Understanding the Patterns of Deformity of Wrist Fractures Using Computer Analysis

Author(s): Shai Luria*

Journal Name: Current Rheumatology Reviews

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Computer modeling of the wrist has followed other fields in the search for descriptive methods to understand the biomechanics of injury. Using patient-specific 3D computer models, we may better understand the biomechanics of wrist fractures in order to plan better care. We may better estimate fracture morphology and stability and evaluate surgical indications, design more adequate or effective surgical approaches and develop novel methods of therapy. The purpose of this review is to question the actual advances made in the understanding of wrist fractures using computer models.

Keywords: Wrist fracture, scaphoid fracture, finite element analysis, 3D computer model, wrist biomechanics, deformity.

Johnson JE, McIff TE, Lee P, Toby EB, Fischer KJ. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner. Comput Methods Biomech Biomed Engin 2014; 17(4): 378-87.
[http://dx.doi.org/10.1080/10255842.2012.684446] [PMID: 22631873]
Leventhal EL, Wolfe SW, Walsh EF, Crisco JJ. A computational approach to the “optimal” screw axis location and orientation in the scaphoid bone. J Hand Surg Am 2009; 34(4): 677-84.
[http://dx.doi.org/10.1016/j.jhsa.2009.01.011] [PMID: 19345870]
Luria S, Schwarcz Y, Wollstein R, Emelife P, Zinger G, Peleg E. 3-dimensional analysis of scaphoid fracture angle morphology. J Hand Surg Am 2015; 40(3): 508-14.
[http://dx.doi.org/10.1016/j.jhsa.2014.11.008] [PMID: 25577960]
Zannoni C, Mantovani R, Viceconti M. Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 1998; 20(10): 735-40.
[http://dx.doi.org/10.1016/S1350-4533(98)00081-2] [PMID: 10223642]
Henninger HB, Reese SP, Anderson AE, Weiss JA. Validation of computational models in biomechanics. Proc Inst Mech Eng H 2010; 224(7): 801-12.
[http://dx.doi.org/10.1243/09544119JEIM649] [PMID: 20839648]
Burkhart TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J Biomech 2013; 46(9): 1477-88.
[http://dx.doi.org/10.1016/j.jbiomech.2013.03.022] [PMID: 23623312]
Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon) 2008; 23(2): 135-46.
[http://dx.doi.org/10.1016/j.clinbiomech.2007.08.024] [PMID: 17931759]
Viegas SF, Wagner K, Patterson R, Peterson P. Medial (hamate) facet of the lunate. J Hand Surg Am 1990; 15(4): 564-71.
[http://dx.doi.org/10.1016/S0363-5023(09)90016-8] [PMID: 2380518]
Galley I, Bain GI, McLean JM. Influence of lunate type on scaphoid kinematics. J Hand Surg Am 2007; 32(6): 842-7.
[http://dx.doi.org/10.1016/j.jhsa.2007.03.012] [PMID: 17606064]
Haase SC, Berger RA, Shin AY. Association between lunate morphology and carpal collapse patterns in scaphoid nonunions. J Hand Surg Am 2007; 32(7): 1009-12.
[http://dx.doi.org/10.1016/j.jhsa.2007.06.005] [PMID: 17826554]
Nakamura K, Beppu M, Patterson RM, Hanson CA, Hume PJ, Viegas SF. Motion analysis in two dimensions of radial-ulnar deviation of type I versus type II lunates. J Hand Surg Am 2000; 25(5): 877-88.
[http://dx.doi.org/10.1053/jhsu.2000.9411] [PMID: 11040303]
Rhee PC, Moran SL, Shin AY. Association between lunate morphology and carpal collapse in cases of scapholunate dissociation. J Hand Surg Am 2009; 34(9): 1633-9.
[http://dx.doi.org/10.1016/j.jhsa.2009.06.017] [PMID: 19833447]
McLean J, Bain G, Eames M, Fogg Q, Pourgiezis N. An anatomic study of the triquetrum-hamate joint. J Hand Surg Am 2006; 31(4): 601-7.
[http://dx.doi.org/10.1016/j.jhsa.2005.11.007] [PMID: 16632054]
McLean JM, Turner PC, Bain GI, Rezaian N, Field J, Fogg Q. An association between lunate morphology and scaphoid-trapezium-trapezoid arthritis. J Hand Surg Eur Vol 2009; 34(6): 778-82.
[http://dx.doi.org/10.1177/1753193409345201] [PMID: 19786403]
