Application of Transition Metals in Sulfoxidation Reactions

Author(s): Qiang Pu, Mosstafa Kazemi*, Masoud Mohammadi

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Sulfoxides are key scaffolds in the synthesis of pharmaceutically active molecules. A large number of sulfoxides are indispensable ingredients in the structure of most antibiotics, biological and natural products such as Modafinil, Adrafinil, CRL-40,941 or fladrafinil, Fipronil, Oxydemetonmethyl, Omeprazole, Pantoprazole, Lansoprazole and Rabeprazole. The oxidation of sulfides is the most common and efficient strategy for the preparation of sulfoxides. Recently, many protocols based on using transition metals have been reported for the oxidation of sulfides to the sulfoxides. In this paper, we summarized a nice category of the reported protocols in the literature for the oxidation of sulfides to sulfoxides.

Keywords: Antibiotics, natural products, transition metals, oxidation of sulfides, sulfoxides, transition metals.

[1]
Whitham, G.H.; Davies, S.G. Organosulfur chemistry, Oxford Chemistry Primers; Oxford University University Press: Oxford, 1995.
[2]
Toru, T.; Bolm, C. Organosulfur chemistry in asymmetric synthesis., Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. 2008.
[http://dx.doi.org/10.1002/9783527623235]
[3]
Nesmeyanov, N.A.; Kalyavin, V.A.; Reutov, O.A. Reaction of sulfoxides with grignard reagents. Russ. Chem. Bull., 1978, 27, 2356-2358.
[http://dx.doi.org/10.1007/BF00946698]
[4]
Tokunoh, R.; Sodeoka, M.; Aoe, K.; Shibasaki, M. Synthesis and crystal structure of a new c2-symmetric chiral bis-sulfoxide ligand and its palladium (II) complex. Tetrahedron Lett., 1995, 36, 8035-8038.
[http://dx.doi.org/10.1016/0040-4039(95)01701-I]
[5]
Zen, J.M.; Liou, S.L.; Kumar, A.S.; Hsia, M.S. An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides. Angew. Chem. Int. Ed. Engl., 2003, 42(5), 577-579.
[http://dx.doi.org/10.1002/anie.200390166] [PMID: 12569495]
[6]
Calligaris, M. Structure and bonding in metal sulfoxide complexes: An update. Coord. Chem. Rev., 2004, 248, 351-375.
[http://dx.doi.org/10.1016/j.ccr.2004.02.005]
[7]
Ghorbani-Choghamarani, A.; Mohammadi, M.; Tamoradi, T.; Ghadermazi, M. Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron, 2019, 158, 25-35.
[http://dx.doi.org/10.1016/j.poly.2018.10.054]
[8]
Zolfigol, M.A.; Amani, K.; Hajjami, M.; Ghorbani-Choghamarani, A. Selective and efficient oxidation of sulfides to sulfoxides using ammonium cerium (IV) nitrate in the presence of a catalytic amount of KBr or NaBr. Monatsh. Chem., 2008, 139, 895-899.
[http://dx.doi.org/10.1007/s00706-008-0868-6]
[9]
Petra, D.G.I.; Kamer, P.C.J.; Spek, A.L.; Schoemaker, H.E.; van Leeuwen, P.W.N.M. Aminosulf(ox)ides as ligands for Iridium(I)-catalyzed asymmetric transfer hydrogenation. J. Org. Chem., 2000, 65(10), 3010-3017.
[http://dx.doi.org/10.1021/jo991700t] [PMID: 10814191]
[10]
Rowlands, G.J. Chiral sulfoxide ligands in catalytic asymmetric cyanohydrin synthesis. Synlett, 2003, 2003, 236-240.
[http://dx.doi.org/10.1055/s-2003-36790]
[11]
Dorta, R.; Rozenberg, H.; Shimon, L.J.W.; Milstein, D. Dimethylsulfoxide as a ligand for RhI and IrI complexes--isolation, structure, and reactivity towards X-H bonds (X=H, OH, OCH3). Chemistry, 2003, 9(21), 5237-5249.
[http://dx.doi.org/10.1002/chem.200305144] [PMID: 14613132]
[12]
Khenkin, A.M.; Neumann, R. Oxygen transfer from sulfoxides: oxidation of alkylarenes catalyzed by a polyoxomolybdate, [PMo12O40]3-. J. Am. Chem. Soc., 2002, 124(16), 4198-4199.
[http://dx.doi.org/10.1021/ja0178721] [PMID: 11960434]
[13]
Sato, K.; Yokoi, T.; Uesaka, Y.; Kon, Y.; Yoshioka, M.; Tatsumi, T. Selective oxidation of bulky sulfides to sulfoxides over titanosilicates having an MWW structure in the presence of H2O2 under organic solvent-free conditions. Tetrahedron Lett., 2013, 54, 4918-4921.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.006]
[14]
Bentley, R. Role of sulfur chirality in the chemical processes of biology. Chem. Soc. Rev., 2005, 34(7), 609-624.
[http://dx.doi.org/10.1039/b418284g] [PMID: 15965542]
[15]
Rouhi, A.M. Chirality at work. Chem. Eng. News, 2003, 81, 56.
[16]
Federsel, H.J. Facing chirality in the 21st century: Approaching the challenges in the pharmaceutical industry. Chirality, 2003, 15(Suppl.), S128-S142.
