Identification of Novel Phyto-chemicals from Ocimum basilicum for the Treatment of Parkinson’s Disease using In Silico Approach

Author(s): Nageen Mubashir, Rida Fatima, Sadaf Naeem*

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Parkinson’s disease is characterized by decreased level of dopaminergic neurotransmitters and this decrease is due to the degradation of dopamine by protein Monoamine Oxidase B (MAO-B). In order to treat Parkinson’s disease, MAO-B should be inhibited.

Objective: To find out the novel phytochemicals from plant Ocimum basilicum that can inhibit MAO-B by using the in silico methods.

Methods: The data of chemical constituents from plant Ocimum basilicum was collected and inhibitory activity of these phytochemicals was then predicted by using the Structure-Based (SB) and Ligand-Based Virtual Screening (LBVS) methods. Molecular docking, one of the common Structure-Based Virtual Screening method, has been used during this search. Traditionally, molecular docking is used to predict the orientation and binding affinity of the ligand within the active site of the protein. Molegro Virtual Docker (MVD) software has been used for this purpose. On the other hand, Random Forest Model, one of the LBVS method, has also been used to predict the activity of these chemical constituents of Ocimum basilicum against the MAO-B.

Results: During the docking studies, all the 108 compounds found in Ocimum basilicum were docked within the active site of MAO-B (PDB code: 4A79) out of which, 57 compounds successfully formed the hydrogen bond with tyr 435, a crucial amino acid for the biological activity of the enzyme. Rutin (-182.976 Kcal/mol), Luteolin (-163.171 Kcal/mol), Eriodictyol-7-O-glucoside (- 160.13 Kcal/mol), Rosmarinic acid (-133.484 Kcal/mol) and Isoquercitrin (-131.493 Kcal/mol) are among the top hits with the highest MolDock score along with hydrogen interaction with tyr 435. Using the RF model, ten compounds out of 108 chemical constituent of Ocimum basilicum were predicted to be active, Apigenin (1.0), Eriodictyol (1.0), Orientin (0.876), Kaempferol (0.8536), Luteolin (0.813953) and Rosmarinic-Acid (0.7738095) are predicted to be most active with the highest RF score.

Conclusion: The comparison of the two screening methods show that the ten compounds that were predicted to be active by the RF model, are also found in top hits of docking studies with the highest score. The top hits obtained during this study are predicted to be the inhibitor of MAO-B, thus, could be used further for the development of drugs for the treatment of Parkinson’s disease (PD).

Keywords: Parkinson's disease, Monoamine Oxidase B, Ocimum basilicum, in silico methods, molecular docking, random forest model.

