Anti-Tumor Mechanisms of Novel 3-(4-Substituted Benzyl)-5-Isopropil-5- Phenylhydantoin Derivatives in Human Colon Cancer Cell Line

Author(s): Ana Obradović, Miloš Matić, Branka Ognjanović, Nenad Vuković, Milena Vukić, Predrag Đurđević, Gordana Ušćumlić, Bojan Božić, Biljana B. Nedeljković*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Hydantoin and its newly synthesized derivatives have recently become a focus of interest due to their numerous biological activities and newly emerging beneficial effects in different pathological conditions, including cancer.

Objective: The aim of this study was to evaluate the possible anti-tumor mechanisms of a series of newly synthesized 3-(4-substituted benzyl)-5-isopropyl-5-phenylhydantoin derivatives in different aspects of cell physiology of human colon cancer cell line, HCT-116.

Methods: The increasing concentrations of derivatives (0.01µM up to 100µM) were applied to cells during 24h, 48h, and 72h after which the evaluation of proliferation, apoptosis, oxidative/anti-oxidative status, nitrite production, and migration/invasion potential of treated cells was performed.

Results: All tested compounds expressed the dose- and time-dependent anti-proliferative and pro-apoptotic activities against HCT-116 cells. The investigated derivatives induced a decrease in levels of oxidative stress parameters and an increase in levels of nitrite production by treated cells suggesting their significant antioxidative effects. The cell migration index and expression level of tumor invasion-promoting metalloproteinase- 9 (MMP-9) gene were significantly decreased after treatment with the tested hydantoin derivatives implicating their inhibitory role in colon cancer cell motility and invasion processes. The mRNA level of cyclooxygenase-2 (COX-2) gene as a pro-inflammatory gene related to colorectal carcinogenesis was reduced compared to values in the non-treated control cells indicating the significant anti-inflammatory/anti-tumor effects of these compounds.

Conclusion: The obtained results show the significant anti-tumor potential of tested derivatives, especially 3- benzyl-5-isopropyl-5-phenylhydantoin and 3-(4-chlorobenzyl)-5-isopropyl-5-phenylhydantoin, suggesting their potential usage in the development of more effective chemotherapies.

Keywords: Hydantoin derivatives, colon cancer cell line, apoptosis, antioxidants, nitric oxide, cell migration.