Moritomo H, Viegas SF, Elder KW, et al. Scaphoid nonunions: a 3-dimensional analysis of patterns of deformity. J Hand Surg Am 2000; 25(3): 520-8.
[http://dx.doi.org/10.1053/jhsu.2000.7381] [PMID: 10811757]
Ceri N, Korman E, Gunal I, Tetik S. The morphological and morphometric features of the scaphoid. J Hand Surg [Br] 2004; 29(4): 393-8.
[http://dx.doi.org/10.1016/J.JHSB.2004.02.006] [PMID: 15234508]
Canovas F, Roussanne Y, Captier G, Bonnel F. Study of carpal bone morphology and position in three dimensions by image analysis from computed tomography scans of the wrist. Surg Radiol Anat 2004; 26(3): 186-90.
[http://dx.doi.org/10.1007/s00276-003-0207-x] [PMID: 15173959]
van de Giessen M, Foumani M, Streekstra GJ, et al. Statistical descriptions of scaphoid and lunate bone shapes. J Biomech 2010; 43(8): 1463-9.
[http://dx.doi.org/10.1016/j.jbiomech.2010.02.006] [PMID: 20185138]
Lee SB, Kim HJ, Chun JM, et al. Osseous microarchitecture of the scaphoid: Cadaveric study of regional variations and clinical implications. Clin Anat 2012; 25(2): 203-11.
[http://dx.doi.org/10.1002/ca.21198] [PMID: 21547958]
Miyake J, Murase T, Yamanaka Y, Moritomo H, Sugamoto K, Yoshikawa H. Comparison of three dimensional and radiographic measurements in the analysis of distal radius malunion. J Hand Surg Eur Vol 2013; 38(2): 133-43.
[http://dx.doi.org/10.1177/1753193412451383] [PMID: 22736743]
Compson JP. The anatomy of acute scaphoid fractures: a three-dimensional analysis of patterns. J Bone Joint Surg Br 1998; 80(2): 218-24.
[http://dx.doi.org/10.1302/0301-620X.80B2.0800218] [PMID: 9546447]
M G-E Green’s operative hand surgery. 6th ed. Philadelphia, Pa.: Elsevier/Churchill Livingstone 2011.
Russe O. Fracture of the carpal navicular. Diagnosis, non-operative treatment, and operative treatment. J Bone Joint Surg Am 1960; 42-A: 759-68.
[http://dx.doi.org/10.2106/00004623-196042050-00002] [PMID: 13854612]
Brøndum V, Larsen CF, Skov O. Fracture of the carpal scaphoid: frequency and distribution in a well-defined population. Eur J Radiol 1992; 15(2): 118-22.
[http://dx.doi.org/10.1016/0720-048X(92)90135-V] [PMID: 1425745]
Eddeland A, Eiken O, Hellgren E, Ohlsson NM. Fractures of the scaphoid. Scand J Plast Reconstr Surg 1975; 9(3): 234-9.
[http://dx.doi.org/10.3109/02844317509022872] [PMID: 1219995]
K. LS. Fractures of the Carpal Bones.Green's operative hand surgery 1. 7nd ed.. 588-652.Philadelphia, PA: Elsevier 2016; pp.
Trumble TE, Gilbert M, Murray LW, Smith J, Rafijah G, McCallister WV. Displaced scaphoid fractures treated with open reduction and internal fixation with a cannulated screw. J Bone Joint Surg Am 2000; 82(5): 633-41.
[http://dx.doi.org/10.2106/00004623-200005000-00004] [PMID: 10819274]
Bain GI, Bennett JD, MacDermid JC, Slethaug GP, Richards RS, Roth JH. Measurement of the scaphoid humpback deformity using longitudinal computed tomography: intra- and interobserver variability using various measurement techniques. J Hand Surg Am 1998; 23(1): 76-81.
[http://dx.doi.org/10.1016/S0363-5023(98)80093-2] [PMID: 9523959]
Ring D, Patterson JD, Levitz S, Wang C, Jupiter JB. Both scanning plane and observer affect measurements of scaphoid deformity. J Hand Surg Am 2005; 30(4): 696-701.
[http://dx.doi.org/10.1016/j.jhsa.2005.03.001] [PMID: 16039360]
Guo Y, Tian GL. The length and position of the long axis of the scaphoid measured by analysis of three-dimensional reconstructions of computed tomography images. J Hand Surg Eur Vol 2011; 36(2): 98-101.
[http://dx.doi.org/10.1177/1753193410377837] [PMID: 20732928]
Dias JJ, Wildin CJ, Bhowal B, Thompson JR. Should acute scaphoid fractures be fixed? A randomized controlled trial. J Bone Joint Surg Am 2005; 87(10): 2160-8.
[http://dx.doi.org/10.2106/JBJS.D.02305] [PMID: 16203878]
