Epoxidation of Vegetable Oils, Unsaturated Fatty Acids and Fatty Acid Esters: A Review

Author(s): Grzegorz Lewandowski*, Marlena Musik, Kornelia Malarczyk-Matusiak, Łukasz Sałaciński, Eugeniusz Milchert

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


A comprehensive review of recent existing methods of epoxidation of vegetable oils, unsaturated fatty acids and alkyl esters of unsaturated fatty acids has been presented. The importance of epoxidized vegetable oils and their applications in the production of polyols and polyurethanes was discussed. Interests of researchers have been mainly focused on the development of advantageous technological parameters of vegetable oils epoxidation. The epoxidations with peracetic acid or performic acid generated in situ were mainly performed in the presence of strongly acidic catalysts. The influence of process variables such as temperature, stirring speed, the molar ratio of carboxylic acid and hydrogen peroxide to the amount of ethylenic unsaturation, amount of catalyst and reaction time on the course of epoxidation has been investigated.

Keywords: Epoxidation, technological parameters, unsaturated fatty acids alkyl esters, unsaturated fatty acids, biodegradable lubricants, vegetable oils.

Kłos, M.; Milchert, E.; Malarczyk, K. Industrial uses of vegetable oils. Przem. Chem., 2016, 95, 1000-1006.
Ning, L. A process for the manufacture of natural oil hydroxylates.WO Patent 130,646, 2008.
Zhao, H. Natural oil based autocatalytic polyols. WO Patent 008,675, 2010.
Sałaciński, Ł.; Lewandowski, G.; Milchert, E. Review of technological methods for the production of biode-gradable polyols (oligomerols). Przem. Chem., 2017, 96, 2291-2295.
Petrović, Z.S.; Guo, A. Process of the preparation of vegetable oilbased polyols and electro insulating casting compounds created from vegetable oil-based polyols. U.S. Patent 6,573,354, 2003.
Petrović, Z.S.; Javni, I. Method of making natural oil-based polyols and polyurethane therefrom. US Patent 6,433,121 2002.
Petrović, Z.S.; Guo, A. Process of the preparation of vegetable oilbased polyols and electro insulating casting compounds created from vegetable oil-based polyols. US Patent 6,107,433, 2000.
Petrović, Z.S.; Guo, A.; Cho, Y. Structure and properties of halogenated and nonhalogenated soy-based polyols. J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 3900-3910.
Zlatanić, A.; Lava, C.; Zhang, W.; Petrović, Z.S. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J. Polym. Sci., B, Polym. Phys., 2004, 42, 809-819.
Javni, I.; Petrović, Z.S.; Guo, A.; Fuller, R. Thermal stability of polyurethanes based on vegetable oils. J. Appl. Polym. Sci., 2000, 77, 1723-1734.
Miao, S.; Zhang, S.; Su, Z.; Wang, P. A novel vegetable oil-lactate hybrid monomer for synthesis of high-Tg polyurethanes. J. Polym. Sci. A Polym. Chem., 2010, 48, 243-250.
Ionescu, M.; Petrović, Z.S.; Wan, X. Ethoxylated soybean polyols for urethanes. J. Polym. Environ., 2007, 15, 237-243.
Petrović, Z.S.; Guo, A.; Zhang, W. Structure and properties of polyurethanes base on halogenated an nonhalogenated soy-polyols. J. Appl. Polym. Sci., 2000, 38, 4062-4069.
Petrović, Z.S.; Yang, L.; Zlatanić, A.; Zhang, W.; Javni, I. Network structure and properties of polyurethanes from soybean oil. J. Appl. Polym. Sci., 2007, 105, 2717-2727.
Horst-Werner, W. Use of alkoxylation products of epoxidized fats as antifoam-ing agents. US Patent 6,057,375 2000.
Kłos, M.; Malarczyk, K.; Milchert, E. Epoxidation of linseed oil with performic acid. Przem. Chem., 2014, 93, 1455-1458.
Musik, M.; Milchert, E. Selective epoxidation of sesame oil with peracetic acid. Mol. Catal., 2017, 433, 170-174.
