Crystal Engineering to Design of Solids: From Single to Multicomponent Organic Materials

Author(s): Andrea Mariela Araya-Sibaja*, Cinira Fandaruff, Krissia Wilhelm, José Roberto Vega-Baudrit, Teodolito Guillén-Girón, Mirtha Navarro-Hoyos

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Primarily composed of organic molecules, pharmaceutical materials, including drugs and excipients, frequently exhibit physicochemical properties that can affect the formulation, manufacturing and packing processes as well as product performance and safety. In recent years, researchers have intensively developed Crystal Engineering (CE) in an effort to reinvent bioactive molecules with well-known, approved pharmacological effects. In general, CE aims to improve the physicochemical properties without affecting their intrinsic characteristics or compromising their stability. CE involves the molecular recognition of non-covalent interactions, in which organic materials are responsible for the regular arrangement of molecules into crystal lattices. Modern CE, encompasses all manipulations that result in the alteration of crystal packing as well as methods that disrupt crystal lattices or reduce the size of crystals, or a combination of them. Nowadays, cocrystallisation has been the most explored strategy to improve solubility, dissolution rate and bioavailability of Active Pharmaceutical Ingredients (API). However, its combinatorial nature involving two or more small organic molecules, and the use of diverse crystallisation processes increase the possible outcomes. As a result, numerous organic materials can be obtained as well as several physicochemical and mechanical properties can be improved. Therefore, this review will focus on novel organic solids obtained when CE is applied including crystalline and amorphous, single and multicomponent as well as nanosized ones, that have contributed to improving not only solubility, dissolution rate, bioavailability permeability but also, chemical and physical stability and mechanical properties.

Keywords: Chemical stability, crystal engineering, dissolution rate, mechanical properties, multicomponent organic materials, permeation, pharmaceuticals, solubility.

[1]
Paul, E.; Tung, H.; Midler, M. Organic crystallization processes. Powder Technol., 2005, 150, 133-143.
[http://dx.doi.org/10.1016/j.powtec.2004.11.040]
[2]
Atkinson, M.B.J.; Mariappan, S.V.S.; Bučar, D-K.; Baltrusaitis, J.; Friščić, T.; Sinada, N.G.; MacGillivray, L.R. Crystal engineering rescues a solution organic synthesis in a cocrystallization that confirms the configuration of a molecular ladder. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10974-10979.
[http://dx.doi.org/10.1073/pnas.1104352108] [PMID: 21690362]
[3]
Konuki, K.; Hirasawa, I. Kinetic crystallization separation process of the inositol isomers by controlling metastable zones. J. Cryst. Growth, 2013, 373, 123-127.
[http://dx.doi.org/10.1016/j.jcrysgro.2012.10.017]
[4]
Plovics, E.; Faigl, F.; Fogassy, E. separation of the mixtures of chiral compounds by crystallization advances in crystallization processes. IntechOpen, 2012, 4, 38.
[http://dx.doi.org/10.5772/33592]
[5]
Bhatt, P.M.; Desiraju, G.R. Tautomeric polymorphism in omeprazole. Chem. Commun. (Camb.), 2007, (20), 2057-2059.
[http://dx.doi.org/10.1039/b700506g] [PMID: 17713077]
[6]
del Corral, S.; Cuffini, S.L.; Cardoso, S.G.; Bortoluzzid, A.J.; Palacios, S.M. Phytotoxic halimanes isolated from Baccharis salicifolia (Ruiz & Pad.). Pers. Phytochem. Lett., 2012, 5, 280-283.
[http://dx.doi.org/10.1016/j.phytol.2012.02.001]
[7]
Pescitelli, G.; Kurtán, T.; Flörke, U.; Krohn, K. Absolute structural elucidation of natural products--a focus on quantum-mechanical calculations of solid-state CD spectra. Chirality, 2009, 21(Suppl. 1), E181-E201.
[http://dx.doi.org/10.1002/chir.20795] [PMID: 19902530]
[8]
Colegate, S.; Molyneux, R. An Introduction and Overview. In: Bioactive natural products: detection, isolation, and structural determination; Molyneux, R.J.; Colegate, S.M., Eds.; CRC Press: Boca Raton, 2007; pp. 1-9.
[http://dx.doi.org/10.1201/9781420006889]
[9]
Shekunov, B.Y.; York, P. Crystallization processes in pharmaceutical technology and drug delivery design. J. Cryst. Growth, 2000, 211, 122-136.
[http://dx.doi.org/10.1016/S0022-0248(99)00819-2]
[10]
André, V.; Duarte, M. Novel challenges in crystal engineering: Polymorphs and new crystal forms of active pharmaceutical ingredients current trends in X-Ray crystallography. IntechOpen, 2011, 69-94.
[http://dx.doi.org/10.5772/28954]
[11]
Gadade, D.D.; Pekamwar, S.S. Pharmaceutical cocrystals: Regulatory and strategic aspects, design and development. Adv. Pharm. Bull., 2016, 6(4), 479-494.
[http://dx.doi.org/10.15171/apb.2016.062] [PMID: 28101455]
[12]
Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev., 2007, 59(7), 617-630.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[13]
Braga, D.; Chelazzi, L.; Grepioni, F.; Dichiarante, E.; Chierotti, M.R.; Gobetto, R. Molecular salts of anesthetic lidocaine with dicarboxylic acids: Solid-state properties and a combined structural and spectroscopic study. Cryst. Growth Des., 2013, 13, 2564-2572.
[http://dx.doi.org/10.1021/cg400331h]
[14]
Braga, D.; Chelazzi, L.; Ciabatti, I.; Grepioni, F. Highlithed text should be subtituted by: From 3D channelled frameworks to 2D layered structures in molecular salts of L-serine and DL-serine with oxalic acid. New J. Chem., 2013, 37, 97-104.
[http://dx.doi.org/10.1039/C2NJ40379J]
[15]
Desiraju, G.R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc., 2013, 135(27), 9952-9967.
[http://dx.doi.org/10.1021/ja403264c] [PMID: 23750552]
[16]
Hollingsworth, M.D. Crystal engineering: From structure to function. Science, 2002, 295, 2410-2413.
[17]
Rimer, J.D.; Chawla, A.; Le, T.T. Crystal engineering for catalysis. Annu. Rev. Chem. Biomol. Eng., 2018, 9, 283-309.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-083953] [PMID: 29570356]
[18]
Brammer, L. Developments in inorganic crystal engineering. Chem. Soc. Rev., 2004, 33(8), 476-489.
[http://dx.doi.org/10.1039/b313412c] [PMID: 15480472]
[19]
Aakeröy, C.B.; Wijethunga, T.K.; Benton, J.; Desper, J. Stabilizing volatile liquid chemicals using co-crystallization. Chem. Commun. (Camb.), 2015, 51(12), 2425-2428.
[http://dx.doi.org/10.1039/C4CC09650A] [PMID: 25566990]
[20]
Landenberger, K.B.; Bolton, O.; Matzger, A.J. Energetic-Energetic Cocrystals of Diacetone Diperoxide (DADP): Dramatic and divergent sensitivity modifications via cocrystallization. J. Am. Chem. Soc., 2015, 137(15), 5074-5079.
