Gold Nanoparticles as Targeted Delivery Systems and Theranostic Agents in Cancer Therapy

Author(s): Alexandra Mioc, Marius Mioc, Roxana Ghiulai*, Mirela Voicu*, Roxana Racoviceanu, Cristina Trandafirescu, Cristina Dehelean, Dorina Coricovac, Codruta Soica

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 35 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Cancer is still a leading cause of death worldwide, while most chemotherapies induce nonselective toxicity and severe systemic side effects. To address these problems, targeted nanoscience is an emerging field that promises to benefit cancer patients. Gold nanoparticles are nowadays in the spotlight due to their many well-established advantages. Gold nanoparticles are easily synthesizable in various shapes and sizes by a continuously developing set of means, including chemical, physical or eco-friendly biological methods. This review presents gold nanoparticles as versatile therapeutic agents playing many roles, such as targeted delivery systems (anticancer agents, nucleic acids, biological proteins, vaccines), theranostics and agents in photothermal therapy. They have also been outlined to bring great contributions in the bioimaging field such as radiotherapy, magnetic resonance angiography and photoacoustic imaging. Nevertheless, gold nanoparticles are therapeutic agents demonstrating its in vitro anti-angiogenic, anti-proliferative and pro-apoptotic effects on various cell lines, such as human cervix, human breast, human lung, human prostate and murine melanoma cancer cells. In vivo studies have pointed out data regarding the bioaccumulation and cytotoxicity of gold nanoparticles, but it has been emphasized that size, dose, surface charge, sex and especially administration routes are very important variables.

Keywords: Gold nanoparticles, targeted delivery, theranostic, cancer therapy, magnetic resonance angiography, photoacoustic imaging.

[1]
World Health Organization; Cancer Research UK. World Cancer Factsheet. World Heal. Organ, 2014. 2012(2012), 4.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[3]
Penet, M.F.; Chen, Z.; Kakkad, S.; Pomper, M.G.; Bhujwalla, Z.M. Theranostic imaging of cancer. Eur. J. Radiol., 2012, 81(Suppl. 1), S124-S126.
[http://dx.doi.org/10.1016/S0720-048X(12)70051-7] [PMID: 23083557]
[4]
Ren, X.; Chen, H.; Yang, V.; Sun, D. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Front. Chem. Sci. Eng., 2014, 8(3), 253-264.
[http://dx.doi.org/10.1007/s11705-014-1425-y]
[5]
Nguyen, K.T. Targeted nanoparticles for cancer therapy: promises and challenges. J. Nanomed. Nanotechnol., 2011, 02(05)
[http://dx.doi.org/10.4172/2157-7439.1000103e]
[6]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[7]
Kole, C.; Kumar, D. S.; Khodakovskaya, M. V. Plant nanotechnology: principles and practices. lant Nanotechnol. Princ. Pract, 2016. 1-383.
[8]
Deng, J.; Yao, M.; Gao, C. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. Acta Biomater., 2017, 53, 610-618.
[http://dx.doi.org/10.1016/j.actbio.2017.01.082] [PMID: 28213095]
[9]
Malugin, A.; Ghandehari, H. Arnida. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol., 2010, 30(3), 212-217.
[PMID: 19902477]
[10]
Wang, X.; Chen, H.; Zheng, Y.; Ma, M.; Chen, Y.; Zhang, K.; Zeng, D.; Shi, J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials, 2013, 34(8), 2057-2068.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.044] [PMID: 23246067]
[11]
Xie, X.; Liao, J.; Shao, X.; Li, Q.; Lin, Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep., 2017, 7(1), 3827.
[http://dx.doi.org/10.1038/s41598-017-04229-z] [PMID: 28630477]
[12]
Firdhouse, M.J.; Lalitha, P. flower-shaped gold nanoparticles synthesized using Kedrostis Foetidissima and their antiproliferative activity against bone cancer cell lines. Int. J. Ind. Chem., 2016, 7(4), 347-358.
[http://dx.doi.org/10.1007/s40090-016-0098-4]
[13]
Hu, R.; Zheng, M.; Wu, J.; Li, C.; Shen, D.; Yang, D.; Li, L.; Ge, M.; Chang, Z.; Dong, W. Core-shell magnetic gold nanoparticles for magnetic field-enhanced radio-photothermal therapy in cervical cancer. Nanomaterials, 2017, 7(5)E111
[http://dx.doi.org/10.3390/nano7050111] [PMID: 28492507]
[14]
Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.H.; Yoo, K.H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano, 2009, 3(10), 2919-2926.
[http://dx.doi.org/10.1021/nn900215k] [PMID: 19772302]
[15]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[16]
FRENS. G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci (Lond.), 1973, 241(105), 20-22.
[http://dx.doi.org/10.1038/physci241020a0]
[17]
Zarabi, M.F.; Arshadi, N.; Farhangi, A.; Akbarzadeh, A. Preparation and characterization of gold nanoparticles with amino acids, examination of their stability. Indian J. Clin. Biochem., 2014, 29(3), 306-314.
[http://dx.doi.org/10.1007/s12291-013-0358-4] [PMID: 24966478]
[18]
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun., 1994, 0(7), 801-802.
[http://dx.doi.org/10.1039/C39940000801]
[19]
Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D.J.; Kiely, C. Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc. Chem. Commun., 1995, 16, 1655-1656.