Milchert, E.; Malarczyk-Matusiak, K.; Musik, M. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: A review. Pol. J. Chem. Technol., 2016, 18, 128-133.
Musik, M.; Milchert, E.; Malarczyk-Matusiak, K. Technological parameters of epoxidation of sesame oil with performic acid. Pol. J. Chem. Technol., 2018, 20, 53-59.
Greenspan, F.; Gall, R.J. Process epoxidation. U.S. Patent 2,919,283, 1959.
Jourdan-Laforte, E. Process of epoxidation of oils. U.S. Patent 4,215,058, 1980.
Petrović, Z.S.; Zlatanić, A.; Lava, A.; Sinadović-Fišer, S. Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids- kinetics and some reactions. Eur. J. Lipid Sci. Technol., 2002, 104, 293-299.
Mungroo, E.; Pradhan, N.C.; Goud, V.V.; Dalai, A.K. Epoxidation of canola oil with hydrogen peroxide catalyzed by acid ion exchange resin. J. Am. Oil Chem. Soc., 2008, 85, 887-896.
Janković, M.; Sinadović-Fišer, S.; Govedarica, O.M. Kinetics of the epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Ind. Eng. Chem. Res., 2014, 53, 9357-9364.
Goud, V.V.; Patwardhan, A.V.; Pradhan, N.C. Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresour. Technol., 2006, 97(12), 1365-1371.
[http://dx.doi.org/10.1016/j.biortech.2005.07.004] [PMID: 16122922]
Campanella, A.; Baltanas, M.A. Degradation of the oxirane ring of epoxidized vegetable oils in a liquid-liquid-solid heterogeneous reaction system. Chem. Eng. Process., 2007, 46, 210-221.
Goud, V.V.; Patwardhan, A.V.; Dinda, S.; Pradhan, N.C. Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic catalysed by ion exchange resin. Chem. Eng. Sci., 2007, 62, 4065-4076.
Wahlroos, A. Method of preparing epoxidized oils and the like. U.S. Patent 2,813,878 1957.
Greenspan, F. Peracid epoxidation of fatty acid esters. U.S. Patent 2,810,733, 1957.
Greenspan, F.P.; Gall, R.J. In situ epoxidation of organic esters with sulphuric and acetic acids. US Patent 2,801,253 1957.
Lutz, J.T. Jr Jr. Epoxidation. Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New York, 1980, Vol. 9, pp. 251-266.
Camblor, M.A.; Corma, A.; Martinez, A.; Perez-Pariente, J. Synthesis of titanium silicoaluminate isomorphous to zeolite beta and its application as the catalyst for the selective oxidation of large organic molecules. J. Chem. Soc. Chem. Commun., 1992, 1192(8), 589-664.
Corma, A.; Navarro, M.T.; Pariente, J.P. Synthesis of ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J. Chem. Soc. Chem. Commun., 1994, 1994(2), 147-148.
Perego, C.; Carati, A.; Ingallina, P.; Mantegazza, M.A.; Bellussi, G. Production of titanium containing molecular sieves and their application in catalysis. Appl. Catal. A Gen., 2001, 221, 63-72.
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107(6), 2411-2502.
[http://dx.doi.org/10.1021/cr050989d] [PMID: 17535020]
Guidotti, M.; Ravasio, N.; Psaro, R.; Gianotti, E.; Coluccia, S.; Marchese, L. Epoxidation of unsaturated fames obtained from vegetable source over Ti(IV)-grafted silica catalyst. J. Mol. Catal. Chem., 2006, 250, 218-225.
Rios, L.A.; Weckes, P.; Schuster, H.; Hoelderich, W.F. Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils. J. Catal., 2005, 232, 19-26.
Guidotti, M.; Ravasio, N.; Psaro, E.; Gianotti, R.; Marchese, L.; Coluccia, S. Heterogeneous catalytic epoxidation of fatty acid methyl esters on titanium-grafted silicas. Green Chem., 2003, 5, 421-424.
Campanella, A.; Baltanas, M.A.; Capel-Sanchez, M.C.; Campos-Martin, J.M.; Fierro, J.L. Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst. Green Chem., 2004, 6, 330-334.
Ye, X.; Jiang, P.; Zhang, P.; Dong, Y.; Jia, Ch.; Zhang, X.; Xu, H. Novel Ti and mesoporous molecular sieves: Synthesis, char-acterization and catalytic activity in the epoxidation of vegetable oil. Catal. Lett., 2010, 137, 88-93.