[1]
Singer, T.P. Perspectives in MAO: past, present, and future. A review. J. Neural Transm. Suppl., 1987, 23, 1-23.
[http://dx.doi.org/10.1007/978-3-7091-8901-6_1] [PMID: 3295113]
[2]
Waldmeier, P.C. Amine oxidases and their endogenous substrates (with special reference to monoamine oxidase and the brain). J. Neural Transm. Suppl., 1987, 23, 55-72.
[http://dx.doi.org/10.1007/978-3-7091-8901-6_4] [PMID: 3108453]
[3]
Kosenko, E.; Kaminsky, Y.; Kaminsky, A.; Valencia, M.; Lee, L.; Hermenegildo, C.; Felipo, V. Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic. Res., 1997, 27(6), 637-644.
[http://dx.doi.org/10.3109/10715769709097867] [PMID: 9455699]
[4]
Danielczyk, W.; Streifler, M.; Konradi, C.; Riederer, P.; Moll, G. Platelet MAO-B activity and the psychopathology of Parkinson’s disease, senile dementia and multi-infarct dementia. Acta Psychiatr. Scand., 1988, 78(6), 730-736.
[http://dx.doi.org/10.1111/j.1600-0447.1988.tb06412.x] [PMID: 3223331]
[5]
Grünblatt, E.; Schlösser, R.; Fischer, P.; Fischer, M.O.; Li, J.; Koutsilieri, E.; Wichart, I.; Sterba, N.; Rujescu, D.; Möller, H.J.; Adamcyk, W.; Dittrich, B.; Müller, F.; Oberegger, K.; Gatterer, G.; Jellinger, K.J.; Mostafaie, N.; Jungwirth, S.; Huber, K.; Tragl, K.H.; Danielczyk, W.; Riederer, P. Oxidative stress related markers in the “VITA” and the centenarian projects. Neurobiol. Aging, 2005, 26(4), 429-438.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.06.001] [PMID: 15653171]
[6]
Robakis, D.; Fahn, S. Defining the role of the monoamine oxidase-b inhibitors for parkinson’s disease. CNS Drugs, 2015, 29(6), 433-441.
[http://dx.doi.org/10.1007/s40263-015-0249-8] [PMID: 26164425]
[7]
Wang, Z.; Wu, J.; Yang, X.; Cai, P.; Liu, Q.; Wang, K.D.G.; Kong, L.; Wang, X. Neuroprotective effects of benzyloxy substituted small molecule monoamine oxidase B inhibitors in Parkinson’s disease. Bioorg. Med. Chem., 2016, 24(22), 5929-5940.
[http://dx.doi.org/10.1016/j.bmc.2016.09.050] [PMID: 27692996]
[8]
Ilgın, S.; Osmaniye, D.; Levent, S.; Sağlık, B.N.; Acar Çevik, U.; Çavuşoğlu, B.K.; Özkay, Y.; Kaplancıklı, Z.A. Design and synthesis of new Benzothiazole compounds as selective hMAO-B inhibitors. Molecules, 2017, 22(12), 2187-2200.
[http://dx.doi.org/10.3390/molecules22122187] [PMID: 29232838]
[9]
Dezsi, L.; Vecsei, L. Monoamine oxidase B inhibitors in parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2017, 16(4), 425-439.
[http://dx.doi.org/10.2174/1871527316666170124165222] [PMID: 28124620]
[10]
Mason, R.P.; Olmstead, E.G.; Jacob, R.F. Antioxidant activity of the monoamine oxidase B inhibitor lazabemide. Biochem. Pharmacol., 2000, 60(5), 709-716.
[http://dx.doi.org/10.1016/S0006-2952(00)00374-9] [PMID: 10927030]
[11]
Tatton, W.G.; Chalmers-Redman, R.M.; Ju, W.Y.; Wadia, J.; Tatton, N.A. Apoptosis in neurodegenerative disorders: potential for therapy by modifying gene transcription. J. Neural Transm. Suppl., 1997, 49, 245-268.
[http://dx.doi.org/10.1007/978-3-7091-6844-8_25] [PMID: 9266433]
[12]
Solayman, M.; Islam, M.A.; Alam, F.; Khalil, M.I.; Kamal, M.A.; Gan, S.H. Natural products combating neurodegenera-tion: Parkinson’s disease. Curr. Drug Metab., 2017, 18(1), 50-61.
[http://dx.doi.org/10.2174/1389200217666160709204826] [PMID: 27396919]
[13]
Fu, W.; Zhuang, W.; Zhou, S.; Wang, X. Plant-derived neuroprotective agents in Parkinson’s disease. Am. J. Transl. Res., 2015, 7(7), 1189-1202.
[PMID: 26328004]
[14]