[http://dx.doi.org/10.1039/c39950001655]
[20]
Li, W.; Szoka, F.C., Jr Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res., 2007, 24(3), 438-449.
[http://dx.doi.org/10.1007/s11095-006-9180-5] [PMID: 17252188]
[21]
Jain, K.K. The role of nanobiotechnology in drug discovery. Drug Discov. Today, 2005, 10(21), 1435-1442.
[http://dx.doi.org/10.1016/S1359-6446(05)03573-7] [PMID: 16243263]
[22]
Rawat, P.; Rajput, Y.S.; Bharti, M.K.; Sharma, R. A Method for synthesis of gold nanoparticles using 1-amino-2- naphthol-4-sulphonic acid as reducing agent. Curr. Sci., 2016, 110(12), 2297-2300.
[http://dx.doi.org/10.18520/cs/v110/i12/2297-2300]
[23]
Huang, H.; Yang, X. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules, 2004, 5(6), 2340-2346.
[http://dx.doi.org/10.1021/bm0497116] [PMID: 15530050]
[24]
Sau, T.K.; Murphy, C.J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc., 2004, 126(28), 8648-8649.
[http://dx.doi.org/10.1021/ja047846d] [PMID: 15250706]
[25]
Bridges, C.R.; DiCarmine, P.M.; Fokina, A.; Huesmann, D.; Seferos, D.S. Synthesis of gold nanotubes with variable wall thicknesses. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(4), 1127-1133.
[http://dx.doi.org/10.1039/C2TA00729K]
[26]
Chen, Y.; Gu, X.; Nie, C-G.; Jiang, Z-Y.; Xie, Z-X.; Lin, C-J. Shape controlled growth of gold nanoparticles by a solution synthesis. Chem. Commun. (Camb.), 2005, 1(33), 4181-4183.
[http://dx.doi.org/10.1039/b504911c] [PMID: 16100596]
[27]
Xu, Z-C.; Shen, C-M.; Xiao, C-W.; Yang, T-Z.; Zhang, H-R.; Li, J-Q.; Li, H-L.; Gao, H-J. Wet Chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology, 2007, 18(11)115608
[http://dx.doi.org/10.1088/0957-4484/18/11/115608]
[28]
Yong, K.T.; Sahoo, Y.; Swihart, M.T.; Prasad, P.N. Synthesis and Plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures. Colloids Surf. A Physicochem. Eng. Asp., 2006, 290(1-3), 89-105.
[http://dx.doi.org/10.1016/j.colsurfa.2006.05.004]
[29]
Xing, L.; Chen, B.; Li, D.; Wu, W.; Ying, Z. Gold nanospheres enhanced photothermal therapy in a rat model. Lasers Surg. Med., 2018.
[http://dx.doi.org/10.1002/lsm.22793] [PMID: 29356033]
[30]
Liang, Y.; Liu, J.; Liu, T.; Yang, X. Anti-c-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncol. Lett., 2017, 14(2), 2254-2260.
[http://dx.doi.org/10.3892/ol.2017.6383] [PMID: 28789447]
[31]
Zhang, Y.; Zhang, Y.; Yin, L.; Xia, X.; Hu, F.; Liu, Q.; Qin, C.; Lan, X. Synthesis and bioevaluation of iodine-131 directly labeled cyclic RGD-PEGylated gold nanorods for tumor-targeted imaging. Contrast Media Mol. Imaging, 2017, 20176081724
[http://dx.doi.org/10.1155/2017/6081724] [PMID: 29434531]
[32]
Zhao, X.; Lu, D.; Liu, Q.S.; Li, Y.; Feng, R.; Hao, F.; Qu, G.; Zhou, Q.; Jiang, G. Hematological effects of gold nanorods on erythrocytes: hemolysis and hemoglobin conformational and functional changes. Adv. Sci. (Weinh.), 2017, 4(12)1700296
[http://dx.doi.org/10.1002/advs.201700296] [PMID: 29270341]
[33]
Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57.
[http://dx.doi.org/10.1016/j.jcis.2017.08.097] [PMID: 28881205]
[34]
Huang, S.; Li, C.; Wang, W.; Li, H.; Sun, Z.; Song, C.; Li, B.; Duan, S.; Hu, Y. A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer. Int. J. Nanomedicine, 2017, 12, 5163-5176.
[http://dx.doi.org/10.2147/IJN.S131089] [PMID: 28790823]
[35]
Bibikova, O.; Haas, J.; López-Lorente, Á.I.; Popov, A.; Kinnunen, M.; Ryabchikov, Y.; Kabashin, A.; Meglinski, I.; Mizaikoff, B. Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles. Anal. Chim. Acta, 2017, 990, 141-149.
[http://dx.doi.org/10.1016/j.aca.2017.07.045] [PMID: 29029737]
[36]
Zhu, H.; Liu, W.; Cheng, Z.; Yao, K.; Yang, Y.; Xu, B.; Su, G. Targeted delivery of siRNA with ph-responsive hybrid gold nanostars for cancer treatment. Int. J. Mol. Sci., 2017, 18(10)E2029
[http://dx.doi.org/10.3390/ijms18102029] [PMID: 28937584]
[37]
Bhattarai, S.R.; Derry, P.J.; Aziz, K.; Singh, P.K.; Khoo, A.M.; Chadha, A.S.; Liopo, A.; Zubarev, E.R.; Krishnan, S. Gold nanotriangles: scale up and X-ray radiosensitization effects in mice. Nanoscale, 2017, 9(16), 5085-5093.