Martinez de la Cuesta, P.J.; Martinez, E.R.; Cortez, V.R. Epoxidation of refined soy-bean oil by molecular oxygen. Influence of the variables. Grasas Aceites, 1991, 42, 38-42.
Sobczak, J.M.; Ziółkowski, J.J. Molybdenum complex - catalysed epoxidation of unsaturated fatty acids by organic hydroperoxides. Appl. Catal. A Gen., 2003, 248, 261-268.
Crivello, J.; Srinivasan, C. Epoxidation of ricinic compounds using phase-transfer catalyst. US Patent 6,414,168, 2002.
Poli, E.; Clacens, J.M.; Barrault, J.; Pouilloux, Y. Solvent free selective epoxidation of fatty esters over a tungsten-based catalyst. Catal. Today, 2009, 140, 19-22.
Poli, E.; Clacens, J.M.; Barrault, J.; Pouilloux, Y. Synthesis of peroxo-phosphotungstate immobilized onto polymeric support as heterogeneous catalyst for the epoxidation of unsaturated fatty esters. Catal. Today, 2011, 164, 429-435.
Mizuno, N.; Kamata, K.; Uchida, S.; Yamaguchi, K. Liquid-phase oxidations with hydrogen peroxide and molecular oxygen catalyzed by polyoxometalate-based compounds. Modern Heterogeneous Oxidation Catalysis. Design, Reactions and Characterization; Mizuno, N., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, , 2009. Chapter 6, pp. 185-216.
Mizuno, N.; Kamata, K.; Yamaguchi, K. Green oxidation reactions by polyoxometalate-based catalysis: From molecular to solid catalysts. Top. Catal., 2010, 53, 76-893.
Gerbase, A.E.; Gregorio, J.R.; Martnelli, M.; Brasil, M.C.; Mendes, N.F. Epoxidation of soybean oil by the methyltrioxorhenium - CH2Cl2/H2O2 catalytic biphasic system. J. Am. Oil Chem. Soc., 2002, 79, 179-181.
Du, G.; Tekin, A.; Dammond, E.G.; Woo, L.K. Pressure sensitive adhesives based on soybean fatty acids. J. Am. Oil Chem. Soc., 2004, 48, 477-480.
Kuo, M.C.; Chou, T.C. Kinetics and mechanism of the catalyzed epoxidation of oleic acid with oxygen in the presence of benzaldehyde. Ind. Eng. Chem. Res., 1987, 26, 277-284.
Kuo, M.C.; Chou, T.C. Epoxidation of oleic acid with oxygen in the presence of benzaldehyde using heterogenized homogeneous co-type ion exchange membrane as catalyst. Can. J. Chem. Eng., 1990, 68, 831-838.
Sepulveda, J.S.; Teixeira, S.; Schuchardt, U. Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide. Appl. Catal. A Gen., 2007, 318, 213-217.
Foglia, T.A.; Sonnet, P.E.; Nunez, A.; Dudley, R.L. Selective epoxidations of methyl ricinoleate: Diastereoselective epoxidation with titaniumIV catalysts. J. Am. Oil Chem. Soc., 1998, 75, 601-607.
Sonnet, P.E.; Foglia, T.A. Epoxidation of natural triglycerides with ethylmethyl dioxirane. J. Am. Oil Chem. Soc., 1996, 73, 461-464.
Milchert, E.; Malarczyk, K.; Kłos, M. Technological aspects of chemoenzymatic epoxidation of fatty acids, fatty acid esters and vegetable oils: A review. Molecules, 2015, 20(12), 21481-21493.
[http://dx.doi.org/10.3390/molecules201219778] [PMID: 26633342]
Warwel, S.; Klaas, M.R. Chemo-enzymatic epoxidation of unsaturated carboxylic acids. J. Mol. Catal., B Enzym., 1995, 1, 29-35.
Tan, S.G.; Chow, W.S. Biobased epoxidized vegetable oils and its greener epoxy blends. Polym. Plast. Technol. Eng., 2010, 49, 1581-1590.
Vlcek, T.; Petrovic, Z. Optimization of the chemoenzymatic epoxidation of soybean oil. J. Am. Oil Chem. Soc., 2006, 83, 247-252.
Lu, H.; Sun, S.; Bi, Y.; Yang, G.; Ma, R.; Yang, H. Enzymatic epoxidation of soybean oil methyl esters in the presence of free fatty acids. Eur. J. Lipid Sci. Technol., 2010, 112, 1101-1105.
Schneider, R.C.S.; Lara, L.R.S.; Bitecourt, T.B.; Nascimento, M.G.; Nunes, M.M.R. Chemoenzymatic epoxidation of sunflower oil methyl esters. J. Braz. Chem. Soc., 2009, 20, 1473-1477.