[http://dx.doi.org/10.1002/chir.10274] [PMID: 12884384]
[17]
Chen, L.; Noory Fajer, A.; Yessimbekov, Z.; Kazemi, M.; Mohammadi, M. Diaryl sulfides synthesis: Copper catalysts in C-S bond formation. J. Sulfur Chem., 2019, 1-18.
[http://dx.doi.org/10.1080/17415993.2019.1596268]
[18]
Pu, Q.; Kazemi, M.; Mohammadi, M. Application of transition metals in sulfoxidation reactions. Mini Rev. Org. Chem., 2019, 16, 5775-5791.
[http://dx.doi.org/10.2174/1570193X16666190430154835]
[19]
Hawkins, J.M.; Watson, T.J.N. Asymmetric catalysis in the pharmaceutical industry. Angew. Chem. Int. Ed. Engl., 2004, 43(25), 3224-3228.
[http://dx.doi.org/10.1002/anie.200330072] [PMID: 15213946]
[20]
Rao, R.N.; Shinde, D.D.; Talluri, M.V.N.K.; Agawane, S.B. LC-ESI-MS determination and pharmacokinetics of adrafinil in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 873(1), 119-123.
[http://dx.doi.org/10.1016/j.jchromb.2008.07.025] [PMID: 18723408]
[21]
Kawęcki, R. Facile synthesis of homochiral derivatives of 10-bornane sulfinates, sulfinamides and sulfinimines. Tetrahedron Asymmetry, 1999, 10, 4183-4190.
[http://dx.doi.org/10.1016/S0957-4166(99)00433-4]
[22]
Tan, H.; Cao, Y.; Tang, T.; Qian, K.; Chen, W.L.; Li, J. Biodegradation and chiral stability of fipronil in aerobic and flooded paddy soils. Sci. Total Environ., 2008, 407(1), 428-437.
[http://dx.doi.org/10.1016/j.scitotenv.2008.08.007] [PMID: 18835630]
[23]
Mandal, K.; Singh, B. Persistence of fipronil and its metabolites in sandy loam and clay loam soils under laboratory conditions. Chemosphere, 2013, 91(11), 1596-1603.
[http://dx.doi.org/10.1016/j.chemosphere.2012.12.054] [PMID: 23369635]
[24]
Thiermann, H.; Szinicz, L.; Eyer, F.; Worek, F.; Eyer, P.; Felgenhauer, N.; Zilker, T. Modern strategies in therapy of organophosphate poisoning. Toxicol. Lett., 1999, 107(1-3), 233-239.
[http://dx.doi.org/10.1016/S0378-4274(99)00052-1] [PMID: 10414801]
[25]
Gottzein, A.K.; Musshoff, F.; Doberentz, E.; Madea, B. Combined suicide by oxydemeton-methyl (Metasystox) ingestion and hanging. Forensic Sci. Int., 2009, 189(1-3), e21-e25.
[http://dx.doi.org/10.1016/j.forsciint.2009.04.006] [PMID: 19428202]
[26]
Ballesteros Martín, M.M.; Sánchez Pérez, J.A.; Acién Fernández, F.G.; Casas López, J.L.; García-Ripoll, A.M.; Arques, A.; Oller, I.; Malato Rodríguez, S. Combined photo-Fenton and biological oxidation for pesticide degradation: effect of photo-treated intermediates on biodegradation kinetics. Chemosphere, 2008, 70(8), 1476-1483.
[http://dx.doi.org/10.1016/j.chemosphere.2007.08.027] [PMID: 17904613]
[27]
Piscitelli, S.C.; Goss, T.F.; Wilton, J.H.; D’Andrea, D.T.; Goldstein, H.; Schentag, J.J. Effects of ranitidine and sucralfate on ketoconazole bioavailability. Antimicrob. Agents Chemother., 1991, 35(9), 1765-1771.
[http://dx.doi.org/10.1128/AAC.35.9.1765] [PMID: 1952845]
[28]
Katz, P.O.; Gerson, L.B.; Vela, M.F. Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am. J. Gastroenterol., 2013, 108(3), 308-328.
[http://dx.doi.org/10.1038/ajg.2012.444] [PMID: 23419381]
[29]
Dammann, H.G.; Fölsch, U.R.; Hahn, E.G.; von Kleist, D.H.; Klör, H.U.; Kirchner, T.; Strobel, S.; Kist, M. Eradication of H. pylori with pantoprazole, clarithromycin, and metronidazole in duodenal ulcer patients: a head-to-head comparison between two regimens of different duration. Helicobacter, 2000, 5(1), 41-51.
[http://dx.doi.org/10.1046/j.1523-5378.2000.00006.x] [PMID: 10672051]
[30]
Chey, W.D.; Wong, B.C.Y. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am. J. Gastroenterol., 2007, 102(8), 1808-1825.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01393.x] [PMID: 17608775]
[31]
Shimatani, T.; Moriwaki, M.; Xu, J.; Tazuma, S.; Inoue, M. Acid-suppressive effects of rabeprazole: comparing 10mg and 20mg twice daily in Japanese Helicobacter pylori-negative and -positive CYP2C19 extensive metabolisers. Dig. Liver Dis., 2006, 38(11), 802-808.
[http://dx.doi.org/10.1016/j.dld.2006.06.002] [PMID: 16843075]
[32]
Bäckvall, J.E. Modern Oxidation Methods; Wiley & Sons: New York, 2011.