[http://dx.doi.org/10.1039/C6NR08172J] [PMID: 28134383]
[38]
Tangeysh, B.; Tibbetts, K.M.; Odhner, J.H.; Wayland, B.B.; Levis, R.J. Gold nanotriangle formation through strong-field laser processing of aqueous Kaucl4 and postirradiation reduction by hydrogen peroxide. Langmuir, 2017, 33(1), 243-252.
[http://dx.doi.org/10.1021/acs.langmuir.6b03812] [PMID: 27983860]
[39]
Liebig, F.; Henning, R.; Sarhan, R.M.; Prietzel, C.; Bargheer, M.; Koetz, J. A new route to gold nanoflowers. Nanotechnology, 2018, 29(18)185603
[http://dx.doi.org/10.1088/1361-6528/aaaffd] [PMID: 29451134]
[40]
Ahn, S.; Singh, P.; Jang, M.; Kim, Y-J.; Castro-Aceituno, V.; Simu, S.Y.; Kim, Y.J.; Yang, D-C. Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264.7 macrophages via NF-κB and AP-1 pathways. Colloids Surf. B Biointerfaces, 2018, 162, 398-404.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.037] [PMID: 29245117]
[41]
Poudel, B.K.; Gupta, B.; Ramasamy, T.; Thapa, R.K.; Pathak, S.; Oh, K.T.; Jeong, J-H.; Choi, H-G.; Yong, C.S.; Kim, J.O. PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids Surf. B Biointerfaces, 2017, 160, 73-83.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.010] [PMID: 28917152]
[42]
Xing, T.Y.; Zhao, J.; Weng, G.J.; Zhu, J.; Li, J.J.; Zhao, J.W. Specific detection of carcinoembryonic antigen based on fluorescence quenching of hollow porous gold nanoshells with roughened surface. ACS Appl. Mater. Interfaces, 2017, 9(42), 36632-36641.
[http://dx.doi.org/10.1021/acsami.7b11310] [PMID: 29023105]
[43]
Hien, N.Q.; Van Phu, D.; Duy, N.N.; Quoc, A. Radiation synthesis and characterization of hyaluronan capped gold nanoparticles. Carbohydr. Polym., 2012, 89(2), 537-541.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.041] [PMID: 24750755]
[44]
Hanžić, N.; Jurkin, T.; Maksimović, A.; Gotić, M. The synthesis of gold nanoparticles by a citrate-radiolytical method. Radiat. Phys. Chem., 2015, 106, 77-82.
[http://dx.doi.org/10.1016/j.radphyschem.2014.07.006]
[45]
Phan, H.N.D.; Doan, T.T.T.; Van Phu, D.; Duy, N.N.; Quy, H.T.D.; Hoa, T.T.; Hien, N.Q. Synthesis of gold nanoparticles stabilized in dextran solution by gamma Co-60 ray irradiation and preparation of gold nanoparticles/dextran powder. J. Chem., 2017.6836375
[http://dx.doi.org/10.1155/2017/6836375]
[46]
Ngo, V.K.T.; Nguyen, H.P.U.; Huynh, T.P.; Tran, N.N.P.; Lam, Q.V.; Huynh, T.D. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. Coli O157:H7. Adv. Nat. Sci. Nanosci. Nanotechnol., 2015, 6(3)035015
[http://dx.doi.org/10.1088/2043-6262/6/3/035015]
[47]
Aqil, A.; Serwas, H.; Delplancke, J.L.; Jérôme, R.; Jérôme, C.; Canet, L. Preparation of stable suspensions of gold nanoparticles in water by sonoelectrochemistry. Ultrason. Sonochem., 2008, 15(6), 1055-1061.
[http://dx.doi.org/10.1016/j.ultsonch.2008.04.004] [PMID: 18519170]
[48]
Huang, W.C.; Chen, Y.C. Photochemical synthesis of polygonal gold nanoparticles. J. Nanopart. Res., 2008, 10(4), 697-702.
[http://dx.doi.org/10.1007/s11051-007-9293-8]
[49]
Dong, S.; Tang, C.; Zhou, H.; Zhao, H. Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach. Gold Bull., 2004, 37(3–4), 187-195.
[http://dx.doi.org/10.1007/BF03215212]
[50]
Huang, C-J.; Chiu, P-H.; Wang, Y-H.; Chen, K-L.; Linn, J-J.; Yang, C-F. Electrochemically controlling the size of gold nanoparticles. J. Electrochem. Soc., 2006, 153, D193.
[http://dx.doi.org/10.1149/1.2358103]
[51]
Correard, F.; Maximova, K.; Estève, M.A.; Villard, C.; Roy, M.; Al-Kattan, A.; Sentis, M.; Gingras, M.; Kabashin, A.V.; Braguer, D. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications. Int. J. Nanomedicine, 2014, 9(1), 5415-5430.
[PMID: 25473280]
[52]
Bayazit, M.K.; Yue, J.; Cao, E.; Gavriilidis, A.; Tang, J. Controllable synthesis of gold nanoparticles in aqueous solution by microwave assisted flow chemistry. ACS Sustain. Chem.& Eng., 2016, 4(12), 6435-6442.
[http://dx.doi.org/10.1021/acssuschemeng.6b01149]
[53]
Reddy, A.S.; Chen, C-Y.; Chen, C-C.; Jean, J-S.; Chen, H-R.; Tseng, M-J.; Fan, C-W.; Wang, J-C. Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol., 2010, 10(10), 6567-6574.