[http://dx.doi.org/10.1021/jacs.5b00661] [PMID: 25844557]
[21]
Bucar, D. Crystal Engineering of Organic and Metal-Organic Solids: Design, Structure and Properties; PhD Thesis, University of Iowa: Iowa City, Iowa, 2010.
[http://dx.doi.org/10.17077/etd.vbpgxcan]
[22]
Jiang, H.; Hu, P.; Ye, J.; Zhang, K.K.; Long, Y.; Hu, W.; Kloc, C. Tuning of the degree of charge transfer and the electronic properties in organic binary compounds by crystal engineering: A perspective. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6, 1884-1902.
[http://dx.doi.org/10.1039/C7TC04982J]
[23]
Wu, C.; Chen, Z.; Hu, Y.; Rao, Z.; Wu, W.; Yang, Z. Nanocrystals: The preparation, precise control and application toward the pharmaceutics and food industry. Curr. Pharm. Des., 2018, 24(21), 2425-2431.
[http://dx.doi.org/10.2174/1381612824666180515124614] [PMID: 29766786]
[24]
Sandhu, B.; Sinha, A.S.; Desper, J.; Aakeröy, C.B. Modulating the physical properties of solid forms of urea using co-crystallization technology. Chem. Commun. (Camb.), 2018, 54(37), 4657-4660.
[http://dx.doi.org/10.1039/C8CC01144C] [PMID: 29564447]
[25]
Sekhon, B. Nutraceutical cocrystals: An overview. RGUHS J. Pharm. Sci., 2012, 2, 16-25.
[http://dx.doi.org/10.5530/rjps.2012.2.3]
[26]
Duarah, S.; Pujari, K.; Durai, R.D.; Narayanan, V.H.B. Nanotechnology-based cosmeceuticals: A review. Int. J. Appl. Pharmaceut., 2016, 8(1), 8-12.
[27]
Sathisaran, I.; Dalvi, S. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics, 2018, 10, 108.
[http://dx.doi.org/10.3390/pharmaceutics10030108]
[28]
Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des., 2018, 18, 6370-6387.
[http://dx.doi.org/10.1021/acs.cgd.8b00933]
[29]
Mishra, M.K.; Sanphui, P.; Ramamurty, U.; Desiraju, G.R. Solubility-hardness correlation in molecular crystals: Curcumin and sulfathiazole polymorphs. Cryst. Growth Des., 2014, 14, 3054-3061.
[http://dx.doi.org/10.1021/cg500305n]
[30]
Mishra, M.K.; Ramamurty, U.; Desiraju, G.R. Solid solution hardening of molecular crystals: Tautomeric polymorphs of omeprazole. J. Am. Chem. Soc., 2015, 137(5), 1794-1797.
[http://dx.doi.org/10.1021/ja512817f] [PMID: 25634429]
[31]
Lusi, M. Engineering crystal properties through solid solutions. Cryst. Growth Des., 2018, 18, 3704-3712.
[http://dx.doi.org/10.1021/acs.cgd.7b01643]
[32]
Amidon, G.E.; Meyer, P.J.; Mudie, D.M. Particle, powder, and compact characterization. In: Developing Solid Oral Dosage Forms; Qiu, Y.; Chen, Y.; Zhang, G.; Yu, L.; Mantari, R.V., Eds.; Academic Press: Cambridge, 2017; pp. 271-293.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00010-8]
[33]
Pudasaini, N.; Upadhyay, P.P.; Parker, C.R.; Hagen, S.U.; Bond, A.D.; Rantanen, J. Downstream processability of crystal habit modified active pharmaceutical ingredient. Org. Process Res. Dev., 2017, 21, 571-577.
[http://dx.doi.org/10.1021/acs.oprd.6b00434]
[34]
Reddy, C.M.; Rama Krishna, G.; Ghosh, S. Mechanical properties of molecular crystals-applications to crystal engineering. CrystEngComm, 2010, 12, 2296.
[http://dx.doi.org/10.1039/c003466e]
[35]
Di Martino, P.; Guyot-Hermann, A-M.; Conflant, P.; Drache, M.; Guyot, J.-C. A new pure paracetamol for direct compression: The orthorhombic form. Int. J. Pharm., 1996, 128, 1-8.
[http://dx.doi.org/10.1016/0378-5173(95)04127-3]
[36]
Jain, H.; Khomane, K.S.; Bansal, A.K. Implication of microstructure on the mechanical behaviour of an aspirin-paracetamol eutectic mixture. CrystEngComm, 2014, 16, 8471-8478.
[http://dx.doi.org/10.1039/C4CE00878B]
[37]
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm., 2013, 453, 101-125.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.043]
[38]
Gao, L.; Zhang, D.; Chen, M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanopart. Res., 2008, 10, 845-862.
[http://dx.doi.org/10.1007/s11051-008-9357-4]
[39]
Trask, A.V. An overview of pharmaceutical cocrystals as intellectual property. Mol. Pharm., 2007, 4(3), 301-309.
[http://dx.doi.org/10.1021/mp070001z] [PMID: 17477544]
[40]
Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: Oxford, 2007.
[http://dx.doi.org/10.1093/acprof:oso/9780199236565.001.0001]
[41]
Baker, D.D.; Chu, M.; Oza, U.; Rajgarhia, V. The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep., 2007, 24(6), 1225-1244.
[http://dx.doi.org/10.1039/b602241n] [PMID: 18033577]
[42]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[43]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[44]
Varshosaz, J.; Ghassami, E.; Ahmadipour, S. Crystal engineering for enhanced solubility and bioavailability of poorly soluble drugs. Curr. Pharm. Des., 2018, 24(21), 2473-2496.
[http://dx.doi.org/10.2174/1381612824666180712104447] [PMID: 29998799]
[45]
Martins, F.T.; Paparidis, N.; Doriguetto, A.C.; Ellena, J. Crystal engineering of an Anti-HIV drug based on the recognition of assembling molecular frameworks. Cryst. Growth Des., 2009, 9, 5283-5292.
[http://dx.doi.org/10.1021/cg900790f]
[46]
Desiraju, G.R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed. Engl., 2007, 46(44), 8342-8356.
[http://dx.doi.org/10.1002/anie.200700534] [PMID: 17902079]
[47]
Dengale, S.J.; Grohganz, H.; Rades, T.; Löbmann, K. Recent advances in co-amorphous drug formulations. Adv. Drug Deliv. Rev., 2016, 100, 116-125.
[http://dx.doi.org/10.1016/j.addr.2015.12.009] [PMID: 26805787]
[48]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J.H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[49]
Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M.R. Continuous engineering of nano-cocrystals for medical and energetic applications. Sci. Rep., 2014, 4, 6575.
[http://dx.doi.org/10.1038/srep06575] [PMID: 25300652]
[50]
Yu, Z.; Chew, J.; Chow, P.; Tan, R. Recent advances in crystallization control an industrial perspective. Chem. Eng. Res. Des., 2007, 85, 893-905.
[http://dx.doi.org/10.1205/cherd06234]
[51]
Zhou, K.; Li, J.; Luo, J.; Zheng, D. Crystal modification of rifapentine using different solvents. Front. Chem. Eng. China, 2010, 4, 65-69.
[http://dx.doi.org/10.1007/s11705-009-0302-6]
[52]
Dufour, F.; Stichel, B.; Grayson, J.I. Control of crystal modification and crystal shape by control of solid-solid transitions during crystallization and drying: Two industrial case studies. Org. Process Res. Dev., 2013, 17, 568-577.