[33]
Villano, R.; Pellecchia, C.; Scettri, A.; Lamberti, M.; De Rosa, M.; Soriente, A. An efficient solvent free catalytic oxidation of sulfides to sulfoxides with hydrogen peroxide catalyzed by a binaphthyl-bridged Schiff base titanium complex. Tetrahedron Lett., 2006, 47, 7233-7235.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.133]
[34]
Mba, M.; Prins, L.J.; Licini, G. C3-symmetric Ti(IV) triphenolate amino complexes as sulfoxidation catalysts with aqueous hydrogen peroxide. Org. Lett., 2007, 9(1), 21-24.
[http://dx.doi.org/10.1021/ol062395i] [PMID: 17192075]
[35]
Volcho, K.P.; Salakhutdinov, N.F. Asymmetric oxidation of sulfides catalyzed by titanium and vanadium complexes in the synthesis of biologically active sulfoxides. Russ. Chem. Rev., 2009, 78, 457.
[http://dx.doi.org/10.1070/RC2009v078n05ABEH004023]
[36]
Bryliakov, K.P.; Talsi, E.P. Asymmetric oxidation of sulfides with H2O2 catalyzed by titanium complexes with aminoalcohol derived Schiff bases. J. Mol. Catal. Chem., 2007, 264, 280-287.
[http://dx.doi.org/10.1016/j.molcata.2006.09.038]
[37]
Bryliakov, K.P.; Talsi, E.P. Titanium‐salan‐catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides with H2O2 as the oxidant. Eur. J. Org. Chem., 2008, 2008, 3369-3376.
[http://dx.doi.org/10.1002/ejoc.200800277]
[38]
Sahoo, S.; Kumar, P.; Lefebvre, F.; Halligudi, S.B. Synthesis of chiral sulfoxides by enantioselective sulfide oxidation and subsequent oxidative kinetic resolution using immobilized Ti-binol complex. J. Catal., 2009, 262, 111-118.
[http://dx.doi.org/10.1016/j.jcat.2008.12.007]
[39]
Bondalapati, S.; Saha, P.; Gogoi, P.; Saikia, A.K.; Kotipalli, T.; Indukuri, K. Application of a novel 1,3-diol with a benzyl backbone as chiral ligand for asymmetric oxidation of sulfides to sulfoxides. Tetrahedron Lett., 2012, 53, 2726-2729.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.077]
[40]
Rodygin, K.S.; Rubtsova, S.A.; Kutchin, A.V.; Slepukhin, P.A. One-pot synthesis and asymmetric oxidation of 2-nitro-4-(trifluoromethyl) benzene containing sulfides. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186, 1885-1894.
[http://dx.doi.org/10.1080/10426507.2010.547893]
[41]
Capozzi, M.A.M.; Fracchiolla, G.; Cardellicchio, C. The effect of nitrogen atoms in the enantioselective oxidation of aryl or heteroaryl benzyl sulfides. J. Sulfur Chem., 2013, 34, 646-650.
[http://dx.doi.org/10.1080/17415993.2013.779697]
[42]
Wu, X.F. A general and selective zinc-catalyzed oxidation of sulfides to sulfoxides. Tetrahedron Lett., 2012, 53, 4328-4331.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.003]
[43]
Sun, J.; Zhu, C.; Dai, Z.; Yang, M.; Pan, Y.; Hu, H. Efficient asymmetric oxidation of sulfides and kinetic resolution of sulfoxides catalyzed by a vanadium-salan system. J. Org. Chem., 2004, 69(24), 8500-8503.
[http://dx.doi.org/10.1021/jo040221d] [PMID: 15549829]
[44]
Drago, C.; Caggiano, L.; Jackson, R.F.W. Vanadium-catalyzed sulfur oxidation/kinetic resolution in the synthesis of enantiomerically pure alkyl aryl sulfoxides. Angew. Chem. Int. Ed. Engl., 2005, 44(44), 7221-7223.
[http://dx.doi.org/10.1002/anie.200503046] [PMID: 16229044]
[45]
Al-Hashimi, M.; Fisset, E.; Sullivan, A.C.; Wilson, J.R.H. Selective oxidation of sulfides to sulfoxides using a silica immobilised vanadyl alkyl phosphonate catalyst. Tetrahedron Lett., 2006, 47, 8017-8019.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.065]
[46]
Romanelli, G.P.; Bennardi, D.O.; Palermo, V.; Vazquez, P.G.; Tundo, P. Vanadium-substituted Keggin type heteropolyacid are used for the selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide. Lett. Org. Chem., 2007, 4, 544-549.
[http://dx.doi.org/10.2174/157017807782795592]
[47]
Prasanth, K.L.; Maheswaran, H. Selective oxidation of sulfides to sulfoxides in water using 30% hydrogen peroxide catalyzed with a recoverable VO(acac)2 exchanged sulfonic acid resin catalyst. J. Mol. Catal. Chem., 2007, 268, 45-49.
[http://dx.doi.org/10.1016/j.molcata.2006.11.052]
[48]
Gregori, F.; Nobili, I.; Bigi, F.; Maggi, R.; Predieri, G.; Sartori, G. Selective oxidation of sulfides to sulfoxides and sulfones using 30% aqueous hydrogen peroxide and silica-vanadia catalyst. J. Mol. Catal. Chem., 2008, 286, 124-127.