[1]
Vamecq, J.; Bac, P.; Herrenknecht, C.; Maurois, P.; Delcourt, P.; Stables, J.P. Synthesis and anticonvulsant and neurotoxic properties of substituted N-phenyl derivatives of the phthalimide pharmacophore. J. Med. Chem., 2000, 43, 1311-1319.
[2]
Herrera, J.A.; Ward, C.S.; Pitcher, M.R.; Percy, A.K.; Skinner, S.; Kaufmann, W.E.; Glaze, D.G.; Wehrens, X.H.; Neul, J.L. Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs. Dis. Model. Mech., 2015, 8, 363-371.
[3]
Thenmozhiyal, J.C.; Wong, P.T.; Chui, W.K. Anticonvulsant activity of phenylmethylenehydantoins: A structure-activity relationship study. J. Med. Chem., 2004, 47, 1527-1535.
[4]
Jintao, H.; Hongbo, D.; Zhihong, X.; Jianping, L.; Mingan, W. Facile synthesis of 5-arylidene thiohydantoin by sequential sulfonylation/desulfination reaction. Int. J. Mol. Sci., 2013, 14, 12484-12495.
[5]
Marinova, P.; Marinov, M.; Kazakova, M.; Feodorova, Y.; Slavchev, A.; Blazheva, D.; Georgiev, D.; Penchev, P.; Sarafian, V.; Stoyanov, N. Study on the synthesis, characterization and bioactivities of 3-methyl-9′-fluorenespiro-5-hydantoin. Acta Chim. Slov., 2016, 63, 26-32.
[6]
Siegel, R.; Desantis, C.; Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J. Clin., 2014, 64, 104-117.
[7]
Haraldsdottir, S.; Einarsdottir, H.M.; Smaradottir, A.; Gunnlaugsson, A.; Halfdanarson, T.R. Colorectal cancer-review. Laeknabladid, 2014, 100, 75-82.
[8]
Rajić, Z.; Zorc, B.; Raic-Malic, S.; Ester, K.; Kralj, M.; Pavelic, K.; Balzarini, J.; De Clercq, E.; Mintas, M. Hydantoin derivative of L- and D-amino acids: Synthesis and evaluation of their antiviral and antitumoral activity. Molecule, 2006, 11, 837-848.
[9]
Kavitha, C.V.; Nambiar, M.; Ananda Kumar, C.S.; Choudhary, B.; Muniyappa, K.; Rangappa, K.S.; Raghavan, S.C. Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem. Pharmacol., 2008, 77, 348-363.
[10]
Carmi, C.; Cavazzoni, A.; Zuliani, V.; Lodola, A.; Bordi, F.; Plazzi, P.V.; Mor, M. 5-Benzylidene-hydantoins as new EGFR inhibitors with antiproliferative activity. Bioorg. Med. Chem. Lett., 2006, 16, 4021-4025.
[11]
Cavazzoni, A.; Alfieri, R.R.; Carmi, C.; Zuliani, V.; Galetti, M.; Fumarola, C.; Frazzi, R.; Bonelli, M.; Bordi, F.; Lodola, A.; Mor, M.; Petronini, P.G. Dual mechanisms of action of the 5-benzylidene-hydantoin UPR1024 on lung cancer cell lines. Mol. Cancer Ther., 2008, 7, 361-370.
[12]
Kumar, C.S.A.; Prasad, S.B.; Vinaya, K.; Chandrappa, S.; Thimmegowda, N.R.; Ranganatham, S.R.; Swarup, S.; Rangappa, K.S. Synthesis and antiproliferative activity of substituted diazaspiro hydantoins: A structure-activity relationship study. Invest. New Drugs, 2009, 27, 131-139.
[13]
Cano, I.; Selivanov, V.; Gomez-Cabrero, D.; Tegnér, J.; Roca, J.; Wagner, P.D.; Cascante, M. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation. PLoS One, 2014, 9(11)e111068
[14]
Waris, G.; Ahsan, H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog., 2006, 5, 14.
[15]
Jie, L.; Wuliji, O.; Wei, L.; Zhi-Gang, J.; Ghanbari, H.A. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci., 2013, 14, 24438-24475.
[16]
Naziroglu, M. Role of melatonin on calcium signaling and mitochondrial oxidative stress in epilepsy: Focus on TRP channels. Turk. J. Biol., 2015, 39, 813-821.
[17]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44, 479-496.
[18]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8, 579-591.
[19]
Behrend, L.; Henderson, G.; Zwacka, R.M. Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans., 2003, 31(Pt 6), 1441-1444.
[20]
Trišović, N.; Božić, B.; Obradović, A.; Stefanović, O.; Marković, S.; Čomić, L.J.; Božić, B.; Ušćumlić, G. Structure-activity relationships of 3-substituted-5,5-diphenylhydantoins as potential antiproliferative and antimicrobial agents. J. Serb. Chem. Soc., 2011, 76, 1597-1606.
[21]
Obradović, A.; Žižić, J.; Trišović, N.; Božić, B.; Ušćumlić, G.; Božić, B.; Marković, S. Evaluation of anti-oxidative effects of twelve 3-substituted-5,5-diphenylhydantoins on human colon cancer cell line HCT-116. Turk. J. Biol., 2013, 37, 741-747.
[22]
Gupta, G.P. Massagué, J. Cancer metastasis: Building a framework. Cell, 2006, 127, 679-695.
[23]
Bucherer, H.T.; Lieb, V.A. Über die bildung substituierter hydantoine aus aldehyden und ketonen. synthese von hydantoinen. J. Prakt. Chem., 1934, 5, 141.
[24]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation andcytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[25]
Shounan, Y.; Feng, X.; O’Connell, P.J. Apoptosis detection by annexin V binding: A novel method for the quantitation of cell-mediated cytotoxicity. J. Immunol. Methods, 1998, 217, 61-70.
[26]
Auclair, C.; Voisin, E. Nitroblue tetrazolium reduction, in Greenwald, R. A. (Eds.), Handbook of Methods for Oxygen Radical Research, BokaRaton, CRC Press. , 1985; pp. 123-132.
[27]
Pick, E.; Keisari, Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods, 1980, 38, 161-170.
[28]
Baker, M.A.; Cerniglia, G.J.; Zaman, A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem., 1990, 190, 360-365.
[29]
Griess, P. Comments on the treatise of the H.H. Weselky and Benedikt Ueber some azo compounds. Rep. German Chem. Soc., 1879, 12, 426-428.
[30]
Chen, H.C. Boyden chamber assay. Methods Mol. Biol., 2005, 294, 15-22.
[31]
Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 1987, 162, 156-159.