[http://dx.doi.org/10.1021/op300333h]
[53]
Caillet, A.; Puel, F.; Fevotte, G. In-line monitoring of partial and overall solid concentration during solvent-mediated phase transition using Raman spectroscopy. Int. J. Pharm., 2006, 307(2), 201-208.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.009] [PMID: 16303270]
[54]
López-Mejías, V.; Kampf, J.W.; Matzger, A.J. Polymer-induced heteronucleation of tolfenamic acid: Structural investigation of a pentamorph. J. Am. Chem. Soc., 2009, 131(13), 4554-4555.
[http://dx.doi.org/10.1021/ja806289a] [PMID: 19334766]
[55]
McKellar, S.C.; Urquhart, A.J.; Lamprou, D.A.; Florence, A.J. Polymer templating of supercooled indomethacin for polymorph selection. ACS Comb. Sci., 2012, 14(3), 155-159.
[http://dx.doi.org/10.1021/co200175e] [PMID: 22332944]
[56]
Araya-Sibaja, A.M.; Soldi, V.; de Campos, C.E.M.; Cardoso, S.G.; Cuffini, S.L. Crystal growth of progesterone metastable and stable polymorphs by polymer induced herteronucleation (PIHn) method. Cryst. Res. Technol., 2016, 51(1), 49-57.
[http://dx.doi.org/10.1002/crat.201500145]
[57]
Lonare, A.A.; Patel, S.R. Antisolvent crystallization of poorly water soluble drugs. Int. J. Chem. Eng. Appl., 2013, 4, 337-341.
[http://dx.doi.org/10.7763/IJCEA.2013.V4.321]
[58]
Viçosa, A.; Letourneau, J-J.; Espitalier, F.; Inês Ré, M. An innovative antisolvent precipitation process as a promising technique to prepare ultrafine rifampicin particles. J. Cryst. Growth, 2012, 342, 80-87.
[http://dx.doi.org/10.1016/j.jcrysgro.2011.09.012]
[59]
Guo, Z.; Zhang, M.; Li, H.; Wang, J.; Kougoulos, E. Effect of ultrasound on anti-solvent crystallization process. J. Cryst. Growth, 2005, 273, 555-563.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.09.049]
[60]
Belkacem, N.; Sheikh Salem, M.A.; AlKhatib, H.S. Effect of ultrasound on the physico-chemical properties of poorly soluble drugs: Antisolvent sonocrystallization of ketoprofen. Powder Technol., 2015, 285, 16-24.
[http://dx.doi.org/10.1016/j.powtec.2015.06.058]
[61]
James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41(1), 413-447.
[http://dx.doi.org/10.1039/C1CS15171A] [PMID: 21892512]
[62]
Delori, A.; Friščić, T.; Jones, W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm, 2012, 14, 2350.
[http://dx.doi.org/10.1039/c2ce06582g]
[63]
Hasa, D.; Miniussi, E.; Jones, W. Mechanochemical synthesis of multicomponent crystals: One liquid for one polymorph? A myth to dispel. Cryst. Growth Des., 2016, 16, 4582-4588.
[http://dx.doi.org/10.1021/acs.cgd.6b00682]
[64]
Hasa, D.; Carlino, E.; Jones, W. Polymer-assisted grinding, a versatile method for polymorph control of cocrystallization. Cryst. Growth Des., 2016, 16, 1772-1779.
[http://dx.doi.org/10.1021/acs.cgd.6b00084]
[65]
Gohil, T. Solubility enhancement of poorly water soluble drugs. Indones. J. Pharm., 2014, 25(1), 1-8.
[http://dx.doi.org/10.14499/indonesianjpharm25iss1pp1]
[66]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[67]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012 195727
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[68]
Muller, R.H.; Keck, C.M. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol., 2004, 113(1-3), 151-170.
[http://dx.doi.org/10.1016/j.jbiotec.2004.06.007] [PMID: 15380654]
[69]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. New horizons for old drugs and drug leads. J. Nat. Prod., 2014, 77(3), 703-723.
[http://dx.doi.org/10.1021/np5000796] [PMID: 24499205]
[70]
Chaumeil, J.C. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods Find. Exp. Clin. Pharmacol., 1998, 20(3), 211-215.
[PMID: 9646283]
[71]
Jain, S.; Kurup, N. Formulation of irbesartan by microcrystal technology for enhancing the solubility and dissolution properties. Int. J. Pharm. Sci. Nanotechnol., 2013, 6, 2064-2076.
[72]
Cherukuvada, S.; Kaur, R.; Guru Row, T.N. Co-crystallization and small molecule crystal form diversity: From pharmaceutical to materials applications. CrystEngComm, 2016, 18, 8528-8555.
[http://dx.doi.org/10.1039/C6CE01835A]
[73]
Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: a practical perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 335-347.
[http://dx.doi.org/10.1016/j.addr.2003.10.008] [PMID: 14962585]
[74]
Hilfiker, R.; Blatter, F.; Raumer, M. Relevance of solid-state properties for pharmaceutical products. In: Polymorphism; Wiley-VCH Verlag GmbH Co. KGaA: Weinheim, 2006; pp. 1-19.
[75]
Aaltonen, J.; Allesø, M.; Mirza, S.; Koradia, V.; Gordon, K.C.; Rantanen, J. Solid form screening--a review. Eur. J. Pharm. Biopharm., 2009, 71(1), 23-37.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.014] [PMID: 18715549]
[76]
Morissette, S.L.; Almarsson, O.; Peterson, M.L.; Remenar, J.F.; Read, M.J.; Lemmo, A.V.; Ellis, S.; Cima, M.J.; Gardner, C.R. High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev., 2004, 56(3), 275-300.
[http://dx.doi.org/10.1016/j.addr.2003.10.020] [PMID: 14962582]
[77]
Lancaster, R.W.; Karamertzanis, P.G.; Hulme, A.T.; Tocher, D.A.; Covey, D.F.; Price, S.L. Racemic progesterone: predicted in silico and produced in the solid state. Chem. Commun. (Camb.), 2006, 4921-3(47), 4921-4923.
[http://dx.doi.org/10.1039/b611599c] [PMID: 17136247]
[78]
Price, S.L. The computational prediction of pharmaceutical crystal structures and polymorphism. Adv. Drug Deliv. Rev., 2004, 56(3), 301-319.
[http://dx.doi.org/10.1016/j.addr.2003.10.006] [PMID: 14962583]
[79]
Rodríguez-Spong, B.; Price, C.P.; Jayasankar, A.; Matzger, A.J.; Rodríguez-Hornedo, N. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 241-274.
[http://dx.doi.org/10.1016/j.addr.2003.10.005] [PMID: 14962581]
[80]
Censi, R.; Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules, 2015, 20(10), 18759-18776.
[http://dx.doi.org/10.3390/molecules201018759] [PMID: 26501244]
[81]
Prohens, R.; Vallet, M.P. Crystal engineering studies: Polymorphs and co-crystals. In: Handbook of Instrumental Techniques for Materials, Chemical and Biosciences Research; Centres Científics i Tecnològics:; Universitat de Barcelona, 2012.
[82]
Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: How cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater., 2016, 62, 1-8.