[http://dx.doi.org/10.1166/jnn.2010.2519] [PMID: 21137763]
[54]
Malarkodi, C.; Rajeshkumar, S.; Vanaja, M.; Paulkumar, K.; Gnanajobitha, G.; Annadurai, G. Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella Pneumoniae. J. Nanostructure Chem., 2013, 3(1), 30.
[http://dx.doi.org/10.1186/2193-8865-3-30]
[55]
Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem, 2002, 3(5), 461-463.
[http://dx.doi.org/10.1002/1439-7633(20020503)3:5<461:AID-CBIC461>3.0.CO;2-X] [PMID: 12007181]
[56]
Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora Sp. Langmuir, 2003, 19(8), 3550-3553.
[http://dx.doi.org/10.1021/la026772l]
[57]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Ramani, R.; Parischa, R.; Ajayakumar, P.V.; Alam, M. Bioreduction of AuCl4- ions by the fungus, Verticillium Sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed., 2001, 40(19), 3585-3588.
[http://dx.doi.org/10.1002/1521-3773(20011001)40:19<3585:AID-ANIE3585>3.0.CO;2-K]
[58]
Chauhan, A.; Zubair, S.; Tufail, S.; Sherwani, A.; Sajid, M.; Raman, S.C.; Azam, A.; Owais, M. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int. J. Nanomedicine, 2011, 6, 2305-2319.
[http://dx.doi.org/10.2147/IJN.S23195] [PMID: 22072868]
[59]
Ahmad, a; Senapati, S.; Khan, M. I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, rhodococcus species. Nanotechnology, 2016, 2003(14), 824-828.
[60]
He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas Capsulata. Mater. Lett., 2007, 61(18), 3984-3987.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[61]
Baptista, P.V. Cancer nanotechnology - prospects for cancer diagnostics and therapy. Curr. Cancer Ther. Rev., 2009, 5(2), 80-88.
[http://dx.doi.org/10.2174/157339409788166733]
[62]
Sanna, V.; Pala, N.; Sechi, M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomedicine, 2014, 9, 467-483.
[PMID: 24531078]
[63]
Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release, 2010, 148(1), 122-127.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.004] [PMID: 20547192]
[64]
Jiang, W.; Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008, 3(3), 145-150.
[http://dx.doi.org/10.1038/nnano.2008.30] [PMID: 18654486]
[65]
Park, C.; Youn, H.; Kim, H.; Noh, T.; Kook, Y.H.; Oh, E.T.; Park, H.J.; Kim, C. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J. Mater. Chem., 2009, 19(16), 2310.
[http://dx.doi.org/10.1039/b816209c]
[66]
Lee, C.S.; Kim, H.; Yu, J.; Yu, S.H.; Ban, S.; Oh, S.; Jeong, D. Im, J.; Baek, M. J.; Kim, T.H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: a promising in vivo drug delivery system for colorectal cancer therapy. Eur. J. Med. Chem., 2017, 142, 416-423.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.063] [PMID: 28870452]
[67]
Gibson, J.D.; Khanal, B.P.; Zubarev, E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc., 2007, 129(37), 11653-11661.
[http://dx.doi.org/10.1021/ja075181k] [PMID: 17718495]
[68]
Dhar, S.; Daniel, W.L.; Giljohann, D.A.; Mirkin, C.A.; Lippard, S.J. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. J. Am. Chem. Soc., 2009, 131(41), 14652-14653.
[http://dx.doi.org/10.1021/ja9071282] [PMID: 19778015]
[69]
Brown, S.D.; Nativo, P.; Smith, J-A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132(13), 4678-4684.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[70]
Lee, S.H.; Bae, K.H.; Kim, S.H.; Lee, K.R.; Park, T.G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm., 2008, 364(1), 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.027] [PMID: 18723087]
[71]
Rastogi, L.; Kora, A.J. J, A. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Mater. Sci. Eng. C, 2012, 32(6), 1571-1577.
[http://dx.doi.org/10.1016/j.msec.2012.04.044] [PMID: 24364962]
[72]
Misra, S. Human gene therapy: a brief overview of the genetic revolution. J. Assoc. Physicians India, 2013, 61(2), 127-133.
[PMID: 24471251]
[73]
Zhao, N.; Fogg, J.M.; Zechiedrich, L.; Zu, Y. Transfection of shRNA-encoding Minivector DNA of a few hundred base pairs to regulate gene expression in lymphoma cells. Gene Ther., 2011, 18(3), 220-224.
[http://dx.doi.org/10.1038/gt.2010.123] [PMID: 20962872]
[74]
Mansoori, B. RNA Interference and Its Role in Cancer Therapy, December. 2014, 313-321.
[75]
Bonadio, J.; Smiley, E.; Patil, P.; Goldstein, S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med., 1999, 5(7), 753-759.
[http://dx.doi.org/10.1038/10473] [PMID: 10395319]
[76]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[77]
Balasubramanian, S.K.; Yang, L.; Yung, L.Y.L.; Ong, C.N.; Ong, W.Y.; Yu, L.E. Characterization, purification, and stability of gold nanoparticles. Biomaterials, 2010, 31(34), 9023-9030.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.012] [PMID: 20801502]
[78]
Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601), 2176-2179.