[http://dx.doi.org/10.1016/j.molcata.2008.02.004]
[49]
Ballistreri, F.P.; Fortuna, C.G.; Pappalardo, A.; Tomaselli, G.A.; Toscano, R.M. Oxidation of organic sulfides by a vanadium(5+) oxo-monoperoxo-picolinate complex: Kinetics and mechanism. J. Mol. Catal. Chem., 2009, 308, 56-60.
[http://dx.doi.org/10.1016/j.molcata.2009.03.034]
[50]
Kumar, K. Synthesis and antimicrobial evaluation of sulfides, sulfoxides, and sulfones. J. Korean Soc. Appl. Biol. Chem., 2009, 52, 34-39.
[http://dx.doi.org/10.3839/jksabc.2009.006]
[51]
Elham, Z.; Faezeh, F. Catalytic oxidation of aryl alkyl sulfides using immobilized vanadyl ions within nanoreactors of Al-MCM-41. Chin. J. Catal., 2010, 31, 1217-1220.
[http://dx.doi.org/10.1016/S1872-2067(10)60114-3]
[52]
Yin, D.; Tan, R.; Li, C.; Peng, Z.; Yin, D. Preparation of chiral oxovanadium (IV) Schiff base complex functionalized by ionic liquid for enantioselective oxidation of methyl aryl sulfides. Catal. Commun., 2011, 12, 1488-1491.
[http://dx.doi.org/10.1016/j.catcom.2011.06.006]
[53]
Berrocal, T.; Larrea, E.S.; Iglesias, M.; Arriortua, M.I. Vanadyl arsenates as catalysts for selective oxidation of organic sulfides and alkenes. J. Mol. Catal. Chem., 2011, 335, 176-182.
[http://dx.doi.org/10.1016/j.molcata.2010.11.031]
[54]
Hussain, S.; Talukdar, D.; Bharadwaj, S.K.; Chaudhuri, M.K. VO2F (dmpz) 2: A new catalyst for selective oxidation of organic sulfides to sulfoxides with H2O2. Tetrahedron Lett., 2012, 53, 6512-6515.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.067]
[55]
Zeng, Q.; Weng, W.; Xue, X. Sulfide oxidation catalyzed vanadyl complexes of N-salicylidene α-amino acids at low catalyst loading. Inorg. Chim. Acta, 2012, 388, 11-15.
[http://dx.doi.org/10.1016/j.ica.2012.03.024]
[56]
Kargar, H.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I. Efficient oxidation of sulfides with sodium periodate catalyzed by manganese(III) Schiff base complexes. J. Mol. Catal. Chem., 2005, 242, 251-255.
[http://dx.doi.org/10.1016/j.molcata.2005.07.045]
[57]
Hosseinpoor, F.; Golchoubian, H. Mn(III)-catalyzed oxidation of sulfides to sulfoxides with hydrogen peroxide. Tetrahedron Lett., 2006, 47, 5195-5197.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.012]
[58]
Huang, J.Y.; Li, S.J.; Wang, Y.G. TEMPO-linked metalloporphyrins as efficient catalysts for selective oxidation of alcohols and sulfides. Tetrahedron Lett., 2006, 47, 5637-5640.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.039]
[59]
Anastasi, A.E.; Walton, P.H.; Lindsay Smith, J.R.; Sameera, W.M.C.; McGrady, J.E. On the oxidation of alkyl and aryl sulfides by [(Me3TACN)MnVO(OH)2]+: A density functional study. Inorg. Chim. Acta, 2008, 361, 1079-1086.
[http://dx.doi.org/10.1016/j.ica.2007.08.009]
[60]
Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Abbasi-Larki, A.A. Biomimetic oxidation of sulfides with sodium periodate catalyzed by polystyrene-bound manganese (III) tetrapyridylporphyrin. Appl. Catal. A Gen., 2008, 349, 177-181.
[http://dx.doi.org/10.1016/j.apcata.2008.07.034]
[61]
Bagherzadeh, M.; Latifi, R.; Tahsini, L.; Amini, M. Catalytic oxidation of sulfides to sulfoxide using manganese(III) complexes with bidentate O,N-donor oxazoline ligand and UHP oxidizing agent. Catal. Commun., 2008, 10, 196-200.
[http://dx.doi.org/10.1016/j.catcom.2008.08.018]
[62]
Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammdpoor-Baltork, I.; Kargar, H.; Araghi, M. Highly efficient oxidation of sulfides with sodium periodate catalyzed by reusable silica supported Mn(Br8TPP)Cl and Mn(TPP)Cl catalysts under various reaction conditions. Appl. Catal. A Gen., 2009, 353, 61-67.
[http://dx.doi.org/10.1016/j.apcata.2008.10.021]
[63]
Huang, J.Y.; Li, S.J.; Wang, Y.G. Selective oxidation of glycosyl sulfides to sulfoxides with sodium hypochlorite and catalyzed by metalloporphyrins. J. Carbohydr. Chem., 2010, 29, 142-153.
[http://dx.doi.org/10.1080/07328303.2010.483041]
[64]
Zakavi, S.; Abasi, A.; Pourali, A.R.; Talebzadeh, S. Metalloporphyrin-catalyzed chemoselective oxidation of sulfides with polyvinylpyrrolidone-supported hydrogen peroxide: A simple catalytic system for selective oxidation of sulfides to sulfoxides. Bull. Korean Chem. Soc., 2012, 33, 35-38.