[http://dx.doi.org/10.1016/j.pcrysgrow.2016.07.001]
[83]
Thipparaboina, R.; Kumar, D.; Chavan, R.B.; Shastri, N.R. Multidrug co-crystals: Towards the development of effective therapeutic hybrids. Drug Discov. Today, 2016, 21(3), 481-490.
[http://dx.doi.org/10.1016/j.drudis.2016.02.001] [PMID: 26869329]
[84]
Haneef, J.; Chadha, R. Drug-drug multicomponent solid forms: Cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech, 2017, 18(6), 2279-2290.
[http://dx.doi.org/10.1208/s12249-016-0701-1] [PMID: 28101724]
[85]
Machado, S.M.T.; Castro, R.A.E.; Maria, T.M.R.; Canotilho, J.; Eusébio, M.E.S. Levetiracetam+nonsteroidal anti-inflammatory drug binary systems: A contribution to the development of new solid dosage forms. Int. J. Pharm., 2017, 533(1), 1-13.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.012] [PMID: 28893584]
[86]
Cherukuvada, S.; Guru Row, T.N. Comprehending the formation of eutectics and cocrystals in terms of design and their structural interrelationships. Cryst. Growth Des., 2014, 14, 4187-4198.
[http://dx.doi.org/10.1021/cg500790q]
[87]
Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: Design, properties and characterization. Chem. Commun. (Camb.), 2014, 50(8), 906-923.
[http://dx.doi.org/10.1039/C3CC47521B] [PMID: 24322207]
[88]
Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B, 2019, 9(1), 19-35.
[89]
Merisko-Liversidge, E.M.; Liversidge, G.G. Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicol. Pathol., 2008, 36(1), 43-48.
[http://dx.doi.org/10.1177/0192623307310946] [PMID: 18337220]
[90]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[91]
Bansal, S.; Bansal, M.; Kumria, R. Nanocrystals: Current strategies and trends. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 406-419.
[92]
Kakkar, V.; Kumar, M.; Saini, K. Nanoceuticals governance and market review. Environ. Chem. Lett., 2018, 16, 1293-1300.
[http://dx.doi.org/10.1007/s10311-018-0754-3]
[93]
Yan, D. Micro-/nanostructured multicomponent molecular materials: Design, assembly, and functionality. Chemistry, 2015, 21(13), 4880-4896.
[http://dx.doi.org/10.1002/chem.201405456] [PMID: 25640467]
[94]
Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. Sci., 2015, 10, 13-23.
[http://dx.doi.org/10.1016/j.ajps.2014.08.005]
[95]
Müller, R.H.; Peters, K. Nanosuspensions for the formulation of poorly soluble drugs. Int. J. Pharm., 1998, 160, 229-237.
[http://dx.doi.org/10.1016/S0378-5173(97)00311-6]
[96]
Hecq, J.; Deleers, M.; Fanara, D.; Vranckx, H.; Amighi, K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm., 2005, 299(1-2), 167-177.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.014] [PMID: 15996838]
[97]
Vergote, G.J.; Vervaet, C.; Van Driessche, I.; Hoste, S.; De Smedt, S.; Demeester, J.; Jain, R.A.; Ruddy, S.; Remon, J.P. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen. Int. J. Pharm., 2002, 240, 79-84.
[http://dx.doi.org/10.1016/S0378-5173(02)00114-X]
[98]
Jinno, J.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G.G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release, 2006, 111, 56-64.
[99]
Langguth, P.; Hanafy, A.; Frenzel, D.; Grenier, P.; Nhamias, A.; Ohlig, T.; Vergnault, G.; Spahn-Langguth, H. Nanosuspension formulations for low-soluble drugs: Pharmacokinetic evaluation using spironolactone as model compound. Drug Dev. Ind. Pharm., 2005, 31(3), 319-329.
[http://dx.doi.org/10.1081/DDC-52182] [PMID: 15830727]
[100]
Mauludin, R.; Müller, R.H.; Keck, C.M. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci., 2009, 36(4-5), 502-510.
[http://dx.doi.org/10.1016/j.ejps.2008.12.002] [PMID: 19130880]
[101]
Xia, D.; Quan, P.; Piao, H.; Piao, H.; Sun, S.; Yin, Y.; Cui, F. Preparation of stable nitrendipine nanosuspensions using the precipitation- ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci., 2010, 40(4), 325-334.
[http://dx.doi.org/10.1016/j.ejps.2010.04.006] [PMID: 20417274]
[102]
Shegokar, R.; Jansch, M.; Singh, K.K.; Müller, R.H. In vitro protein adsorption studies on nevirapine nanosuspensions for HIV/AIDS chemotherapy. Nanomedicine (Lond.), 2011, 7(3), 333-340.
[http://dx.doi.org/10.1016/j.nano.2010.10.012] [PMID: 21094278]
[103]
Zhang, J.; Lv, H.; Jiang, K.; Gao, Y. Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. Int. J. Pharm., 2011, 420(1), 180-188.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.023] [PMID: 21878378]
[104]
Ali, H.S.M.; York, P.; Ali, A.M.A.; Blagden, N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J. Control. Release, 2011, 149(2), 175-181.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.007] [PMID: 20946923]
[105]
Li, W.; Yang, Y.; Tian, Y.; Xu, X.; Chen, Y.; Mu, L.; Zhang, Y.; Fang, L. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Int. J. Pharm., 2011, 408(1-2), 157-162.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.059] [PMID: 21295124]
[106]
Rachmawati, H.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Development of curcumin nanocrystal: Physical aspects. J. Pharm. Sci., 2013, 102(1), 204-214.
[http://dx.doi.org/10.1002/jps.23335] [PMID: 23047816]
[107]
Sahoo, G.N.K.M. Fabrication of nanoparticles of silymarin, hesperetin and glibenclamide by evaporative precipitation of nanosuspension for fast dissolution. Pharm. Anal. Acta, 2014, 6, 1-7.
[http://dx.doi.org/10.4172/2153-2435.1000326]
[108]
Shid, R.L.; Dhole, S.N.; Kulkarni, N.; Shid, S.L. Formulation and evaluation of nanosuspension formulation for drug delivery of simvastatin. Int. J. Pharm. Sci. Nanotechnol., 2014, 7, 2459-2475.
[109]
Tuomela, A.; Liu, P.; Puranen, J.; Rönkkö, S.; Laaksonen, T.; Kalesnykas, G.; Oksala, O.; Ilkka, J.; Laru, J.; Järvinen, K.; Hirvonen, J.; Peltonen, L. Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. Int. J. Pharm., 2014, 467, 34-41.
[110]
Wang, Z.; Wu, J.; Zhou, Q.; Wang, Y.; Chen, T. Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evid. Based Complement. Alternat. Med., 2015, 2015 239749
[http://dx.doi.org/10.1155/2015/239749] [PMID: 25866534]
[111]
Afifi, S.A.; Hassan, M.A.; Abdelhameed, A.S.; Elkhodairy, K.A. Nanosuspension: An emerging trend for bioavailability enhancement of etodolac. Int. J. Polym. Sci., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/938594]
[112]
Shinde, G.; Patel, M.; Mehta, M.; Kesarla, R.; Bangale, G. Formulation, optimization, and characterization of repaglinide loaded nanocrystal for diabetes therapy. Adv. Pharm., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/363061]
[113]
Park, J.J.; Meghani, N.; Choi, J.S.; Lee, B.J. Development and evaluation of decorated aceclofenac nanocrystals. Colloids Surf. B Biointerfaces, 2016, 143, 206-212.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.022]
[114]
Surendra, G.; Rajkumar, M. Formulation and in vitro evaluation of tablet containing gliclazide nanocrystals for solubility and dissolution enhancement using soluplus. Int. J. Pharm. Sci. Res., 2017, 8, 2900-2909.