Ding, Y.; Xin, C.; Zhang, C.W.; Lim, K.L.; Zhang, H.; Fu, Z.; Li, L.; Huang, W. Natural molecules from Chinese Herbs pro-tecting against Parkinson’s disease via anti-oxidative stress. Front. Aging Neurosci., 2018, 10, 246.
[http://dx.doi.org/10.3389/fnagi.2018.00246] [PMID: 30233351]
[15]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[16]
Ji, H.F.; Li, X.J.; Zhang, H.Y. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep., 2009, 10(3), 194-200.
[http://dx.doi.org/10.1038/embor.2009.12] [PMID: 19229284]
[17]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[18]
Carter, G.T. Natural products and Pharma 2011: strategic changes spur new opportunities. Nat. Prod. Rep., 2011, 28(11), 1783-1789.
[http://dx.doi.org/10.1039/c1np00033k] [PMID: 21909580]
[19]
Gullo, V.P.; McAlpine, J.; Lam, K.S.; Baker, D.; Petersen, F. Drug discovery from natural products. J. Ind. Microbiol. Biotechnol., 2006, 33(7), 523-531.
[http://dx.doi.org/10.1007/s10295-006-0107-2] [PMID: 16544162]
[20]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: innovations for novel drug dis-covery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[21]
Joshi, R.K. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life, 2014, 33(3), 151-156.
[http://dx.doi.org/10.4103/0257-7941.144618] [PMID: 25538349]
[22]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[23]
Gomeni, R.; Bani, M.; D’Angeli, C.; Corsi, M.; Bye, A. Computer-assisted drug development (CADD): an emerging technology for designing first-time-in-man and proof-of-concept studies from preclinical experiments. Eur. J. Pharm. Sci., 2001, 13(3), 261-270.
[http://dx.doi.org/10.1016/S0928-0987(01)00111-7] [PMID: 11384848]
[24]
Veselovsky, A.V.; Ivanov, A.S. Strategy of computer-aided drug design. Curr. Drug Targets Infect. Disord., 2003, 3(1), 33-40.
[http://dx.doi.org/10.2174/1568005033342145] [PMID: 12570731]
[25]
Rester, U. From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel., 2008, 11(4), 559-568.
[PMID: 18600572]
[26]
Rollinger, J.M.; Stuppner, H.; Langer, T. Virtual screening for the discovery of bioactive natural products. Prog. Drug Res, 2008, 65(211), 213-249.
[http://dx.doi.org/10.1007/978-3-7643-8117-2_6] [PMID: 18084917]
[27]
Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[28]
Reddy, A.S.; Pati, S.P.; Kumar, P.P.; Pradeep, H.N.; Sastry, G.N. Virtual screening in drug discovery -- a computational perspective. Curr. Protein Pept. Sci., 2007, 8(4), 329-351.
[http://dx.doi.org/10.2174/138920307781369427] [PMID: 17696867]
[29]
Benod, C.; Carlsson, J.; Uthayaruban, R.; Hwang, P.; Irwin, J.J.; Doak, A.K.; Shoichet, B.K.; Sablin, E.P.; Fletterick, R.J. Structure-based discovery of antagonists of nuclear receptor LRH-1. J. Biol. Chem., 2013, 288(27), 19830-19844.
[http://dx.doi.org/10.1074/jbc.M112.411686] [PMID: 23667258]
[30]
Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S.H. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J., 2012, 14(1), 133-141.
[http://dx.doi.org/10.1208/s12248-012-9322-0] [PMID: 22281989]
[31]
Andricopulo, A.D.; Salum, L.B.; Abraham, D.J. Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem., 2009, 9(9), 771-790.
[http://dx.doi.org/10.2174/156802609789207127] [PMID: 19754394]
[32]
Yu, W.; MacKerell, A.D. Jr Computer-Aided drug design methods. Methods Mol. Biol., 2017, 1520, 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5] [PMID: 27873247]
[33]
McInnes, C. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol., 2007, 11(5), 494-502.
[http://dx.doi.org/10.1016/j.cbpa.2007.08.033] [PMID: 17936059]