[http://dx.doi.org/10.5012/bkcs.2012.33.1.35]
[65]
Hołyńska, M.; Zaynalpoor, S.; Amini, M.; Mohamadi, R.; Kazemi, S.H.; Najafpour, M.M. New mononuclear manganese(II) complexes with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) - selective catalyst in UHP oxidation of sulfides. Polyhedron, 2012, 34, 202-209.
[http://dx.doi.org/10.1016/j.poly.2011.12.027]
[66]
Srour, H.; Jalkh, J.; Le Maux, P.; Chevance, S.; Kobeissi, M.; Simonneaux, G. Asymmetric oxidation of sulfides by hydrogen peroxide catalyzed by chiral manganese porphyrins in water/methanol solution. J. Mol. Catal. Chem., 2013, 370, 75-79.
[http://dx.doi.org/10.1016/j.molcata.2012.12.016]
[67]
Rayati, S.; Nejabat, F.; Zakavi, S. Chemoselective oxidation of sulfides to sulfoxides with urea hydrogen peroxide (UHP) catalyzed by non- partially and fully β-brominated meso-tetraphenylporphyrinatomanganese(III) acetate. Inorg. Chem. Commun., 2014, 40, 82-86.
[http://dx.doi.org/10.1016/j.inoche.2013.11.036]
[68]
Jeyakumar, K.; Chand, D.K. Selective oxidation of sulfides to sulfoxides and sulfones at room temperature using H2O2 and a Mo(VI) salt as catalyst. Tetrahedron Lett., 2006, 47, 4573-4576.
[http://dx.doi.org/10.1016/j.tetlet.2006.04.153]
[69]
Khodaei, M.M.; Bahrami, K.; Khedri, M. The efficient and chemoselective MoO3-catalyzed oxidation of sulfides to sulfoxides and sulfones with H2O2. Can. J. Chem., 2007, 85, 7-11.
[http://dx.doi.org/10.1139/v06-177]
[70]
Bagherzadeh, M.; Tahsini, L.; Latifi, R.; Ellern, A.; Woo, L.K. Synthesis, crystal structure and catalytic activity of a novel Mo(VI)-oxazoline complex in highly efficient oxidation of sulfides to sulfoxides by urea hydrogen peroxide. Inorg. Chim. Acta, 2008, 361, 2019-2024.
[http://dx.doi.org/10.1016/j.ica.2007.10.017]
[71]
Gamelas, C.A.; Lourenço, T.; da Costa, A.P.; Simplício, A.L.; Royo, B.; Romão, C.C. Selective and mild oxidation of sulfides to sulfoxides or sulfones using H2O2 and Cp′Mo(CO)3Cl as catalysts. Tetrahedron Lett., 2008, 49, 4708-4712.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.126]
[72]
Sheikhshoaie, I.; Rezaeifard, A.; Monadi, N.; Kaafi, S. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: Synthesis, crystal structure and catalytic performance in green oxidation of sulfides by urea hydrogen peroxide. Polyhedron, 2009, 28, 733-738.
[http://dx.doi.org/10.1016/j.poly.2008.12.044]
[73]
Hasaninejad, A.; Zolfigol, M.A.; Chehardoli, G.; Mokhlesi, M. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant. J. Serb. Chem. Soc., 2010, 75, 307-316.
[http://dx.doi.org/10.2298/JSC081210001H]
[74]
Sharma, R.K.; Pandey, A.; Gulati, S. Silica-supported molybdenum complex: A novel, selective and reusable organic-inorganic hybrid catalyst for eco-friendly oxidation of sulfides and olefins. Polyhedron, 2012, 45, 86-93.
[http://dx.doi.org/10.1016/j.poly.2012.07.065]
[75]
Ghanbarpour, A.; Khavasi, H.R.; Woo, L.K.; Haghdoost, M.M.; Bagherzadeh, M.; Payab, E. New molybdenum (VI) catalyst for the epoxidation of alkenes and oxidation of sulfides: An experimental and theoretical study. Inorg. Chim. Acta, 2013, 411, 61-66.
[76]
Palermo, V.; Sathicq, Á.G.; Vázquez, P.G.; Romanelli, G.P. Selective oxidation of sulfides to sulfoxides using modified keggin heteropolyacids as catalyst. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189, 1423-1432.
[http://dx.doi.org/10.1080/10426507.2013.865128]
[77]
Karimi, B.; Ghoreishi-Nezhad, M.; Clark, J.H. Selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide catalyzed with a recoverable silica-based tungstate interphase catalyst. Org. Lett., 2005, 7(4), 625-628.
[http://dx.doi.org/10.1021/ol047635d] [PMID: 15704910]
[78]
Shi, X.Y.; Wei, J.F. Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide. J. Mol. Catal. Chem., 2008, 280, 142-147.
[http://dx.doi.org/10.1016/j.molcata.2007.11.002]
[79]
Bigi, F.; Nimal Gunaratne, H.Q.; Quarantelli, C.; Seddon, K.R. Chiral ionic liquids for catalytic enantioselective sulfide oxidation. C. R. Chim., 2011, 14, 685-687.