[115]
Kanthamneni, N.; Valiveti, S.; Patel, M.; Xia, H.; Tseng, Y.-C. Enhanced bioavailability of danazol nanosuspensions by wet milling and high-pressure homogenization. Int. J. Pharm. Investig., 2016, 6(4), 218-224.
[http://dx.doi.org/10.4103/2230-973X.195931] [PMID: 28123991]
[116]
Kamleshkumar, K.P.; Shantilal, J.P.; Moinnudin, M.S. Formulation and evaluation of nanosuspension to improve solubility and dissolution of diacerein. Int. J. Pharm. Sci. Res., 2017, 1643-1653.
[117]
Wais, F.M.H.; Abood, A.N.; Abbas, H.K. Preparation and evaluation of ketoprofen nanosuspension using solvent evaporation technique. Iraqi J. Pharm Sci., 2017, 26, 41-55.
[118]
De Smet, L.; Saerens, L.; De Beer, T.; Carleer, R.; Adriaensens, P.; Van Bocxlaer, J.; Vervaet, C.; Remon, J.P. Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs. Eur. J. Pharm. Biopharm., 2014, 87(1), 107-113.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.016] [PMID: 24388913]
[119]
Liu, M.; Hong, C.; Li, G.; Ma, P.; Xie, Y. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology, 2016, 27(39) 395601
[http://dx.doi.org/10.1088/0957-4484/27/39/395601] [PMID: 27535365]
[120]
Mohammad, I.S.; He, W.; Yin, L. A smart paclitaxel-disulfiram nanococrystals for efficient MDR reversal and enhanced apoptosis. Pharm. Res., 2018, 35(4), 77.
[http://dx.doi.org/10.1007/s11095-018-2370-0] [PMID: 29488114]
[121]
Emami, S.; Siahi-Shadbad, M.; Barzegar-Jalali, M.; Adibkia, K. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals. Drug Dev. Ind. Pharm., 2018, 44(6), 1034-1047.
[http://dx.doi.org/10.1080/03639045.2018.1430821] [PMID: 29347850]
[122]
Pi, J.; Wang, S.; Li, W.; Kebebe, D.; Zhang, Y.; Zhang, B.; Qi, D.; Guo, P.; Li, N.; Liu, Z. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian. J. Pharm. Sci., 2019, 14(2), 154-164.
[http://dx.doi.org/10.1016/j.ajps.2018.04.009] [PMID: 32104447]
[123]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[124]
Dahan, A.; Miller, J.M. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J., 2012, 14(2), 244-251.
[http://dx.doi.org/10.1208/s12248-012-9337-6] [PMID: 22391790]
[125]
Ceschel, G.; Bergamante, V.; Maffei, P.; Lombardi Borgia, S.; Calabrese, V.; Biserni, S.; Ronchi, C. Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles. Drug Deliv., 2005, 12(5), 275-280.
[http://dx.doi.org/10.1080/10717540500176563] [PMID: 16188726]
[126]
Sinko, P. Martin’s Physical Pharmacy and Pharmaceutical Sciences : Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences, 6th ed; Troy, D., Ed.; Lippincott Williams & Wilkins: Baltimore, 2011.
[127]
Karande, P.; Mitragotri, S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta- Biomembr., 2009, 1788, 2362-2373.
[http://dx.doi.org/10.1016/j.bbamem.2009.08.015]
[128]
Sanphui, P.; Devi, V.K.; Clara, D.; Malviya, N.; Ganguly, S.; Desiraju, G.R. Cocrystals of hydrochlorothiazide: Solubility and diffusion/ permeability enhancements through drug-coformer interactions. Mol. Pharm., 2015, 12(5), 1615-1622.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00020] [PMID: 25800383]
[129]
Teja, A.; Musmade, P.B.; Khade, A.B.; Dengale, S.J. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of Talinolol with Naringin: Solid state characterization, in vivo, in situ evaluation. Eur. J. Pharm. Sci., 2015, 78, 234-244.
[http://dx.doi.org/10.1016/j.ejps.2015.08.002] [PMID: 26253355]
[130]
Kaplun-Frischoff, Y.; Touitou, E. Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids. J. Pharm. Sci., 1997, 86(12), 1394-1399.
[http://dx.doi.org/10.1021/js9701465] [PMID: 9423153]
[131]
Stott, P.W.; Williams, A.C.; Barry, B.W. Transdermal delivery from eutectic systems: Enhanced permeation of a model drug, ibuprofen. J. Control. Release, 1998, 50(1-3), 297-308.
[http://dx.doi.org/10.1016/S0168-3659(97)00153-3] [PMID: 9685897]
[132]
Yu, D.G.; Gao, L.D.; White, K.; Branford-White, C.; Lu, W.Y.; Zhu, L.M. Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug. Pharm. Res., 2010, 27(11), 2466-2477.
[http://dx.doi.org/10.1007/s11095-010-0239-y] [PMID: 20721604]
[133]
Miller, J.M.; Beig, A.; Carr, R.A.; Spence, J.K.; Dahan, A. A win-win solution in oral delivery of lipophilic drugs: Supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol. Pharm., 2012, 9(7), 2009-2016.
[http://dx.doi.org/10.1021/mp300104s] [PMID: 22632106]
[134]
Frank, K.J.; Rosenblatt, K.M.; Westedt, U.; Hölig, P.; Rosenberg, J.; Mägerlein, M.; Fricker, G.; Brandl, M. Amorphous solid dispersion enhances permeation of poorly soluble ABT-102: True supersaturation vs. apparent solubility enhancement. Int. J. Pharm., 2012, 437(1-2), 288-293.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.014] [PMID: 22951865]
[135]
Ghosh, I.; Michniak-Kohn, B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin--a case study. AAPS PharmSciTech, 2013, 14(3), 1108-1117.
[http://dx.doi.org/10.1208/s12249-013-9995-4] [PMID: 23824877]
[136]
Yan, Y.; Chen, J-M.; Lu, T-B. Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. CrystEngComm, 2013, 15, 6457-6460.
[http://dx.doi.org/10.1039/c3ce41017j]
[137]
Dai, X.L.; Li, S.; Chen, J.M.; Lu, T.B. Improving the membrane permeability of 5-Fluorouracil via cocrystallization. Cryst. Growth Des., 2016, 16, 4430-4438.
[http://dx.doi.org/10.1021/acs.cgd.6b00552]
[138]
Khatioda, R.; Saikia, B.; Das, P.J.; Sarma, B. Solubility and in vitro drug permeation behavior of ethenzamide cocrystals regulated in physiological pH environments. CrystEngComm, 2017, 19, 6992-7000.