[32]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Method, 2001, 25, 402-408.
[33]
Cheeseman, K.; Rouleau, E.; Vannier, A.; Thomas, A.; Briaux, A.; Lefol, C.; Walrafen, P.; Bensimon, A.; Lidereau, R.; Conseiller, E.; Ceppi, M. A diagnostic genetic test for the physical mapping of germline rearrangements in the susceptibility breast cancer genes BRCA1 and BRCA2. Hum. Mutat., 2012, 33, 998-1009.
[34]
Hassan, M.; Watari, H.; Abu Almaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014150845
[35]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39, 44-84.
[36]
López-Lázaro, M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett., 2007, 252, 1-8.
[37]
Sak, K. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract., 2012, 2012282570
[38]
Cook, T.; Wang, Z.; Alber, S.; Liu, K.; Watkins, S.C.; Vodovotz, Y.; Billiar, T.R.; Blumberg, D. Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res., 2004, 64, 8015-8021.
[39]
Zhang, R.; Ma, A.; Urbanski, S.J.; McCafferty, D.M. Induction of inducible nitric oxidesynthase: a protective mechanism in colitis-induced adenocarcinoma. Carcinogenesis, 2007, 28, 1122-113.
[40]
Gupta, S.C.; Hevia, D.; Patchva, S.; Park, B.; Koh, W.; Aggarwal, B.B. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal., 2012, 16, 1295-1322.
[41]
Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010, 2010215158
[42]
Mc Donnell, S.; Chaudhry, V.; Mansilla-Soto, J.; Zeng, Z.S.; Shu, W.P.; Guillem, J.G. Metastatic and non-metastatic colorectal cancer (CRC) cells induce host metalloproteinase production in vivo. Clin. Exp. Metastasis, 1999, 17, 341-349.
[43]
Basappa; Kumar, C.S.A.; Nanjunda Swamy, S.; Sugahara, K.; Rangappa, K.S. Anti-tumor and anti-angiogenic activity of novel hydantoin derivatives: Inhibition of VEGF secretion in liver metastatic osteosarcoma cells. Bioorg. Med. Chem., 2009, 17, 4928-4934.
[44]
Kumar, C.S.A.; Veeresh, B.; Ramesha, K.C.; Raj, C.S.A.; Mahadevaiah, K.M.; Prasad, S.B.B. Synthesis and evaluation of novel diazaspiro hydantoins as potential anticonvulsants. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17, 201-208.
[45]
Jansen, M.; Potschka, H.; Brandt, C.; Löscher, W.; Dannhardt, G. Hydantoin-substituted 4,6-dichloroindole-2-carboxylic acids as ligands with high affinity for the glycine binding site of the NMDA receptor. J. Med. Chem., 2003, 46, 64-73.
[46]
Liu, H.; Liu, X.; Zhang, C.; Zhu, H.; Xu, Q.; Bu, Y.; Lei, Y. Redox imbalance in the development of colorectal cancer. J. Cancer, 2017, 8, 1586-1597.
[47]
Wu, W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev., 2006, 25, 695-705.
[48]
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013972913
[49]
Shizhong, Z.; Fu, Y.; Anping, C. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit HSC activation. Free Radic. Biol. Med., 2007, 43, 444-453.
[50]
Majid, A.S.; Yin, Z.Q.; Ji, D. Sulphur antioxidants inhibit oxidative stress induced retinal ganglion cell death by scavenging reactive oxygen species but influence Nuclear factor (erythroid-derived 2)-like 2 signalling pathway differently. Biol. Pharm. Bull., 2013, 36, 1095-1110.
[51]
Liu, Q.; Chan, S.T.; Mahendran, R. Nitric oxide induces cyclooxygenase expression and inhibits cell growth in colon cancer cell lines. Carcinogenesis, 2003, 24, 637-642.
[52]
Rigas, B.; Williams, J.L. NO-donating NSAIDs and cancer: An overview with a note on whether NO is required for their action. Nitric Oxide, 2008, 19, 199-204.
[53]
Gomez-Monterrey, I.; Santelli, G.; Campiglia, P.; Califano, D.; Falasconi, F.; Pisano, C.; Vesci, L.; Lama, T.; Grieco, P.; Novellino, E. Synthesis and cytotoxic evaluation of novel spirohydantoin derivatives of the dihydrothieno[2,3-b]naphtho-4,9-dione system. J. Med. Chem., 2005, 48, 1152-1157.
[54]
Shin, S.W.; Seo, C.Y.; Han, H.; Han, J.Y.; Jeong, J.S.; Kwak, J.Y.; Park, J.I. 15d-PGJ2 induces apoptosis by reactive oxygen species-mediated inactivation of Akt in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res., 2009, 15, 5414-5425.
[55]
Granados-Principal, S.; Liu, Y.; Guevara, M.L.; Blanco, E.; Choi, D.S.; Qian, W.; Patel, T.; Rodriguez, A.A.; Cusimano, J.; Weiss, H.L.; Zhao, H.; Landis, M.D.; Dave, B.; Gross, S.S.; Chang, J.C. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res., 2015, 17, 25.
[56]
Kim, P.K.; Zamora, R.; Petrosko, P.; Billiar, T.R. The regulatory role of nitric oxide in apoptosis. Int. Immunopharmacol., 2001, 1, 1421-1441.
[57]
Bove, P.F.; Hristova, M.; Wesley, U.V.; Olson, N.; Lounsbury, K.M.; van der Vliet, A. Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J. Biol. Chem., 2008, 283(26), 17919-17928.
[58]
Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15, 106.
[59]
Pérez-Sala, D.; Lamas, S. Regulation of cyclooxygenase-2 expression by nitric oxide in cells. Antioxid. Redox Signal., 2001, 3(2), 231-248.
[60]
Weinberg, J.B. Nitric oxide synthase 2 and cyclooxygenase 2 interactions in inflammation. Immunol. Res., 2000, 22(2-3), 319-341.
[61]
Kessenbrock, K.; Wang, C.Y.; Werb, Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol., 2015, 44-46, 184-190.
[62]
Said, A.H.; Raufman, J.; Xie, G. The role of matrix metalloproteinases in colorectal cancer. Cancers , 2014, 6, 366-375.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 12
Year: 2019
Page: [1491 - 1502]
Pages: 12
DOI: 10.2174/1871520619666190425180610
Price: $65

Article Metrics

PDF: 25
HTML: 3