[http://dx.doi.org/10.1126/science.1077229] [PMID: 12481134]
[79]
Giljohann, D.A.; Seferos, D.S.; Prigodich, A.E.; Patel, P.C.; Mirkin, C.A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc., 2009, 131(6), 2072-2073.
[http://dx.doi.org/10.1021/ja808719p] [PMID: 19170493]
[80]
Zhu, Z-J.; Carboni, R.; Quercio, M.; Yan, B.; Miranda, O.R.; Anderton, D.L.; Arcaro, K.F.; Rotello, V.M.; Vachet, R.W. Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small, 6(20), 2261-2265.
[http://dx.doi.org/10.1002/smll.201000989] [PMID: 20842664]
[81]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[82]
Handy, R.D.; Henry, T.B.; Scown, T.M.; Johnston, B.D.; Tyler, C.R. Manufactured nanoparticles: their uptake and effects on fish-a mechanistic analysis. Ecotoxicology, 2008, 17(5), 396-409.
[http://dx.doi.org/10.1007/s10646-008-0205-1]
[83]
Seferos, D.S.; Prigodich, A.E.; Giljohann, D.A.; Patel, P.C.; Mirkin, C.A. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett., 2009, 9(1), 308-311.
[http://dx.doi.org/10.1021/nl802958f] [PMID: 19099465]
[84]
Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.R.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312(5776), 1027-1030.
[http://dx.doi.org/10.1126/science.1125559]
[85]
Lee, J.S.; Green, J.J.; Love, K.T.; Sunshine, J.; Langer, R.; Anderson, D.G. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett., 2009, 9(6), 2402-2406.
[http://dx.doi.org/10.1021/nl9009793] [PMID: 19422265]
[86]
Thomas, M.; Klibanov, A.M. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9138-9143.
[http://dx.doi.org/10.1073/pnas.1233634100] [PMID: 12886020]
[87]
Ghosh, P.S.; Han, G.; Erdogan, B.; Rosado, O.; Krovi, S.A.; Rotello, V.M. Nanoparticles featuring amino acid-functionalized side chains as DNA receptors. Chem. Biol. Drug Des., 2007, 70(1), 13-18.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00534.x] [PMID: 17630990]
[88]
Sandhu, K.K.; McIntosh, C.M.; Simard, J.M.; Smith, S.W.; Rotello, V.M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem., 2002, 13(1), 3-6.
[http://dx.doi.org/10.1021/bc015545c] [PMID: 11792172]
[89]
Schäffler, M.; Sousa, F.; Wenk, A.; Sitia, L.; Hirn, S.; Schleh, C.; Haberl, N.; Violatto, M.; Canovi, M.; Andreozzi, P.; Salmona, M.; Bigini, P.; Kreyling, W.G.; Krol, S. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials, 2014, 35(10), 3455-3466.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.100] [PMID: 24461938]
[90]
Visaria, R.K.; Griffin, R.J.; Williams, B.W.; Ebbini, E.S.; Paciotti, G.F.; Song, C.W.; Bischof, J.C. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol. Cancer Ther., 2006, 5(4), 1014-1020.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0381] [PMID: 16648573]
[91]
Sharma, A.; Matharu, Z.; Sumana, G.; Solanki, P.R.; Kim, C.G.; Malhotra, B.D. Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films, 2010, 519, 1213-1218.
[http://dx.doi.org/10.1016/j.tsf.2010.08.071]
[92]
Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 2007, 24(8), 1415-1426.
[http://dx.doi.org/10.1007/s11095-007-9257-9] [PMID: 17380266]
[93]
Comber, J.D.; Gold Nanoparticles, B.A. (AuNPs): a new frontier in vaccine delivery. J. Nanomed. Biother. Discov., 2015, 5e139
[94]
Shiang, Y-C.; Ou, C-M.; Chen, S-J.; Ou, T-Y.; Lin, H-J.; Huang, C-C.; Chang, H-T. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale, 2013, 5(7), 2756-2764.
[http://dx.doi.org/10.1039/c3nr33403a] [PMID: 23429884]
[95]
Marradi, M.; Di Gianvincenzo, P.; Enríquez-Navas, P.M.; Martínez-Ávila, O.M.; Chiodo, F.; Yuste, E.; Angulo, J.; Penadés, S. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J. Mol. Biol., 2011, 410(5), 798-810.
[http://dx.doi.org/10.1016/j.jmb.2011.03.042] [PMID: 21440555]
[96]
Di Gianvincenzo, P.; Chiodo, F.; Marradi, M.; Penadés, S. Gold manno-glyconanoparticles for intervening in HIV gp120 carbohydrate-mediated processes. Methods Enzymol., 2012, 509, 21-40.
[http://dx.doi.org/10.1016/B978-0-12-391858-1.00002-2] [PMID: 22568899]
[97]
Rosemary Bastian, A.; Nangarlia, A.; Bailey, L.D.; Holmes, A.; Kalyana Sundaram, R.V.; Ang, C.; Moreira, D.R.M.; Freedman, K.; Duffy, C.; Contarino, M.; Abrams, C.; Root, M.; Chaiken, I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J. Biol. Chem., 2015, 290(1), 529-543.
[http://dx.doi.org/10.1074/jbc.M114.608315] [PMID: 25371202]
[98]
Lim, Z.Z.; Li, J.E.; Ng, C.T.; Yung, L.Y.; Bay, B.H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin., 2011, 32(8), 983-990.