[34]
Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today, 2006, 11(23-24), 1046-1053.
[http://dx.doi.org/10.1016/j.drudis.2006.10.005] [PMID: 17129822]
[35]
Ehrman, T.M.; Barlow, D.J.; Hylands, P.J. Virtual screening of Chinese herbs with Random Forest. J. Chem. Inf. Model., 2007, 47(2), 264-278.
[http://dx.doi.org/10.1021/ci600289v] [PMID: 17381165]
[36]
Schulz-Gasch, T.; Stahl, M. Scoring functions for protein-ligand interactions: a critical perspective. Drug Discov. Today. Technol., 2004, 1(3), 231-239.
[http://dx.doi.org/10.1016/j.ddtec.2004.08.004] [PMID: 24981490]
[37]
van Montfort, R.L.M.; Workman, P. Structure-based drug design: aiming for a perfect fit. Essays Biochem., 2017, 61(5), 431-437.
[http://dx.doi.org/10.1042/EBC20170052] [PMID: 29118091]
[38]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[39]
Azam, S.S.; Abbasi, S.W. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor. Biol. Med. Model., 2013, 10, 63-79.
[http://dx.doi.org/10.1186/1742-4682-10-63] [PMID: 24156411]
[40]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[41]
Kroemer, R.T. Structure-based drug design: docking and scoring. Curr. Protein Pept. Sci., 2007, 8(4), 312-328.
[http://dx.doi.org/10.2174/138920307781369382] [PMID: 17696866]
[42]
Śledź, P.; Caflisch, A. Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struct. Biol., 2018, 48, 93-102.
[http://dx.doi.org/10.1016/j.sbi.2017.10.010] [PMID: 29149726]
[43]
Naeem, S.; Hylands, P.; Barlow, D. Docking studies of chlorogenic acid against aldose redutcase by using Molgro Virtual Docker software. J. Appl. Pharm. Sci., 2013, 3(01), 13-20.
[44]
Anwar, M.F.; Khalid, R.; Hasanain, A.; Naeem, S.; Zarina, S.; Abidi, S.H.; Ali, S. Integrated cheminformatics- molecular docking approach to drug discovery against viruses. Infect. Disord. Drug Targets, 2019, 19, 1-10.
[PMID: 30345931]
[45]
Siddiqui, S.; Anwar, M.F.; Naeem, S.; Abidi, S.H.; Zarina, S.; Ali, S. Simian Virus 40 Large T Antigen as a model to test the efficacy of flouroquinolones against viral helicases. Bioinformation, 2018, 14(2), 75-79.
[http://dx.doi.org/10.6026/97320630014075] [PMID: 29618903]
[46]
Naeem, S.; Asif, U.; Sherwani, A.K. Bano, K.; Shoaib, M.H.; Akhtar, N. Docking studies of Febuxostat by using MolDock software. Int. J. Biol. Biotechnol., 2012, 9(4), 367-371.
[47]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des, 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[48]
Lounnas, V.; Ritschel, T.; Kelder, J.; McGuire, R.; Bywater, R.P.; Foloppe, N. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery. Comput. Struct. Biotechnol J., 2013. 5e201302011
[http://dx.doi.org/10.5936/csbj.201302011] [PMID: 24688704]
[49]
Wang, X.; Song, K.; Li, L.; Chen, L. Structure-based drug design strategies and challenges. Curr. Top. Med. Chem., 2018, 18(12), 998-1006.
[http://dx.doi.org/10.2174/1568026618666180813152921] [PMID: 30101712]
[50]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gin-dulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44, D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[51]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: an open chemical toolbox. J. Cheminform., 2011, 3, 33-48.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[52]
Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. Dragon software: an easy approach to molecular decriptor calcula-tions. MATCH Commun. Math. Comput. Chem., 2006, 56, 237-248.
[53]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[54]