Vinnars B, Pietreanu M, Bodestedt A. Ekenstam Fa, Gerdin B. Nonoperative compared with operative treatment of acute scaphoid fractures. A randomized clinical trial. J Bone Joint Surg Am 2008; 90(6): 1176-85.
[http://dx.doi.org/10.2106/JBJS.G.00673] [PMID: 18519309]
Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M. Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy. J Biomech 2006; 39(13): 2457-67.
[http://dx.doi.org/10.1016/j.jbiomech.2005.07.018] [PMID: 16213507]
Bhatia VA, Edwards WB, Troy KL. Predicting surface strains at the human distal radius during an in vivo loading task--finite element model validation and application. J Biomech 2014; 47(11): 2759-65.
[http://dx.doi.org/10.1016/j.jbiomech.2014.04.050] [PMID: 24882740]
Varga P, Schefzig P, Unger E, Mayr W, Zysset PK, Erhart J. Finite element based estimation of contact areas and pressures of the human scaphoid in various functional positions of the hand. J Biomech 2013; 46(5): 984-90.
[http://dx.doi.org/10.1016/j.jbiomech.2012.11.053] [PMID: 23395508]
Christen P, Ito K, Knippels I, Müller R, van Lenthe GH, van Rietbergen B. Subject-specific bone loading estimation in the human distal radius. J Biomech 2013; 46(4): 759-66.
[http://dx.doi.org/10.1016/j.jbiomech.2012.11.016] [PMID: 23261246]
Johnson JE, Lee P, McIff TE, Toby EB, Fischer KJ. Computationally efficient magnetic resonance imaging based surface contact modeling as a tool to evaluate joint injuries and outcomes of surgical interventions compared to finite element modeling. J Biomech Eng 2014; 136(4)
[http://dx.doi.org/10.1115/1.4026485] [PMID: 24441649]
Ural A. Prediction of Colles’ fracture load in human radius using cohesive finite element modeling. J Biomech 2009; 42(1): 22-8.
[http://dx.doi.org/10.1016/j.jbiomech.2008.10.011] [PMID: 19056085]
Matsuura Y, Kuniyoshi K, Suzuki T, et al. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material. J Orthop Sci 2014; 19(6): 1012-8.
[http://dx.doi.org/10.1007/s00776-014-0616-1] [PMID: 25100571]
Bajuri MN, Abdul Kadir MR, Murali MR, Kamarul T. Biomechanical analysis of the wrist arthroplasty in rheumatoid arthritis: a finite element analysis. Med Biol Eng Comput 2013; 51(1-2): 175-86.
[http://dx.doi.org/10.1007/s11517-012-0982-9] [PMID: 23124814]
Bicen AC, Gokdemir H, Seber S, Aydin R, Gunal I. Load transmission characteristics of limited carpal fusions: a two-dimensional finite element study. Eur J Orthop Surg Traumatol 2015; 25(2): 305-8.
[http://dx.doi.org/10.1007/s00590-014-1495-z] [PMID: 24974194]
Feipel V, Rooze M. Three-dimensional motion patterns of the carpal bones: an in vivo study using three-dimensional computed tomography and clinical applications. Surg Radiol Anat 1999; 21(2): 125-31.
[http://dx.doi.org/10.1007/s00276-999-0125-7] [PMID: 10399213]
Goto A, Moritomo H, Murase T, et al. In vivo three-dimensional wrist motion analysis using magnetic resonance imaging and volume-based registration. J Orthop Res 2005; 23(4): 750-6.
[http://dx.doi.org/10.1016/j.orthres.2004.10.001] [PMID: 16022986]
Moritomo H, Murase T, Goto A, Oka K, Sugamoto K, Yoshikawa H. In vivo three-dimensional kinematics of the midcarpal joint of the wrist. J Bone Joint Surg Am 2006; 88(3): 611-21.
[PMID: 16510829]
Moore DC, Crisco JJ, Trafton TG, Leventhal EL. A digital database of wrist bone anatomy and carpal kinematics. J Biomech 2007; 40(11): 2537-42.
[http://dx.doi.org/10.1016/j.jbiomech.2006.10.041] [PMID: 17276439]
Moojen TM, Snel JG, Ritt MJ, Venema HW, Kauer JM, Bos KE. Scaphoid kinematics in vivo. J Hand Surg Am 2002; 27(6): 1003-10.
[http://dx.doi.org/10.1053/jhsu.2002.36519] [PMID: 12457350]
Moojen TM, Snel JG, Ritt MJ, Venema HW, Kauer JM, Bos KE. In vivo analysis of carpal kinematics and comparative review of the literature. J Hand Surg Am 2003; 28(1): 81-7.
[http://dx.doi.org/10.1053/jhsu.2003.50009] [PMID: 12563642]
