Betulinic Acid-Azaprostanoid Hybrids: Synthesis and Pharmacological Evaluation as Anti-inflammatory Agents

Author(s): Tatyana S. Khlebnicova*, Yuri A. Piven, Fedor A. Lakhvich, Iryna V. Sorokina, Tatiana S. Frolova, Dmitry S. Baev, Tatyana G. Tolstikova

Journal Name: Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry
Formerly Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents

Volume 19 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Prevention and treatment of chronic inflammatory diseases require effective and low-toxic medicines. Molecular hybridization is an effective strategy to enhance the biological activity of new compounds. Triterpenoid scaffolds are in the focus of attention owing to their anti-inflammatory, antiviral, antiproliferative, and immunomodulatory activities. Heteroprostanoids have different pleiotropic effects in acute and chronic inflammatory processes.

Objective: The study aimed to develop structurally new and low toxic anti-inflammatory agents via hybridization of betulinic acid with azaprostanoic acids.

Methods: A series of betulinic acid-azaprostanoid hybrids was synthesized. The synthetic pathway included the transformation of betulin via Jones' oxidation into betulonic acid, reductive amination of the latter and coupling obtained by 3β-amino-3-deoxybetulinic acid with the 7- or 13-azaprostanoic acids and their homo analogues. The hybrids 1-9 were investigated in vivo on histamine-, formalin- and concanavalin A-induced mouse paw edema models and two models of pain - the acetic acid-induced abdominal writhing and the hotplate test. The hybrids were in vitro evaluated for cytotoxic activity on cancer (MCF7, U- 87 MG) and non-cancer humane cell lines.

Results: In the immunogenic inflammation model, the substances showed a pronounced anti-inflammatory effect, which was comparable to that of indomethacin. In the models of the exudative inflammation, none of the compounds displayed a statistically significant effect. The hybrids produced weak or moderate analgesic effects. All the agents revealed low cytotoxicity on human immortalized fibroblasts and cancer cell lines compared with 3β- amino-3-deoxybetulinic acid and doxorubicin.

Conclusion: The results indicate that the principal anti-inflammatory effect of hybrids is substantially provided with the triterpenoid scaffold and in some cases with the azaprostanoid scaffold, but the latter makes a significant contribution to reducing the toxicity of hybrids. Hybrid 1 is of interest as a potent low toxic agent against immune-mediated inflammation.

Keywords: Analgesic activity, anti-inflammatory activity, azaprostanoids, betulinic acid, cytotoxicity, hybrids.