[http://dx.doi.org/10.1038/aps.2011.82] [PMID: 21743485]
[99]
Kodiha, M.; Wang, Y.M.; Hutter, E.; Maysinger, D.; Stochaj, U. Off to the organelles - killing cancer cells with targeted gold nanoparticles. Theranostics, 2015, 5(4), 357-370.
[http://dx.doi.org/10.7150/thno.10657] [PMID: 25699096]
[100]
Mateo, D.; Morales, P.; Ávalos, A.; Haza, A.I. Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol. Mech. Methods, 2014, 24(3), 161-172.
[http://dx.doi.org/10.3109/15376516.2013.869783] [PMID: 24274460]
[101]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 2008, 23(3), 217-228.
[http://dx.doi.org/10.1007/s10103-007-0470-x] [PMID: 17674122]
[102]
Dayanc, B.E.; Beachy, S.H.; Ostberg, J.R.; Repasky, E.A. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int. J. Hyperthermia, 2008, 24(1), 41-56.
[http://dx.doi.org/10.1080/02656730701858297] [PMID: 18214768]
[103]
You, J.; Zhang, R.; Zhang, G.; Zhong, M.; Liu, Y.; Van Pelt, C.S.; Liang, D.; Wei, W.; Sood, A.K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release, 2012, 158(2), 319-328.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.028] [PMID: 22063003]
[104]
Kampinga, H.H. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia, 2006, 22(3), 191-196.
[http://dx.doi.org/10.1080/02656730500532028] [PMID: 16754338]
[105]
Kennedy, L.C.; Bickford, L.R.; Lewinski, N.A.; Coughlin, A.J.; Hu, Y.; Day, E.S.; West, J.L.; Drezek, R.A. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small, 2011, 7(2), 169-183.
[http://dx.doi.org/10.1002/smll.201000134] [PMID: 21213377]
[106]
Chatterjee, D.K.; Diagaradjane, P.; Krishnan, S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv., 2011, 2(8), 1001-1014.
[http://dx.doi.org/10.4155/tde.11.72] [PMID: 22506095]
[107]
Cherukuri, P.; Glazer, E.S.; Curley, S.A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(3), 339-345.
[http://dx.doi.org/10.1016/j.addr.2009.11.006] [PMID: 19909777]
[108]
Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol., 2002, 43(1), 33-56.
[http://dx.doi.org/10.1016/S1040-8428(01)00179-2] [PMID: 12098606]
[109]
Lee, S.M.; Park, H.; Choi, J.W.; Park, Y.N.; Yun, C.O.; Yoo, K.H. Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(33), 7581-7586.
[http://dx.doi.org/10.1002/anie.201101783] [PMID: 21721086]
[110]
Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. Engl., 2011, 50(4), 891-895.
[http://dx.doi.org/10.1002/anie.201002820] [PMID: 21246685]
[111]
Delaney, G.P.; Barton, M.B. Evidence-based estimates of the demand for radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2015, 27(2), 70-76.
[http://dx.doi.org/10.1016/j.clon.2014.10.005] [PMID: 25455408]
[112]
Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target., 2007, 15(7-8), 457-464.
[http://dx.doi.org/10.1080/10611860701539584] [PMID: 17671892]
[113]
Zhang, S.X.; Gao, J.; Buchholz, T.A.; Wang, Z.; Salehpour, M.R.; Drezek, R.A.; Yu, T.K. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomed. Microdevices, 2009, 11(4), 925-933.
[http://dx.doi.org/10.1007/s10544-009-9309-5] [PMID: 19381816]
[114]
Hainfeld, J.M.; Smilowitz, H.M.; O’Connor, M.J.; Dilmanian, F.A.; Slatkin, D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond.), 2013, 8(10), 1601-1609.
[http://dx.doi.org/10.2217/nnm.12.165] [PMID: 23265347]
[115]
Song, K.; Xu, P.; Meng, Y.; Geng, F.; Li, J.; Li, Z.; Xing, J.; Chen, J.; Kong, B. Smart gold nanoparticles enhance killing effect on cancer cells. Int. J. Oncol., 2013, 42(2), 597-608.
[http://dx.doi.org/10.3892/ijo.2012.1721] [PMID: 23229536]
[116]
Zhang, X.; Xing, J. Z.; Chen, J.; Ko, L.; Amanie, J.; Gulavita, S.; Pervez, N.; Yee, D.; Moore, R.; Roa, W. Enhanced radiation sensitivity in prostate cancer by goldnanoparticles. Clin. Investig. Med, 2008, 31(3)
[http://dx.doi.org/10.25011/cim.v31i3.3473]
[117]
Antosh, M.P.; Wijesinghe, D.D.; Shrestha, S.; Lanou, R.; Huang, Y.H.; Hasselbacher, T.; Fox, D.; Neretti, N.; Sun, S.; Katenka, N.; Cooper, L.N.; Andreev, O.A.; Reshetnyak, Y.K. Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc. Natl. Acad. Sci. USA, 2015, 112(17), 5372-5376.
[http://dx.doi.org/10.1073/pnas.1501628112] [PMID: 25870296]
[118]
Xi, J.; Qian, X.; Qian, K.; Zhang, W.; He, W.; Chen, Y.; Han, J.; Zhang, Y.; Yang, X.; Fan, L. Au nanoparticle-coated, plga-based hybrid capsules for combined ultrasound imaging and HIFU Therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(20), 4213-4220.