[http://dx.doi.org/10.1039/C7CE01626C]
[139]
Beig, A.; Fine-Shamir, N.; Lindley, D.; Miller, J.M.; Dahan, A. Advantageous solubility-permeability interplay when using Amorphous Solid Dispersion (ASD) formulation for the BCS class IV P-gp substrate rifaximin: Simultaneous increase of both the solubility and the permeability. AAPS J., 2017, 19(3), 806-813.
[http://dx.doi.org/10.1208/s12248-017-0052-1] [PMID: 28204967]
[140]
Dave, V.; Telange, D.; Denge, R.; Patil, A.; Umekar, M.; Gupta, S.V. Pentaerythritol as an excipient/solid-dispersion carrier for improved solubility and permeability of ursodeoxycholic acid. J. Excip. Food Chem., 2018, 9, 80-95.
[141]
Fan, N.; He, Z.; Ma, P.; Wang, X.; Li, C.; Sun, J.; Sun, Y.; Li, J. Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions. Carbohydr. Polym., 2018, 181, 543-550.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.004] [PMID: 29254005]
[142]
Ruponen, M.; Visti, M.; Ojarinta, R.; Laitinen, R. Permeability of glibenclamide through a PAMPA membrane: The effect of co-amorphization. Eur. J. Pharm. Biopharm., 2018, 129, 247-256.
[143]
Miller, S.P.F.; Raw, A.S.; Yu, L.X. Scientific considerations of pharmaceutical solid polymorphism in regulatory applications. In: Polymorphism; Wiley-VCH Verlag GmbH Co. KGaA: Weinheim, 2006; pp. 385-403.
[http://dx.doi.org/10.1002/3527607889.ch15]
[144]
Zhou, D.; Porter, W.R.; Zhang, G.G.Z. Drug stability and degradation studies. In: Developing Solid Oral Dosage Forms; Qiu, Y.; Chen, Y.; Zhang, G.; Yu, L.; Mantari, R.V., Eds.; Academic Press: Cambridge, 2017; pp. 113-149.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00005-4]
[145]
Byrn, S.; Pfeiffer, R.; Stowell, J. Solid-State Chemistry of Drugs; SSCI, Inc.: Indiana, 1999.
[146]
Li, Y.; Han, J.; Zhang, G.G.Z.; Grant, D.J.W.; Suryanarayanan, R. In situ dehydration of carbamazepine dihydrate: A novel technique to prepare amorphous anhydrous carbamazepine. Pharm. Dev. Technol., 2000, 5(2), 257-266.
[http://dx.doi.org/10.1081/PDT-100100540] [PMID: 10810755]
[147]
Brittain, H. Polymorphism in Pharmaceutical Solids; Informa Healthcare USA, Inc.: New York, 2001.
[148]
Geoff, G.Z.; Zhou, Z.; Zhou, D. Crystalline and amorphous solids. In: Developing Solid Oral Dosage Forms Pharmaceutical Theory and Practice; Academic Press: Cambridge, 2009; pp. 25-60.
[149]
Reutzel-Edens, S.M.; Newman, A.W. Physical Characterization of Hygroscopicity in Pharmaceutical Solids.Polymorphism; Wiley- VCH Verlag GmbH Co. KGaA: Weinheim, 2006, pp. 235-258.
[http://dx.doi.org/10.1002/3527607889.ch9]
[150]
Zhang, G.G.Z.; Zhou, D. Crystalline and Amorphous Solids. In: Developing Solid Oral Dosage Forms; Qiu, Y.; Chen, Y.; Zhang, G.; Yu, L.; Mantari, R.V., Eds.; Academic Press: Cambridge, 2017; pp. 23-57.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00002-9]
[151]
Trask, A.V.; Motherwell, W.D.S.; Jones, W. Pharmaceutical cocrystallization: Engineering a remedy for caffeine hydration. Cryst. Growth Des., 2005, 5, 1013-1021.
[http://dx.doi.org/10.1021/cg0496540]
[152]
Gao, Y.; Zu, H.; Zhang, J. Enhanced dissolution and stability of adefovir dipivoxil by cocrystal formation. J. Pharm. Pharmacol., 2011, 63(4), 483-490.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01246.x] [PMID: 21401599]
[153]
Bacchi, A.; Capucci, D.; Giannetto, M.; Mattarozzi, M.; Pelagatti, P.; Rodriguez-Hornedo, N.; Rubini, K.; Sala, A. Turning liquid propofol into solid (without freezing it): Thermodynamic characterization of pharmaceutical cocrystals built with a liquid drug. Cryst. Growth Des., 2016, 16, 6547-6555.
[154]
Capucci, D.; Balestri, D.; Mazzeo, P.P.; Pelagatti, P.; Rubini, K.; Bacchi, A. Liquid nicotine tamed in solid forms by cocrystallization. Cryst. Growth Des., 2017, 17, 4958-4964.
[http://dx.doi.org/10.1021/acs.cgd.7b00887]
[155]
McKellar, S.C.; Kennedy, A.R.; McCloy, N.C.; McBride, E.; Florence, A.J. Formulation of liquid propofol as a cocrystalline solid. Cryst. Growth Des., 2014, 14, 2422-2430.
[http://dx.doi.org/10.1021/cg500155p]
[156]
Trask, A.V.; Motherwell, W.D.S.; Jones, W. Physical stability enhancement of theophylline via cocrystallization. Int. J. Pharm., 2006, 320(1-2), 114-123.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.018] [PMID: 16769188]
[157]
Wang, Z.Z.; Chen, J.M.; Lu, T.B. Enhancing the hygroscopic stability of S-oxiracetam via pharmaceutical cocrystals. Cryst. Growth Des., 2012, 12(9), 4562-4566.
[http://dx.doi.org/10.1021/cg300757k]
[158]
Tao, Q.; Chen, J.M.; Ma, L.; Lu, T.B. Phenazopyridine cocrystal and salts that exhibit enhanced solubility and stability. Cryst. Growth Des., 2012, 12(6), 3144-3152.
[http://dx.doi.org/10.1021/cg300327x]
[159]
Duggirala, N.K.; Smith, A.J.; Wojtas, Ł.; Shytle, R.D.; Zaworotko, M.J. Physical stability enhancement and pharmacokinetics of a lithium ionic cocrystal with glucose. Cryst. Growth Des., 2014, 14(11), 6135-6142.
[http://dx.doi.org/10.1021/cg501310d]
[160]
Veverka, M.; Dubaj, T.; Gallovič, J.; Jorík, V.; Veverková, E.; Danihelová, M.; Šimon, P. Cocrystals of quercetin: Synthesis, characterization, and screening of biological activity. Monatsh. Chem., 2015, 146, 99-109.
[http://dx.doi.org/10.1007/s00706-014-1314-6]
[161]
Zhou, Z.; Li, W.; Sun, W.J.; Lu, T.; Tong, H.H.Y.; Sun, C.C.; Zheng, Y. Resveratrol cocrystals with enhanced solubility and tabletability. Int. J. Pharm., 2016, 509, 391-399.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.006]
[162]
Lin, S.Y.; Lin, H.L.; Chi, Y.T.; Hung, R.Y.; Huang, Y.T.; Hsieh, W.H.; Kao, C.Y. Influence of soluplus on solid-state properties and physical stability of indomethacin-saccharin co-crystal formation prepared by air-drying process. J. Pharm. Innov., 2016, 11, 109-119.