[1]
Sun, L.D.; Wang, F.; Dai, F.; Wang, Y.H.; Lin, D.; Zhou, B. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent. Biochem. Pharmacol., 2015, 95(3), 156-169.
[http://dx.doi.org/10.1016/j.bcp.2015.03.014] [PMID: 25850000]
[2]
Dinarello, C.A. Anti-inflammatory agents: present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[3]
Azab, A.; Nassar, A.; Azab, A.N. Anti-inflammatory activity of natural products. Molecules, 2016, 21(10), 1321.
[http://dx.doi.org/10.3390/molecules21101321] [PMID: 27706084]
[4]
Newman, D.J.; Cragg, C.M. Natural product scaffolds of value in medicinal chemistry. Privileged scaffolds in medicinal chemistry. Design, synthesis, evaluation; Bräse, S., Ed.; Royal Society of Chemistry: Cambridge, UK, 2016, pp. 348-378.
[5]
Tolstikova, T.G.; Sorokina, I.V.; Tolstikov, G.A.; Tolstikov, A.G.; Flekhter, O.B. Biological activity and pharmacological prospects of lupane terpenoids: I. Natural lupane derivatives. Bioorg. Khim., 2006, 32(1), 42-55.
[PMID: 16523720]
[6]
Xu, G.B.; Xiao, Y.H.; Zhang, Q.Y.; Zhou, M.; Liao, S.G. Hepatoprotective natural triterpenoids. Eur. J. Med. Chem., 2018, 145, 691-716.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.011] [PMID: 29353722]
[7]
Jonnalagadda, S.C.; Suman, P.; Morgan, D.C.; Seay, J.N. Recent developments on the synthesis and applications of betulin and betulinic acid derivatives as therapeutic agents.In: Studies in Natural Products Chemistry; Atta-ur-, Rahman., Ed.; Elsevier: Amsterdam,,; , 2017, pp. 45-84.
[8]
Ríos, J.L. Effects of triterpenes on the immune system. J. Ethnopharmacol., 2010, 128(1), 1-14.
[http://dx.doi.org/10.1016/j.jep.2009.12.045] [PMID: 20079412]
[9]
Cichewicz, R.H.; Kouzi, S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev., 2004, 24(1), 90-114.
[http://dx.doi.org/10.1002/med.10053] [PMID: 14595673]
[10]
Lingaraju, M.C.; Pathak, N.N.; Begum, J.; Balaganur, V.; Ramachandra, H.D.; Bhat, R.A.; Ram, M.; Singh, V.; Kandasamy, K.; Kumar, D.; Kumar, D.; Tandan, S.K. Betulinic acid attenuates renal oxidative stress and inflammation in experimental model of murine polymicrobial sepsis. Eur. J. Pharm. Sci., 2015, 70, 12-21.
[http://dx.doi.org/10.1016/j.ejps.2015.01.001] [PMID: 25585354]
[11]
Kim, K.S.; Lee, D.S.; Kim, D.C.; Yoon, C.S.; Ko, W.; Oh, H.; Kim, Y.C. Anti-inflammatory effects and mechanisms of action of coussaric and betulinic acids isolated from Diospyros kaki in lipopolysaccharide-stimulated RAW 264.7 macrophages. Molecules, 2016, 21(9), 1206.
[http://dx.doi.org/10.3390/molecules21091206] [PMID: 27618005]
[12]
Costa, J.F.O.; Barbosa-Filho, J.M.; Maia, G.L.; Guimarães, E.T.; Meira, C.S.; Ribeiro-dos-Santos, R.; de Carvalho, L.C.P.; Soares, M.B.P. Potent anti-inflammatory activity of betulinic acid treatment in a model of lethal endotoxemia. Int. Immunopharmacol., 2014, 23(2), 469-474.
[http://dx.doi.org/10.1016/j.intimp.2014.09.021] [PMID: 25281393]
[13]
Yun, Y.; Han, S.; Park, E.; Yim, D.; Lee, S.; Lee, C.K.; Cho, K.; Kim, K. Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages. Arch. Pharm. Res., 2003, 26(12), 1087-1095.
[http://dx.doi.org/10.1007/BF02994763] [PMID: 14723345]
[14]
Patlolla, J.M.R.; Rao, C.V. Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr. Pharm. Biotechnol., 2012, 13(1), 147-155.
[http://dx.doi.org/10.2174/138920112798868719] [PMID: 21466427]
[15]
Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in health and disease. J. Lipid Res., 2009, 50(Suppl.), S423-S428.
[http://dx.doi.org/10.1194/jlr.R800094-JLR200] [PMID: 19095631]
[16]
Sykes, L.; MacIntyre, D.A.; Teoh, T.G.; Bennett, P.R. Anti-inflammatory prostaglandins for the prevention of preterm labour. Reproduction, 2014, 148(2), R29-R40.
[http://dx.doi.org/10.1530/REP-13-0587] [PMID: 24890751]
[17]
Gilroy, D.W.; Colville-Nash, P.R.; Willis, D.; Chivers, J.; Paul-Clark, M.J.; Willoughby, D.A. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med., 1999, 5(6), 698-701.
[http://dx.doi.org/10.1038/9550] [PMID: 10371510]