[http://dx.doi.org/10.1016/j.crci.2010.09.003]
[80]
Das, S.P.; Boruah, J.J.; Chetry, H.; Islam, N.S. Selective oxidation of organic sulfides by mononuclear and dinuclear peroxotungsten(VI) complexes. Tetrahedron Lett., 2012, 53, 1163-1168.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.105]
[81]
Das, S.P.; Boruah, J.J.; Sharma, N.; Islam, N.S. New polymer-immobilized peroxotungsten compound as an efficient catalyst for selective and mild oxidation of sulfides by hydrogen peroxide. J. Mol. Catal. Chem., 2012, 356, 36-45.
[http://dx.doi.org/10.1016/j.molcata.2011.12.025]
[82]
Egami, H.; Katsuki, T. Fe(salan)-catalyzed asymmetric oxidation of sulfides with hydrogen peroxide in water. J. Am. Chem. Soc., 2007, 129(29), 8940-8941.
[http://dx.doi.org/10.1021/ja071916+] [PMID: 17602480]
[83]
Gosiewska, S.; Lutz, M.; Spek, A.L.; Klein Gebbink, R.J.M. Mononuclear diastereopure non-heme Fe(II) complexes of pentadentate ligands with pyrrolidinyl moieties: Structural studies, and alkene and sulfide oxidation. Inorg. Chim. Acta, 2007, 360, 405-417.
[http://dx.doi.org/10.1016/j.ica.2006.08.009]
[84]
Kumar, A. Akanksha HbA/H2O2: An efficient biomimetic catalytic system for the oxidation of sulfides to sulfoxides. Tetrahedron Lett., 2007, 48, 7857-7860.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.128]
[85]
Jayaseeli, A.M.I.; Rajagopal, S. [Iron(III)-salen] ion catalyzed H2O2 oxidation of organic sulfides and sulfoxides. J. Mol. Catal. Chem., 2009, 309, 103-110.
[http://dx.doi.org/10.1016/j.molcata.2009.05.004]
[86]
Bagherzadeh, M.; Amini, M. Synthesis, characterization and catalytic study of a novel iron(III)-tridentate Schiff base complex in sulfide oxidation by UHP. Inorg. Chem. Commun., 2009, 12, 21-25.
[http://dx.doi.org/10.1016/j.inoche.2008.10.023]
[87]
Bagherzadeh, M.; Tahsini, L.; Latifi, R.; Amani, V.; Ellern, A.; Keith Woo, L. Synthesis, X-ray structure and study of a mixed ligand iron(III) complex with tridentate Schiff base as a homogeneous catalyst in the efficient oxidation of sulfides. Inorg. Chem. Commun., 2009, 12, 476-480.
[http://dx.doi.org/10.1016/j.inoche.2009.03.018]
[88]
Bagherzadeh, M.; Zare, M. Oxidation of sulfides with urea-hydrogen peroxide catalyzed by iron-salen complexes. J. Sulfur Chem., 2011, 32, 335-343.
[http://dx.doi.org/10.1080/17415993.2011.593634]
[89]
Al-Hashimi, M.; Roy, G.; Sullivan, A.C.; Wilson, J.R.H. Selective oxidations of sulfides to sulfoxides using immobilised cerium alkyl phosphonate. Tetrahedron Lett., 2005, 46, 4365-4368.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.079]
[90]
Ali, M.H.; Kriedelbaugh, D.; Wencewicz, T. Ceric ammonium nitrate catalyzed oxidation of sulfides to sulfoxides. Synthesis, 2007, 3507-3511.
[91]
Hajipour, A.R.; Khazdooz, L.; Ruoho, A.E. Selective and efficient oxidation of sulfides to sulfoxides using Ceric Ammonium Nitrate (CAN)/bronsted acidic ionic liquid. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 705-711.
[http://dx.doi.org/10.1080/10426500802266233]
[92]
Rama Raju, B.; Sarkar, S.; Chandramoulali Reddy, U.; Saikia, A.K. Cerium (IV) triflate-catalyzed selective oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide. J. Mol. Catal. Chem., 2009, 308, 169-173.
[http://dx.doi.org/10.1016/j.molcata.2009.04.006]
[93]
Velusamy, S.; Kumar, A.V.; Saini, R.; Punniyamurthy, T. Copper catalyzed oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide. Tetrahedron Lett., 2005, 46, 3819-3822.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.194]
[94]
Islam, S.M.; Roy, A.S.; Mondal, P.; Tuhina, K.; Mobarak, M.; Mondal, J. Selective oxidation of sulfides and oxidative bromination of organic substrates catalyzed by polymer anchored Cu(II) complex. Tetrahedron Lett., 2012, 53, 127-131.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.138]
[95]
Eccles, K.S.; Ford, A.; O’Mahony, G.E.; Lawrence, S.E.; Morrison, R.E.; Maguire, A.R. Investigation of steric and electronic effects in the copper-catalysed asymmetric oxidation of sulfides. Tetrahedron, 2013, 69, 10168-10184.
[http://dx.doi.org/10.1016/j.tet.2013.08.063]
[96]
Gogoi, P.; Kalita, M.; Bhattacharjee, T.; Barman, P. Copper-Schiff base complex catalyzed oxidation of sulfides with hydrogen peroxide. Tetrahedron Lett., 2014, 55, 1028-1030.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.073]
[97]
Ghorbani-Choghamarani, A.; Mohammadi, M.; Taherinia, Z. (ZrO)2Fe2O5 as an efficient and recoverable nanocatalyst in C-C bond formation. J. Iran. Chem. Soc., 2019, 16, 411-421.