[http://dx.doi.org/10.1007/s12247-016-9243-z]
[163]
Gunnam, A.; Suresh, K.; Nangia, A. Salts and salt cocrystals of the antibacterial drug pefloxacin. Cryst. Growth Des., 2018, 18(5), 2824-2835.
[http://dx.doi.org/10.1021/acs.cgd.7b01600]
[164]
Zhu, B.; Wang, J.R.; Zhang, Q.; Li, M.; Guo, C.; Ren, G.; Mei, X. Stable cocrystals and salts of the antineoplastic drug apatinib with improved solubility in aqueous solution. Cryst. Growth Des., 2018, 18(8), 4701-4714.
[http://dx.doi.org/10.1021/acs.cgd.8b00684]
[165]
Chen, X.; Li, D.; Luo, C.; Wang, J.; Deng, Z.; Zhang, H. Cocrystals of zileuton with enhanced physical stability. CrystEngComm, 2018, 20, 990-1000.
[http://dx.doi.org/10.1039/C7CE02150J]
[166]
Battini, S.; Mannava, M.K.C.; Nangia, A. Improved stability of tuberculosis drug fixed-dose combination using isoniazid-caffeic acid and vanillic acid cocrystal. J. Pharm. Sci., 2018, 107(6), 1667-1679.
[http://dx.doi.org/10.1016/j.xphs.2018.02.014] [PMID: 29462633]
[167]
Leuenberger, H.; Rohera, B.D. Fundamentals of powder compression. I. The compactibility and compressibility of pharmaceutical powders. Pharm. Res., 1986, 3(1), 12-22.
[http://dx.doi.org/10.1023/A:1016364613722] [PMID: 24271352]
[168]
Li, Q.; Rudolph, V.; Weigl, B.; Earl, A. Interparticle van der Waals force in powder flowability and compactibility. Int. J. Pharm., 2004, 280(1-2), 77-93.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.001] [PMID: 15265549]
[169]
Juribašić, M.; Bregović, N.; Stilinović, V.; Tomišić, V.; Cindrić, M.; Šket, P.; Plavec, J.; Rubčić, M.; Užarević, K. Supramolecular stabilization of metastable tautomers in solution and the solid state. Chem. - A Eur. J., 2014, 20, 17333-17345.
[170]
Braga, D.; Grepioni, F.; Maini, L. The growing world of crystal forms. Chem. Commun. (Camb.), 2010, 46(34), 6232-6242.
[http://dx.doi.org/10.1039/c0cc01195a] [PMID: 20623084]
[171]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Structure of Five-membered Rings with Two or More Heteroatoms. In: Handbook of Heterocyclic Chemistry; Elsevier: Amsterdam, 2010; pp. 139-209.
[172]
Sun, C.C.; Hou, H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst. Growth Des., 2008, 8(5), 1575-1579.
[http://dx.doi.org/10.1021/cg700843s]
[173]
Karki, S.; Friščić, T.; Fabián, L.; Laity, P.R.; Day, G.M.; Jones, W. Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol. Adv. Mater., 2009, 21, 3905-3909.
[http://dx.doi.org/10.1002/adma.200900533]
[174]
Hiendrawan, S.; Veriansyah, B.; Widjojokusumo, E.; Soewandhi, S.N.; Wikarsa, S.; Tjandrawinata, R.R. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int. J. Pharm., 2016, 497(1-2), 106-113.
[175]
Ahmed, H.; Shimpi, M.R.; Velaga, S.P. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol. Drug Dev. Ind. Pharm., 2017, 43(1), 89-97.
[http://dx.doi.org/10.1080/03639045.2016.1220568] [PMID: 27486671]
[176]
Rahman, Z.; Agarabi, C.; Zidan, A.S.; Khan, S.R.; Khan, M.A. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech, 2011, 12(2), 693-704.
[http://dx.doi.org/10.1208/s12249-011-9603-4] [PMID: 21598082]
[177]
Wang, C.; Paul, S.; Wang, K.; Hu, S.; Sun, C.C. Relationships among crystal structures, mechanical properties, and tableting performance probed using four salts of diphenhydramine. Cryst. Growth Des., 2017, 17(11), 6030-6040.
[http://dx.doi.org/10.1021/acs.cgd.7b01153]
[178]
Tan, E.H.; Parmentier, J.; Low, A.; Möschwitzer, J.P. Downstream drug product processing of itraconazole nanosuspension: Factors influencing tablet material properties and dissolution of compacted nanosuspension-layered sugar beads. Int. J. Pharm., 2017, 532(1), 131-138.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.107] [PMID: 28859940]
[179]
Liu, L.; Wang, C.; Dun, J.; Chow, A.H.L.; Sun, C.C. Lack of dependence of mechanical properties of baicalein cocrystals on those of the constituent components. CrystEngComm, 2018, 20, 5486-5489.
[http://dx.doi.org/10.1039/C8CE00787J]
[180]
Li, Y.; Yu, J.; Hu, S.; Chen, Z.; Sacchetti, M.; Sun, C.C.; Yu, L. Polymer nanocoating of amorphous drugs for improving stability, dissolution, powder flow, and tabletability: The case of chitosan coated indomethacin. Mol. Pharm., 2019, 16(3), 1305-1311.
[181]
Hou, H.H.; Rajesh, A.; Pandya, K.M.; Lubach, J.W.; Muliadi, A.; Yost, E.; Jia, W.; Nagapudi, K. Impact of method of preparation of amorphous solid dispersions on mechanical properties: comparison of coprecipitation and spray drying. J. Pharm. Sci., 2019, 108(2), 870-879.
[http://dx.doi.org/10.1016/j.xphs.2018.09.008] [PMID: 30244013]
[182]
Springuel, G.; Leyssens, T. Innovative chiral resolution using enantiospecific co-crystallization in solution. Cryst. Growth Des., 2012, 12, 3374-3378.
[http://dx.doi.org/10.1021/cg300307z]
[183]
Nichols, G.; Frampton, C.S. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci., 1998, 87(6), 684-693.
[http://dx.doi.org/10.1021/js970483d] [PMID: 9607944]
[184]
Kumar, V.; Goswami, P.K.; Thaimattam, R.; Ramanan, A. Multicomponent solids of uracil derivatives - orotic and isoorotic acids. CrystEngComm, 2018, 20, 3490-3504.
[http://dx.doi.org/10.1039/C8CE00486B]
[185]
Springuel, G.; Norberg, B.; Robeyns, K.; Wouters, J.; Leyssens, T. Advances in pharmaceutical co-crystal screening: Effective co-crystal screening through structural resemblance. Cryst. Growth Des., 2012, 12, 475-484.
[http://dx.doi.org/10.1021/cg201291k]
[186]
Lu, J.; Cruz-Cabeza, A.J.; Rohani, S.; Jennings, M.C. A 2:1 sulfamethazine-theophylline cocrystal exhibiting two tautomers of sulfamethazine. Acta Crystallogr. C, 2011, 67(Pt 8), o306-o309.
[http://dx.doi.org/10.1107/S0108270111024280] [PMID: 21817798]
[187]
Epa, K.; Aakeröy, C.B.; Desper, J.; Rayat, S.; Chandra, K.L.; Cruz-Cabeza, A.J. Controlling molecular tautomerism through supramolecular selectivity. Chem. Commun. (Camb.), 2013, 49(72), 7929-7931.