De Abrêu, F.; Sutili, F.K.; Miranda, L.S.M.; Leite, S.G.F.; de Souza, R.M.A.; Leal, I.C.R. Epoxidation of oleic acid catalyzed by PSCI-Amano lipase optimized by experimental design. J. Mol. Catal., B Enzym., 2012, 81, 7-11.
Sun, S.; Ke, X.; Cui, L.; Yang, G.; Bi, Y.; Song, F.; Xu, X. Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind. Crops Prod., 2011, 33, 676-672.
Severiano, A.; Hagström, A.; Hatti-Kaul, R.; da Fonseca, M.M.R. Chemoenzymatic epoxidation of rapeseed methyl esters: Parameters influencing the reaction and enzyme stability. UTL Instituto Superior Técnico Lisboa. 2008.Available at: . https://fenix.tecnico. ulisboa.pt/downloadFile/395137861152/ Epoxidation%20of20RME.pdf [Accessed on Nov 24, 2015].
Tornvall, U.; Orellana-Coca, C.; Hatti-Kaul, R.; Adlercreutz, D. Stability of immobilized Candida antarctica lipase B during chemoenzymatic epoxidation of fatty acids. Enzyme Microb. Technol., 2007, 40, 445-451.
Sinadović-Fišer, S.; Janković, M.; Petrović, Z. Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J. Am. Oil Chem. Soc., 2001, 78, 725-731.
Janković, M.; Sinadović-Fišer, S.; Govedarica, O.; Pavlicević, J.; Budinski-Sinadović, A. Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: Pseudo-homogeneous model. J. Chem. Ind. Chem. Eng. Q., 2017, 23, 97-111.
Milchert, E.; Smagowicz, A. The influence of reaction parameters on the epoxidation of rapeseed oil with peracetic acid. J. Am. Oil Chem. Soc., 2009, 86, 1227-1233.
Monono, E.; Hagenson, D.; Wieseborn, D. Characterizing the epoxidation process conditions of canola oil for reactor scale-up. Ind. Crops Prod., 2015, 67, 364-372.
Mungroo, E.; Goud, V.; Naik, S.N.; Dalai, A. Utilization of green seed canola oil for in situ epoxidation. Eur. J. Lipid Sci. Technol., 2011, 113, 768-774.
Sinadović-Fišer, S.; Janković, M.; Borota, O. Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Eng. Process., 2012, 62, 106-113.
Goud, V.V.; Patwardhan, A.V.; Pradhan, N.C. Kinetics of in situ epoxidation of natural unsaturated triglycerides catalyzed by acidic ion exchange resin. Ind. Eng. Chem. Res., 2007, 46, 3078-3085.
Goud, V.V.; Patwardhan, A.V.; Dinda, S.; Pradhan, N.C. Epoxidation of karanja (Pongamia glabra) oil catalysed by acidic ion exchange resin. Eur. J. Lipid Sci. Technol., 2007, 109, 575-584.
Goud, V.V.; Pradhan, N.C.; Patwardhan, A.V. Epoxidation of karanja (Pongamia glabra) by hydrogen peroxide. J. Am. Oil Chem. Soc., 2006, 83, 635-640.
Dinda, S.; Ravisankar, P.; Puri, P. Development of bio-epoxide from nahor (Mesua ferrera linn) oil. J. Taivan Inst. Chem. Eng., 2016, 65, 399-404.
Borugadda, V.B.; Goud, V.V. Response surface methodology for optimization bio-lubricant base stock synthesis from high free fatty acid castor oil. Energy Sci. Eng., 2015, 3, 371-381.
Borugadda, V.B.; Goud, V. Improved low-temperature properties of chemically modified high free fatty acid castor oil-methyl esters: Blending and optimization study. J. Energy Eng., 2016, 142, 15010-15020.
Borugadda, V.B.; Goud, V.V. Improved thermo-stability of structurally modified waste cooking oil methyl esters for bio-lubricant application. J. Clean. Prod., 2016, 112, 4515-4524.
Borugadda, V.B.; Goud, V.V. Synthesis of waste cooking oil epoxide as a bio-lubricant base stock: Characterization and optimization study. J. Bioproc. Eng. Bioref., 2014, 16, 57-72.
Zaher, F.A.; Elnomany, H.M. Vegetable oils as alternative fuel for diesel engines: A review. Grasas Aceites, 1990, 41, 13-216.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [412 - 422]
Pages: 11
DOI: 10.2174/1570193X16666190430154319
Price: $65

Article Metrics

PDF: 16