[http://dx.doi.org/10.1039/C5TB00200A]
[119]
Su, C-H.; Sheu, H-S.; Lin, C-Y.; Huang, C-C.; Lo, Y-W.; Pu, Y-C.; Weng, J-C.; Shieh, D-B.; Chen, J-H.; Yeh, C-S. Nanoshell magnetic resonance imaging contrast agents. J. Am. Chem. Soc., 2007, 129(7), 2139-2146.
[http://dx.doi.org/10.1021/ja0672066] [PMID: 17263533]
[120]
Moon, G.D.; Choi, S.W.; Cai, X.; Li, W.; Cho, E.C.; Jeong, U.; Wang, L.V.; Xia, Y. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc., 2011, 133(13), 4762-4765.
[http://dx.doi.org/10.1021/ja200894u] [PMID: 21401092]
[121]
Olafsson, R.; Bauer, D.R.; Montilla, L.G.; Witte, R.S. Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber. Opt. Express, 2010, 18(18), 18625-18632.
[http://dx.doi.org/10.1364/OE.18.018625] [PMID: 20940754]
[122]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett., 2007, 7(6), 1591-1597.
[http://dx.doi.org/10.1021/nl070472c] [PMID: 17474783]
[123]
Lyandres, O.; Yuen, J. M.; Shah, N. C.; VanDuyne, R. P.; Walsh, J. T.; Glucksberg, M. R. Progress Toward an In Vivo Surface-Enhanced Raman Spectroscopy Glucose Sensor. Diabetes Technology & Therapeutics;, 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801USA August. 2008, 257-265.
[http://dx.doi.org/10.1089/dia.2007.0288]
[124]
Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 596-602.
[http://dx.doi.org/10.3109/21691401.2014.971807] [PMID: 25365243]
[125]
Eustis, S.; el-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006, 35(3), 209-217.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[126]
Cao, J.; Sun, T.; Grattan, K.T.V. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens. Actuators B Chem., 2014, 195, 332-351.
[http://dx.doi.org/10.1016/j.snb.2014.01.056]
[127]
Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5(18), 2067-2076.
[http://dx.doi.org/10.1002/smll.200900466] [PMID: 19642089]
[128]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12(7), 2313-2333.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[129]
Chithrani, D.B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R.G.; Hill, R.P.; Jaffray, D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res., 2010, 173(6), 719-728.
[http://dx.doi.org/10.1667/RR1984.1] [PMID: 20518651]
[130]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[131]
Haume, K.; Rosa, S.; Grellet, S.; Śmiałek, M.A.; Butterworth, K.T.; Solov’yov, A.V.; Prise, K.M.; Golding, J.; Mason, N.J. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol., 2016, 7(1), 8.
[http://dx.doi.org/10.1186/s12645-016-0021-x] [PMID: 27867425]
[132]
Muddineti, O.S.; Ghosh, B.; Biswas, S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int. J. Pharm., 2015, 484(1-2), 252-267.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.038] [PMID: 25701627]
[133]
Butterworth, K.T.; McMahon, S.J.; Currell, F.J.; Prise, K.M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012, 4(16), 4830-4838.
[http://dx.doi.org/10.1039/c2nr31227a] [PMID: 22767423]
[134]
Siddiqui, E.A.; Ahmad, A.; Julius, A.; Syed, A.; Khan, S.; Kharat, M.; Pai, K.; Kadoo, N.; Gupta, V. Biosynthesis of anti-proliferative gold nanoparticles using endophytic Fusarium oxysporum strain isolated from neem (a. indica) leaves. Curr. Top. Med. Chem., 2016, 16(18), 2036-2042.
[http://dx.doi.org/10.2174/1568026616666160215160644] [PMID: 26876519]
[135]
Loutfy, S.A.; Al-Ansary, N.A.; Abdel-Ghani, N.T.; Hamed, A.R.; Mohamed, M.B.; Craik, J.D.; Eldin, T.A.; Abdellah, A.M.; Hussein, Y.; Hasanin, M.T.M.; Elbehairi, S.E. Anti-proliferative activities of metallic nanoparticles in an in vitro breast cancer model. Asian Pac. J. Cancer Prev., 2015, 16(14), 6039-6046.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.6039] [PMID: 26320493]
[136]
Suganya, U.S.U.; Govindaraju, K.; Kumar, G.G.; Prabhu, D.; Arulvasu, C.; Dhas, S.S.; Karthick, V.; Changmai, N. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl. Surf. Sci., 2016, 371, 415-424.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.004]
[137]
Tan, G.; Onur, M.A. Anti-proliferative effects of gold nanoparticles functionalized with semaphorin 3F. J. Nanopart. Res., 2017, 19(8), 283.
[http://dx.doi.org/10.1007/s11051-017-3967-7]
[138]
Wójcik, M.; Lewandowski, W.; Król, M.; Pawłowski, K.; Mieczkowski, J.; Lechowski, R.; Zabielska, K. Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles - in vitro studies on feline fibrosarcoma cell lines. PLoS One, 2015, 10(4)e0124955
[http://dx.doi.org/10.1371/journal.pone.0124955] [PMID: 25928423]
[139]
Nirmala, J.G.; Akila, S.; Nadar, M.S.A.M.; Narendhirakannan, R.T.; Chatterjee, S. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer Cells. RSC Advances, 2016, 6(85), 82205-82218.
[http://dx.doi.org/10.1039/C6RA16310F]
[140]
Kumar, C.G.; Poornachandra, Y.; Chandrasekhar, C. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale, 2015, 7(44), 18738-18750.