[http://dx.doi.org/10.1039/c3cc43935f] [PMID: 23900691]
[188]
Araya-Sibaja, A.M.; Urgellés, M.; Vásquez-Castro, F.; Vargas-Huertas, F.; Vega-Baudrit, J.R.; Guillén-Girón, T.; Navarro-Hoyos, M.; Cuffini, S.L. The effect of solution environment and the electrostatic factor on the crystallisation of desmotropes of irbesartan. RSC Advances, 2019, 9, 5244-5250.
[http://dx.doi.org/10.1039/C8RA10146A]
[189]
Ghosh, S.; Bag, P.P.; Reddy, C.M. Co-crystals of sulfamethazine with some carboxylic acids and amides: Co-former assisted tautomerism in an active pharmaceutical ingredient and hydrogen bond competition study. Cryst. Growth Des., 2011, 11, 3489-3503.
[http://dx.doi.org/10.1021/cg200334m]
[190]
Tutughamiarso, M.; Wagner, G.; Egert, E. Cocrystals of 5-fluorocytosine. I. Coformers with fixed hydrogen-bonding sites. Acta Crystallogr. B, 2012, 68(Pt 4), 431-443.
[http://dx.doi.org/10.1107/S010876811202561X] [PMID: 22810913]
[191]
Tothadi, S.; Bhogala, B.R.; Gorantla, A.R.; Thakur, T.S.; Jetti, R.K.R.; Desiraju, G.R. Triclabendazole: an intriguing case of co-existence of conformational and tautomeric polymorphism. Chem. Asian J., 2012, 7(2), 330-342.
[http://dx.doi.org/10.1002/asia.201100638] [PMID: 22147668]
[192]
Keck, C.M.; Müller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm., 2006, 62(1), 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[193]
Urbanus, J.; Roelands, C.P.M.; Verdoes, D.; Jansens, P.J.; ter Horst, J.H. Co-crystallization as a separation technology: controlling product concentrations by co-crystals. Cryst. Growth Des., 2010, 10, 1171-1179.
[http://dx.doi.org/10.1021/cg9010778]
[194]
Tandon, R.; Tandon, N.; Gupta, N.; Gupta, R. Art of synthesis of desired polymorphs: a review. Asian J. Chem., 2018, 30, 5-14.
[http://dx.doi.org/10.14233/ajchem.2018.20934]
[195]
Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev., 2017, 117, 178-195.
[http://dx.doi.org/10.1016/j.addr.2017.07.008] [PMID: 28712924]
[196]
Bolla, G.; Nangia, A. Pharmaceutical cocrystals: Walking the talk. Chem. Commun. (Camb.), 2016, 52(54), 8342-8360.
[http://dx.doi.org/10.1039/C6CC02943D] [PMID: 27278109]
[197]
Stahly, G.P. Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst. Growth Des., 2007, 7, 1007-1026.
[http://dx.doi.org/10.1021/cg060838j]
[198]
Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics, 2018, 10(1), 18.
[http://dx.doi.org/10.3390/pharmaceutics10010018] [PMID: 29370068]
[199]
Aitipamula, S.; Chow, P.S.; Tan, R.B.H. Polymorphism in cocrystals: A review and assessment of its significance. CrystEngComm, 2014, 16, 3451-3465.
[http://dx.doi.org/10.1039/c3ce42008f]
[200]
Cysewski, P.; Przybyłek, M.; Ziółkowska, D.; Mroczyńska, K. Exploring the cocrystallization potential of urea and benzamide. J. Mol. Model., 2016, 22(5), 103.
[http://dx.doi.org/10.1007/s00894-016-2964-6] [PMID: 27052722]
[201]
Lukin, S.; Lončarić, I.; Tireli, M.; Stolar, T.; Blanco, M.V.; Lazić, P.; Užarević, K.; Halasz, I. Experimental and theoretical study of selectivity in mechanochemical cocrystallization of nicotinamide with anthranilic and salicylic acid. Cryst. Growth Des., 2018, 18, 1539-1547.
[http://dx.doi.org/10.1021/acs.cgd.7b01512]
[202]
Askeland, D.; Wright, W. Essentials of Materials Science and Engineering, 3rd ed; CENGAGE Learning: Boston, 2014.
[203]
Möschwitzer, J.P. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm., 2013, 453(1), 142-156.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034] [PMID: 23000841]
[204]
Boutonnet-Fagegaltier, N.; Menegotto, J.; Lamure, A.; Duplaa, H.; Caron, A.; Lacabanne, C.; Bauer, M. Molecular mobility study of amorphous and crystalline phases of a pharmaceutical product by thermally stimulated current spectrometry. J. Pharm. Sci., 2002, 91(6), 1548-1560.
[http://dx.doi.org/10.1002/jps.10146] [PMID: 12115853]
[205]
Babu, N.J.; Nangia, A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des., 2011, 11, 2662-2679.
[http://dx.doi.org/10.1021/cg200492w]
[206]
Mullin, J.W. Crystallization, 4th ed; Butterworth-Heinemann: Oxford, 2001.
[207]
Gao, Y.; Tian, J. Solubility of irbesartan form B in an aqueous ethanol mixture. J. Chem. Eng. Data, 2008, 53, 535-537.
[http://dx.doi.org/10.1021/je700627z]
[208]
Vippagunta, S.R.; Brittain, H.G.; Grant, D.J. Crystalline solids. Adv. Drug Deliv. Rev., 2001, 48(1), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(01)00097-7] [PMID: 11325474]
[209]
Cuffini, S.; Pitaluga, A., Jr; Tombari, D. Pharmaceutical Polymorphism.Pharmaceutical Sciences Biopharmacotechnics. Editora Guanabara: Rio de Janeiro, 2009, pp. 21-31.
[210]
Najar, A.; Azim, Y. Pharmaceutical co-crystals : A new paradigm. J. Indian Inst. Sci., 2014, 94, 45-67.
[211]
Santos, O.M.M.; Reis, M.E.D.; Jacon, J.T.; Lino, M.E. de S.; Simões, J.S.; Doriguetto, A.C. Polymorphism: An evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria. Braz. J. Pharm. Sci., 2014, 50, 1-24.
[http://dx.doi.org/10.1590/S1984-82502011000100002]
[212]
Stachurski, Z.H. On structure and properties of amorphous materials. Materials (Basel), 2011, 4(9), 1564-1598.
[http://dx.doi.org/10.3390/ma4091564] [PMID: 28824158]
[213]
Duggirala, N.K.; Perry, M.L.; Almarsson, Ö.; Zaworotko, M.J. Pharmaceutical cocrystals: Along the path to improved medicines. Chem. Commun. (Camb.), 2016, 52(4), 640-655.
[http://dx.doi.org/10.1039/C5CC08216A] [PMID: 26565650]
[214]
Chieng, N.; Aaltonen, J.; Saville, D.; Rades, T. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur. J. Pharm. Biopharm., 2009, 71(1), 47-54.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.022] [PMID: 18644443]
[215]
Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today, 2007, 12, 1068-1075.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2020
Published on: 11 August, 2020
Page: [518 - 538]
Pages: 21
DOI: 10.2174/1570193X16666190430153231
Price: $65

Article Metrics

PDF: 24
HTML: 2
PRC: 1