[http://dx.doi.org/10.1007/s13738-018-1522-9]
[98]
Bahrami, K. Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide (H2O2) in the presence of zirconium tetrachloride. Tetrahedron Lett., 2006, 47, 2009-2012.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.051]
[99]
Rahimizadeh, M.; Bakavoli, M.; Hassani, H.; Gholizadeh, M. Oxidation of sulfides to sulfoxides with zirconium hydroxy chromate (Zr4(OH)6(CrO4)5(H2O)2). J. Sulfur Chem., 2007, 28, 265-268.
[http://dx.doi.org/10.1080/17415990701352499]
[100]
Ghorbani-Choghamarani, A.; Goudarziafshar, H.; Nikoorazm, M.; Yousefi, S. Efficient oxidation of sulfides to the sulfoxides using zirconium (IV) chloride, sodium nitrite and catalytic amounts of bromide Ion as a novel oxidizing media. Lett. Org. Chem., 2009, 6, 335-339.
[http://dx.doi.org/10.2174/157017809788489882]
[101]
Zhou, X.T.; Ji, H.B.; Cheng, Z.; Xu, J.C.; Pei, L.X.; Wang, L.F. Selective oxidation of sulfides to sulfoxides catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorg. Med. Chem. Lett., 2007, 17(16), 4650-4653.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.073] [PMID: 17560784]
[102]
Chen, T.H.; Yuan, Z.; Carver, A.; Zhang, R. Visible light-promoted selective oxidation of sulfides to sulfoxides catalyzed by ruthenium porphyrins with iodobenzene diacetate. Appl. Catal. A Gen., 2014, 478, 275-282.
[http://dx.doi.org/10.1016/j.apcata.2014.04.014]
[103]
Kirihara, M.; Yamamoto, J.; Noguchi, T.; Hirai, Y. Selective synthesis of sulfoxides and sulfones by tantalum(V) catalyzed oxidation of sulfides with 30% hydrogen peroxide. Tetrahedron Lett., 2009, 50, 1180-1183.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.064]
[104]
Kirihara, M.; Yamamoto, J.; Noguchi, T.; Itou, A.; Naito, S.; Hirai, Y. Tantalum(V) or niobium(V) catalyzed oxidation of sulfides with 30% hydrogen peroxide. Tetrahedron, 2009, 65, 10477-10484.
[http://dx.doi.org/10.1016/j.tet.2009.10.007]
[105]
Kirihara, M.; Itou, A.; Noguchi, T.; Yamamoto, J. Tantalum carbide or niobium carbide catalyzed oxidation of sulfides with hydrogen peroxide: Highly efficient and chemoselective syntheses of sulfoxides and sulfones. Synlett, 2010, 2010, 1557-1561.
[http://dx.doi.org/10.1055/s-0029-1219947]
[106]
Mohammadpoor-Baltork, I.; Memarian, H.R.; Bahrami, K.; Esmayilpour, K. Selective oxidation of sulfides to sulfoxides and sulfones using n-butyltriphenylphosphonium dichromate (Bun PPh3)2Cr2O7 in the presence of aluminium chloride in solution and under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180, 2751-2766.
[http://dx.doi.org/10.1080/104265090968091]
[107]
Mohammadpoor-Baltork, I.; Memarian, H.R.; Bahrami, K. 3-Carboxypyridinium chlorochromate aluminium chloride An efficient and inexpensive reagent system for the selective oxidation of sulfides to sulfoxides and sulfones in solution and under microwave irradiation. Can. J. Chem., 2005, 83, 115-121.
[http://dx.doi.org/10.1139/v05-008]
[108]
Kantam, M.L.; Prakash, B.V.; Bharathi, B.; Reddy, C.V. Asymmetric oxidation of sulfides by LDH supported OSO4 catalyst. J. Mol. Catal. Chem., 2005, 226, 119-122.
[http://dx.doi.org/10.1016/j.molcata.2004.09.045]
[109]
Yuan, Y.; Bian, Y. Gold(III) catalyzed oxidation of sulfides to sulfoxides with hydrogen peroxide. Tetrahedron Lett., 2007, 48, 8518-8520.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.146]
[110]
Das, R.; Chakraborty, D. Silver nitrate catalyzed oxidation of sulfides. Synthesis, 2011, 277-280.
[111]
Shahdost-fard, F.; Salimi, A.; Sharifi, E.; Korani, A. Fabrication of a highly sensitive adenosine aptasensor based on covalent attachment of aptamer onto chitosan-carbon nanotubes-ionic liquid nanocomposite. Biosens. Bioelectron., 2013, 48, 100-107.
[http://dx.doi.org/10.1016/j.bios.2013.03.060] [PMID: 23660341]
[112]
Woo, H.; Mohan, B.; Heo, E.; Park, J.C.; Song, H.; Park, K.H. CuO hollow nanosphere-catalyzed cross-coupling of aryl iodides with thiols. Nanoscale Res. Lett., 2013, 8(1), 390.
[http://dx.doi.org/10.1186/1556-276X-8-390] [PMID: 24044527]
[113]
Hajipour, A.R.; Karimzadeh, M.; Azizi, G. Highly efficient and magnetically separable nano-CuFe2O4 catalyzed S-arylation of thiourea by aryl/heteroaryl halides. Chin. Chem. Lett., 2014, 25, 1382-1386.