[18]
Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998, 391(6662), 79-82.
[http://dx.doi.org/10.1038/34178] [PMID: 9422508]
[19]
Jiang, C.; Ting, A.T.; Seed, B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998, 391(6662), 82-86.
[http://dx.doi.org/10.1038/34184] [PMID: 9422509]
[20]
Rossi, A.; Kapahi, P.; Natoli, G.; Takahashi, T.; Chen, Y.; Karin, M.; Santoro, M.G. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature, 2000, 403(6765), 103-108.
[http://dx.doi.org/10.1038/47520] [PMID: 10638762]
[21]
Lakhvich, F.A.; Pashkovskii, F.S.; Koroleva, E.V. Heteroprostanoids: synthesis and biological activity. Russ. Chem. Rev., 1992, 61, 243-266.
[http://dx.doi.org/10.1070/RC1992v061n02ABEH000943]
[22]
Lakhvich, F.A.; Khlebnikova, T.S. Synthesis of 7-aza- and 13-azaprostanoids on the base of 2-acylcycloalkane-1,3-diones. Vestsi Akad. Nav. BSSR. Ser. Khim. Nav, 1989, 4, 39-45.
[23]
Kuz′mitskii, B.B.; Golubeva, M.B.; Mizulo, N.A.; Romanova, V.N.; Khlebnikova, T.S.; Lakhvich, F.A. Anti-ulcerative and anti-inflammatory activity of some 7-aza-13-keto- and 13-aza-7-ketoprostanoids. Vestsi Akad. Nav. BSSR. Ser. Khim. Nav, 1989, 6, 82-86.
[24]
Kuz′mitskii, B.B.; Ignat′eva, T.N.; Khlebnikova, T.S.; Lakhvich, F.A. Antiischemic and antiarrhythmic activity of some 7-aza- and 13-azaprostanoids. Vestsi Akad. Nav. BSSR. Ser. Khim. Nav, 1989, 5, 65-68.
[25]
Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem., 2018, 151, 62-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.057] [PMID: 29605809]
[26]
Shaveta, M.; Mishra, S.; Singh, P. Hybrid molecules: the privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[27]
Khlebnicova, T.S.; Piven, Y.A.; Baranovsky, A.V.; Lakhvich, F.A.; Shishkina, S.V.; Zicāne, D.; Tetere, Z.; Rāviņa, I.; Kumpiņš, V.; Rijkure, I.; Mieriņa, I.; Peipiņš, U.; Turks, M. Synthesis of novel lupane triterpenoid-indazolone hybrids with oxime ester linkage. Steroids, 2017, 117, 77-89.
[http://dx.doi.org/10.1016/j.steroids.2016.08.002] [PMID: 27500691]
[28]
Khlebnikova, T.S. Piven′, Y.A.; Lakhvich, F.A. Synthesis of new betulonic acid conjugates with 2-perfluoroacylcycloalkane-1,3-diones using polymethylenediamine linkers. Chem. Nat. Compd., 2017, 53, 486-491.
[http://dx.doi.org/10.1007/s10600-017-2028-x]
[29]
Vasilevsky, S.F.; Govdi, A.I.; Shults, E.E.; Shakirov, M.M.; Sorokina, I.V.; Tolstikova, T.G.; Baev, D.S.; Tolstikov, G.A.; Alabugin, I.V. Efficient synthesis of the first betulonic acid-acetylene hybrids and their hepatoprotective and anti-inflammatory activity. Bioorg. Med. Chem., 2009, 17(14), 5164-5169.
[http://dx.doi.org/10.1016/j.bmc.2009.05.059] [PMID: 19524443]
[30]
Koster, R.; Anderson, M.; Deber, E.I. Acetic acid for analgetic screening. Fed. Proc., 1959, 18, 412-414.
[31]
Eddy, N.B.; Leimbach, D. Studies of anesthetics. J. Pharmacol. Exp. Ther., 1953, 107, 385-393.
[PMID: 13035677]
[32]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[33]
Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci., 2006, 29(1), 1-13.
[http://dx.doi.org/10.1016/j.ejps.2006.04.006] [PMID: 16716572]
[34]
Kim, D.S.H.L.; Chen, Z.; van Tuyen, N.; Pezzuto, J.M.; Qiu, S.; Lu, Z-Z. A concise semi-synthetic approach to betulinic acid from betulin. Synth. Commun., 1997, 27, 1607-1612.
[http://dx.doi.org/10.1080/00397919708006099]
[35]
Kim, D.S.H.L.; Pezzuto, J.M.; Pisha, E. Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorg. Med. Chem. Lett., 1998, 8(13), 1707-1712.
[http://dx.doi.org/10.1016/S0960-894X(98)00295-9] [PMID: 9873420]
[36]
Aman, R.; Schulidoi, R.; Lanz, I.; Donnerer, J. Hystamine-induced edema in the rat paw - effect of capcaicin denervation and a CGRP receptor antagonist. Eur. J. Pharm, 1995, 279, 227-231.
[http://dx.doi.org/10.1016/0014-2999(95)00169-L]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 3
Year: 2020
Published on: 03 September, 2020
Page: [254 - 267]
Pages: 14
DOI: 10.2174/1871523018666190426152049

Article Metrics

PDF: 31
HTML: 1