[http://dx.doi.org/10.1039/C5NR04577K] [PMID: 26503300]
[141]
Selvi, S.K.; Kumar, J.M.; Sashidhar, R.B. Anti-proliferative activity of gum kondagogu (Cochlospermum gossypium)-gold nanoparticle constructs on b16f10 melanoma cells: an in vitro model. Bioact. Carbohydrates Diet. Fibre, 2017, 11(Suppl. C), 38-47.
[http://dx.doi.org/10.1016/j.bcdf.2017.07.002]
[142]
Ashokkumar, T.; Arockiaraj, J.; Vijayaraghavan, K. Biosynthesis of gold nanoparticles using green roof species Portulaca grandiflora and their cytotoxic effects against c6 glioma human cancer cells. Environ. Prog. Sustain. Energy, 2016, 35(6), 1732-1740.
[http://dx.doi.org/10.1002/ep.12385]
[143]
Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract(decoction)of Antigonon leptopus Hook. &Arn. J. Trace Elem. Med. Biol., 2015, 30(Suppl. C), 83-89.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.001] [PMID: 25432487]
[144]
Abel, E.E.; Preetam, R.J.P.S.G.P. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl. Nanosci., 2016, 6(1), 121-129.
[http://dx.doi.org/10.1007/s13204-015-0422-x]
[145]
Anand, K.; Gengan, R.M.; Phulukdaree, A.; Chuturgoon, A. Agroforestry Waste moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem., 2015, 21(Suppl. C), 1105-1111.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[146]
Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl., 2010, 49(19), 3280-3294.
[http://dx.doi.org/10.1002/anie.200904359] [PMID: 20401880]
[147]
Johnston, H.J.; Hutchison, G.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol., 2010, 40(4), 328-346.
[http://dx.doi.org/10.3109/10408440903453074] [PMID: 20128631]
[148]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[149]
Gromnicova, R.; Davies, H.A.; Sreekanthreddy, P.; Romero, I.A.; Lund, T.; Roitt, I.M.; Phillips, J.B.; Male, D.K. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One, 2013, 8(12)e81043
[http://dx.doi.org/10.1371/journal.pone.0081043] [PMID: 24339894]
[150]
Zhang, X-D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y-M.; Liu, P-X.; Liang, X-J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 2012, 33(27), 6408-6419.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.047] [PMID: 22681980]
[151]
Chen, N.; Yang, W.; Bao, Y.; Xu, H.; Qin, S.; Tu, Y. BSA Capped Au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Advances, 2015, 5(51), 40514-40520.
[http://dx.doi.org/10.1039/C5RA04013B]
[152]
Bobyk, L.; Edouard, M.; Deman, P.; Vautrin, M.; Pernet-Gallay, K.; Delaroche, J.; Adam, J-F.; Estève, F.; Ravanat, J-L.; Elleaume, H. Photoactivation of gold nanoparticles for glioma treatment. Nanomedicine (Lond.), 2013, 9(7), 1089-1097.
[http://dx.doi.org/10.1016/j.nano.2013.04.007] [PMID: 23643529]
[153]
Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P.C.; He, S.; Zhang, X.; Liang, X.J. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano, 2012, 6(5), 4483-4493.
[http://dx.doi.org/10.1021/nn301282m] [PMID: 22540892]
[154]
Abdelhalim, M.A.K.; Mady, M.M. Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: a fluorescence study. Lipids Health Dis., 2011, 10(1), 195.
[http://dx.doi.org/10.1186/1476-511X-10-195] [PMID: 22040092]
[155]
Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res., 2015, 8(6), 1771-1799.
[http://dx.doi.org/10.1007/s12274-014-0697-3]
[156]
Arvizo, R.R.; Rana, S.; Miranda, O.R.; Bhattacharya, R.; Rotello, V.M.; Mukherjee, P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine (Lond.), 2011, 7(5), 580-587.
[http://dx.doi.org/10.1016/j.nano.2011.01.011] [PMID: 21333757]
[157]
Guo, M.; Sun, Y.; Zhang, X-D. Enhanced radiation therapy of gold nanoparticles in liver Cancer. Appl. Sci. (Basel), 2017, 7, 232.
[http://dx.doi.org/10.3390/app7030232]
[158]
Trono, J.D.; Mizuno, K.; Yusa, N.; Matsukawa, T.; Yokoyama, K.; Uesaka, M. Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-Ray drug delivery system. J. Radiat. Res. (Tokyo), 2011, 52(1), 103-109.
[http://dx.doi.org/10.1269/jrr.10068] [PMID: 21187668]
[159]
Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B.M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S.R. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology, 2009, 20(39)395102
[http://dx.doi.org/10.1088/0957-4484/20/39/395102] [PMID: 19726840]
[160]
Hainfeld, J.F.; Slatkin, D.N.; Smilowitz, H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol., 2004, 49(18), N309-N315.
[http://dx.doi.org/10.1088/0031-9155/49/18/N03] [PMID: 15509078]
[161]
Huo, S.; Ma, H.; Huang, K.; Liu, J.; Wei, T.; Jin, S.; Zhang, J.; He, S.; Liang, X.J. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res., 2013, 73(1), 319-330.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2071] [PMID: 23074284]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 35
Year: 2019
Page: [6493 - 6513]
Pages: 21
DOI: 10.2174/0929867326666190506123721
Price: $65

Article Metrics

PDF: 43
HTML: 7