Binda, C.; Aldeco, M.; Geldenhuys, W.J.; Tortorici, M.; Mattevi, A.; Edmondson, D.E. Molecular insights into human Monoamine Oxidase B inhibition by the Glitazone antidiabe-tes drugs. Med. Chem. Lett., 2012, 3, 39-42.
[http://dx.doi.org/10.1021/ml200196p]
[55]
Storn, R.; Price, K. Differential evolution-A simple and effi-cient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim., 1997, 11, 341.
[http://dx.doi.org/10.1023/A:1008202821328]
[56]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[57]
Paul, S.B.; Choudhury, S. Computational analysis of the activity of pongachalcone I against highly resistant bacteria Pseudomonas putida. Bioinformation, 2010, 4(10), 473-477.
[http://dx.doi.org/10.6026/97320630004473] [PMID: 20975912]
[58]
Gehlhaar, D.K.; Verkhivker, G.M.; Rejto, P.A.; Sherman, C.J.; Fogel, D.B.; Fogel, L.J.; Freer, S.T. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem. Biol., 1995, 2(5), 317-324.
[http://dx.doi.org/10.1016/1074-5521(95)90050-0] [PMID: 9383433]
[59]
Yang, J.M.; Chen, C.C. GEMDOCK: a generic evolutionary method for molecular docking. Proteins, 2004, 55(2), 288-304.
[http://dx.doi.org/10.1002/prot.20035] [PMID: 15048822]
[60]
Binda, C.; Li, M.; Hubalek, F.; Restelli, N.; Edmondson, D.E.; Mattevi, A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc. Natl. Acad. Sci. USA, 2003, 100(17), 9750-9755.
[http://dx.doi.org/10.1073/pnas.1633804100] [PMID: 12913124]
[61]
Wimo, A.; Jonsson, L.; Winblad, B. An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement. Geriatr. Cogn. Disord., 2006, 21(3), 175-181.
[http://dx.doi.org/10.1159/000090733] [PMID: 16401889]
[62]
Sandler, M.; Glover, V.; Clow, A.; Jarman, J. Monoamine oxidase-B, monoamine oxidase-B inhibitors, and Parkinson’s disease. A role for superoxide dismutase? Adv. Neurol., 1993, 60, 238-241.
[PMID: 8420141]
[63]
Khair-ul-Bariyah, S.; Ahmed, D.; Ikram, M. Ocimum basilicum: a review on phytochemical and pharmacological studies. Pak. J. Chem., 2012, 2(2), 78-85.
[http://dx.doi.org/10.15228/2012.v02.i02.p05]
[64]
Ahmad, M.; Naz, S.B.; Sharif, A.; Akram, M.; Saeed, M.A. Biological and pharmacological properties of the sweet basil (Ocimum basilicum). Br. J. Pharm. Res., 2015, 7(5), 330-339.
[http://dx.doi.org/10.9734/BJPR/2015/16505]
[65]
Rubab, S.; Hussain, I.; Khan, B.A.; Unar, A.A.; Abbas, K.A.; Khichi, Z.H.; Khan, M.; Khanum, S.; Rehman, K.U.; Khan, H. Biomedical description of Ocimum basilicum L JIIMC, 2017, 1, 59-167.
[66]
Chaurasiya, N.D.; Ibrahim, M.A.; Muhammad, I.; Walker, L.A.; Tekwani, B.L. Monoamine oxidase inhibitory constituents of propolis: kinetics and mechanism of inhibition of recombinant human MAO-A and MAO-B. Molecules, 2014, 19(11), 18936-18952.
[http://dx.doi.org/10.3390/molecules191118936] [PMID: 25412041]
[67]
Andrade, J.M.; Dos Santos Passos, C.; Kieling Rubio, M.A.; Mendonça, J.N.; Lopes, N.P.; Henriques, A.T. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration. Chem. Biol. Interact., 2016, 254, 135-145.
[http://dx.doi.org/10.1016/j.cbi.2016.06.005] [PMID: 27270453]
[68]
Lee, M.H.; Lin, R.D.; Shen, L.Y.; Yang, L.L.; Yen, K.Y.; Hou, W.C. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J. Agric. Food Chem., 2001, 49(11), 5551-5555.
[http://dx.doi.org/10.1021/jf010622j] [PMID: 11714358]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 02 September, 2020
Page: [420 - 434]
Pages: 15
DOI: 10.2174/1573409915666190503113617
Price: $65

Article Metrics

PDF: 31
HTML: 1