Xing SG, Chen YR, Xie RG, Tang JB. In Vivo Contact Characteristics of Distal Radioulnar Joint With Malunited Distal Radius During Wrist Motion. J Hand Surg Am 2015; 40(11): 2243-8.
[http://dx.doi.org/10.1016/j.jhsa.2015.07.027] [PMID: 26442798]
Harness NG, Ring D, Zurakowski D, Harris GJ, Jupiter JB. The influence of three-dimensional computed tomography reconstructions on the characterization and treatment of distal radial fractures. J Bone Joint Surg Am 2006; 88(6): 1315-23.
[http://dx.doi.org/10.2106/00004623-200606000-00020] [PMID: 16757766]
Souer JS, Wiggers J, Ring D. Quantitative 3-dimensional computed tomography measurement of volar shearing fractures of the distal radius. J Hand Surg Am 2011; 36(4): 599-603.
[http://dx.doi.org/10.1016/j.jhsa.2010.12.026] [PMID: 21411241]
Varga P, Baumbach S, Pahr D, Zysset PK. Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech 2009; 42(11): 1726-31.
[http://dx.doi.org/10.1016/j.jbiomech.2009.04.017] [PMID: 19467661]
Nakamura R, Imaeda T, Horii E, Miura T, Hayakawa N. Analysis of scaphoid fracture displacement by three-dimensional computed tomography. J Hand Surg Am 1991; 16(3): 485-92.
[http://dx.doi.org/10.1016/0363-5023(91)90019-8] [PMID: 1861032]
Oka K, Moritomo H, Murase T, Goto A, Sugamoto K, Yoshikawa H. Patterns of carpal deformity in scaphoid nonunion: a 3-dimensional and quantitative analysis. J Hand Surg Am 2005; 30(6): 1136-44.
[http://dx.doi.org/10.1016/j.jhsa.2005.08.004] [PMID: 16344168]
Schweizer A, Fürnstahl P, Nagy L. Three-dimensional computed tomographic analysis of 11 scaphoid waist nonunions. J Hand Surg Am 2012; 37(6): 1151-8.
[http://dx.doi.org/10.1016/j.jhsa.2012.02.020] [PMID: 22480499]
Schweizer A, Fürnstahl P, Harders M, Székely G, Nagy L. Complex radius shaft malunion: osteotomy with computer-assisted planning. Hand (N Y) 2010; 5(2): 171-8.
[http://dx.doi.org/10.1007/s11552-009-9233-4] [PMID: 19826878]
Schweizer A, Fürnstahl P, Nagy L. Three-dimensional correction of distal radius intra-articular malunions using patient-specific drill guides. J Hand Surg Am 2013; 38(12): 2339-47.
[http://dx.doi.org/10.1016/j.jhsa.2013.09.023] [PMID: 24189159]
Oka K, Murase T, Moritomo H, et al. Accuracy of corrective osteotomy using a custom-designed device based on a novel computer simulation system. J Orthop Sci 2011; 16(1): 85-92.
[http://dx.doi.org/10.1007/s00776-010-0020-4] [PMID: 21359511]
Miyake J, Murase T, Moritomo H, Sugamoto K, Yoshikawa H. Distal radius osteotomy with volar locking plates based on computer simulation. Clin Orthop Relat Res 2011; 469(6): 1766-73.
[http://dx.doi.org/10.1007/s11999-010-1748-z] [PMID: 21203873]
Honigmann P, Thieringer F, Steiger R, Haefeli M, Schumacher R, Henning J. A Simple 3-Dimensional Printed Aid for a Corrective Palmar Opening Wedge Osteotomy of the Distal Radius. J Hand Surg Am 2016; 41(3): 464-9.
[http://dx.doi.org/10.1016/j.jhsa.2015.12.022] [PMID: 26787406]
Leong NL, Buijze GA, Fu EC, Stockmans F, Jupiter JB. Distal Radius Malunion (DiRaM) collaborative group. Computer-assisted versus non-computer-assisted preoperative planning of corrective osteotomy for extra-articular distal radius malunions: a randomized controlled trial. BMC Musculoskelet Disord 2010; 11(11): 282.
[http://dx.doi.org/10.1186/1471-2474-11-282] [PMID: 21156074]
Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K. Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 2008; 90(11): 2375-89.
[http://dx.doi.org/10.2106/JBJS.G.01299] [PMID: 18978406]
Haefeli M, Schaefer DJ, Schumacher R, Müller-Gerbl M, Honigmann P. Titanium template for scaphoid reconstruction. J Hand Surg Eur Vol 2015; 40(5): 526-33.
[http://dx.doi.org/10.1177/1753193414549008] [PMID: 25167978]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 22 September, 2020
Page: [194 - 200]
Pages: 7
DOI: 10.2174/1573397115666190429144944
Price: $65

Article Metrics

PDF: 13
PRC: 1