[http://dx.doi.org/10.1016/j.cclet.2014.05.015]
[114]
Ghorbani-Choghamarani, A.; Mohammadi, M.; Hudson, R.H.; Tamoradi, T. Boehmite@tryptophan-Pd nanoparticles: A new catalyst for C-C bond formation. Appl. Organomet. Chem., 2019, 33(8)e4977
[115]
Reddy, K.H.V.; Reddy, V.P.; Kumar, A.A.; Kranthi, G. Nano copper oxide catalyzed synthesis of symmetrical diaryl sulfides under ligand free conditions general information. Beilstein J. Org. Chem., 2011, 7, 1-19.
[http://dx.doi.org/10.3762/bjoc.7.101]
[116]
Swapna, K.; Murthy, S.N.; Jyothi, M.T.; Nageswar, Y.V.D. Nano-CuFe2O4 as a magnetically separable and reusable catalyst for the synthesis of diaryl/aryl alkyl sulfides via cross-coupling process under ligand-free conditions. Org. Biomol. Chem., 2011, 9(17), 5989-5996.
[http://dx.doi.org/10.1039/c1ob05597f] [PMID: 21769376]
[117]
Xu, H.J.; Liang, Y.F.; Zhou, X.F.; Feng, Y.S. Efficient recyclable CuI-nanoparticle-catalyzed S-arylation of thiols with aryl halides on water under mild conditions. Org. Biomol. Chem., 2012, 10(13), 2562-2568.
[http://dx.doi.org/10.1039/c2ob06795a] [PMID: 22354412]
[118]
Rostami, A.; Tahmasbi, B.; Abedi, F.; Shokri, Z. Magnetic nanoparticle immobilized N-propylsulfamic acid: The chemoselective, efficient, green and reusable nanocatalyst for oxidation of sulfides to sulfoxides using H2O2 under solvent-free conditions. J. Mol. Catal. Chem., 2013, 378, 200-205.
[http://dx.doi.org/10.1016/j.molcata.2013.06.004]
[119]
Welther, A.; Jacobi von Wangelin, A. Iron (0) nanoparticle catalysts in organic synthesis. Curr. Org. Chem., 2013, 17, 326-335.
[http://dx.doi.org/10.2174/1385272811317040003]
[120]
Rajabi, F.; Naserian, S.; Primo, A.; Luque, R. Efficient and highly selective aqueous oxidation of sulfides to sulfoxides at room temperature catalysed by supported iron oxide nanoparticles on SBA-15. Adv. Synth. Catal., 2011, 353, 2060-2066.
[http://dx.doi.org/10.1002/adsc.201100149]
[121]
Atashin, H.; Malakooti, R. Magnetic iron oxide nanoparticles embedded in SBA-15 silica wall as a green and recoverable catalyst for the oxidation of alcohols and sulfides. J. Saudi Chem. Soc., 2017, 21, S17-S24.
[http://dx.doi.org/10.1016/j.jscs.2013.09.007]
[122]
Rostami, A.; Navasi, Y.; Moradi, D.; Ghorbani-Choghamarani, A. DABCO tribromide immobilized on magnetic nanoparticle as a recyclable catalyst for the chemoselective oxidation of sulfide using H2O2 under metal- and solvent-free conditions. Catal. Commun., 2014, 43, 16-20.
[http://dx.doi.org/10.1016/j.catcom.2013.08.025]
[123]
Sreedhar, B.; Radhika, P.; Neelima, B.; Hebalkar, N.; Mishra, A.K. Selective oxidation of sulfides with H2O2 catalyzed by silica-tungstate core-shell nanoparticles. Catal. Commun., 2008, 10, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2008.07.041]
[124]
Fazaeli, R.; Aliyan, H.; Ahmadi, M.A.; Hashemian, S. Host (aluminum incorporated mesocellulous silica foam (Al-MCF))-guest (tungsten polyoxometalate) nanocomposite material: An efficient and reusable catalyst for selective oxidation of sulfides to sulfoxides and sulfones. Catal. Commun., 2012, 29, 48-52.
[http://dx.doi.org/10.1016/j.catcom.2012.09.018]
[125]
Veerakumar, P.; Lu, Z.Z.; Velayudham, M.; Lu, K.L.; Rajagopal, S. Alumina supported nanoruthenium as efficient heterogeneous catalyst for the selective H2O2 oxidation of aliphatic and aromatic sulfides to sulfoxides. J. Mol. Catal. Chem., 2010, 332, 128-137.
[http://dx.doi.org/10.1016/j.molcata.2010.09.008]
[126]
Yazdanbakhsh, M.; Khosravi, I.; Mashhoori, M.S.; Rahimizadeh, M.; Shiri, A.; Bakavoli, M. Synthesis, characterization and application of nano-sized Co2CrO4 spinel catalyst for selective oxidation of sulfides to sulfoxides. Mater. Res. Bull., 2012, 47, 413-418.
[http://dx.doi.org/10.1016/j.materresbull.2011.10.029]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Published on: 30 April, 2019
Page: [423 - 449]
Pages: 27
DOI: 10.2174/1570193X16666190430154835
Price: $65

Article Metrics

PDF: 35
HTML: 3