selective inhibitor of type I fatty acid synthase with central exposure. Bioorg. Med. Chem. Lett., 2011, 21(19), 5924-5927.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.083] [PMID: 21873051]
[53]
Liu, Y.; Tian, W.; Ma, X.; Ding, W. Evaluation of inhibition of fatty acid synthase by ursolic acid: positive cooperation mechanism. Biochem. Biophys. Res. Commun., 2010, 392(3), 386-390.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.031] [PMID: 20074555]
[54]
Jang, T.S.; Zhang, H.; Kim, G.; Kim, D.W.; Min, B.S.; Kang, W.; Son, K.H.; Na, M.; Lee, S.H. Bioassay-guided isolation of fatty acid synthase inhibitory diterpenoids from the roots of Salvia miltiorrhiza Bunge. Arch. Pharm. Res., 2012, 35(3), 481-486.
[http://dx.doi.org/10.1007/s12272-012-0311-8] [PMID: 22477195]
[55]
Li, R.; Ganguli, S.; Pascal, R.A. Jr. Synthesis of sulfur-substituted phosphatidylethanolamines and inhibition of protozoan cyclopropane fatty acid synthase. Tetrahedron Lett., 1993, 34(8), 1279-1282.
[http://dx.doi.org/10.1016/S0040-4039(00)91774-X]
[56]
Sun, X.B.; Zhao, J.; Ma, X.F.; Tian, W.X. Inhibitory effects of thioethers on fatty acid synthase and 3T3-L1 cells. J. Enzyme Inhib. Med. Chem., 2010, 25(2), 290-295.
[http://dx.doi.org/10.3109/14756360903179377] [PMID: 19874137]
[57]
Liu, B.; Wang, Y.; Fillgrove, K.L.; Anderson, V.E. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol., 2002, 49(3), 187-193.
[http://dx.doi.org/10.1007/s00280-001-0399-x] [PMID: 11935210]
[58]
Wright, H.T.; Reynolds, K.A. Antibacterial targets in fatty acid biosynthesis. Curr. Opin. Microbiol., 2007, 10(5), 447-453.
[http://dx.doi.org/10.1016/j.mib.2007.07.001] [PMID: 17707686]
[59]
Laakso, J.A.; Raulli, R.; McElhaney-Feser, G.E.; Actor, P.; Underiner, T.L.; Hotovec, B.J.; Mocek, U.; Cihlar, R.L.; Broedel, S.E. Jr. CT2108A and B: New fatty acid synthase inhibitors as antifungal agents. J. Nat. Prod., 2003, 66(8), 1041-1046.
[http://dx.doi.org/10.1021/np030046g] [PMID: 12932120]
[60]
Ondeyka, J.G.; Zink, D.L.; Young, K.; Painter, R.; Kodali, S.; Galgoci, A.; Collado, J.; Tormo, J.R.; Basilio, A.; Vicente, F.; Wang, J.; Singh, S.B. Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy. J. Nat. Prod., 2006, 69(3), 377-380.
[http://dx.doi.org/10.1021/np050416w] [PMID: 16562839]
[61]
Vázquez, M.J.; Leavens, W.; Liu, R.; Rodríguez, B.; Read, M.; Richards, S.; Winegar, D.; Domínguez, J.M. Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the beta-ketoacyl reductase reaction. FEBS J., 2008, 275(7), 1556-1567.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06314.x] [PMID: 18312417]
[62]
Akpa, M.M.; Point, F.; Sawadogo, S.; Radenne, A.; Mounier, C. Inhibition of insulin and T3-induced fatty acid synthase by hexanoate. Lipids, 2010, 45(11), 997-1009.
[http://dx.doi.org/10.1007/s11745-010-3465-5] [PMID: 20811782]
[63]
Shiro, T.; Fukaya, T.; Tobe, M. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur. J. Med. Chem., 2015, 97(32), 397-408.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.004] [PMID: 25532473]
[64]
Guan, L.P.; Quan, Z.S. 3,4-DHQLO and triazole and its related analogues with anticonvulsant effects. Mini Rev. Med. Chem., 2016, 16(4), 323-342.
[http://dx.doi.org/10.2174/1389557515666150101100909] [PMID: 25553427]
[65]
Di Santo, R. Diketo acids derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. Curr. Med. Chem., 2011, 18(22), 3335-3342.
[http://dx.doi.org/10.2174/092986711796504619] [PMID: 21728968]
[66]
Berlinck, R.G.; Romminger, S. The chemistry and biology of guanidine natural products. Nat. Prod. Rep., 2016, 33(3), 456-490.
[http://dx.doi.org/10.1039/C5NP00108K] [PMID: 26689539]
[67]
Challis, G.L. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology, 2008, 154(Pt 6), 1555-1569.
[http://dx.doi.org/10.1099/mic.0.2008/018523-0] [PMID: 18524911]
[68]
Gross, H. Genomic mining--a concept for the discovery of new bioactive natural products. Curr. Opin. Drug Discov. Devel., 2009, 12(2), 207-219.
[PMID: 19333866]
[69]
Bu, M.; Yang, B.B.; Hu, L. Natural endoperoxides as drug lead compounds. Curr. Med. Chem., 2016, 23(4), 383-405.
[http://dx.doi.org/10.2174/0929867323666151127200949] [PMID: 26630922]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 39
Year: 2019
Page: [7081 - 7101]
Pages: 21
DOI: 10.2174/0929867326666190507105022
Price: $65

Article Metrics

PDF: 44
HTML: 9