Protective Ability of Perovskia abrotanoides Karel Root Extract on the Aggregation of Protein In Vitro

Author(s): Seyed Mahmoud Puormand, Arezou Ghahghaei*, Jafar Valizadeh, Shahrzad Nazari

Journal Name: The Natural Products Journal

Volume 10 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Protein misfolding can lead to aggregation and these protein aggregates are a fundamental cause of many neurodegenerative disorders such as Alzheimer's, Parkinson's, Huntington's, Prion disease and amyotrophic lateral sclerosis. In recent years, a wide variety of natural compounds have been investigated as protein aggregation inhibitors. Many investigations have reported the therapeutic effects of botanicals constituents and their derivatives in neurodegenerative diseases.

Objective: In this study, we examined the effect of Perovskia abrotanoides Karel (P. abrotanoides) root extract on the 1,4-dithiothreitol (DTT)-induced aggregation of proteins.

Methods: The anti-aggregation ability of P. abrotanoides root extract was studied using visible absorption spectroscopy (light scattering), fluorescence spectroscopy, and circular dichroism (CD) spectroscopy.

Result: The protective effect of P. abrotanoides root extract was varied in the three different-sized proteins (insulin, α-lactalbumin, and ovotransferrin).

Conclusion: The results showed that P. abrotanoides root extract was able to inhibit protein aggregations in a concentration-dependent manner due to the interaction of P. abrotanoides root extract with hydrophobic area of proteins.

Keywords: P. abrotanoides Karel, misfolding, aggregation, neurodegenerative disorders, light scattering, circular dichroism spectroscopy.

Grantcharova, V.; Alm, E.J.; Baker, D.; Horwich, A.L. Mechanisms of protein folding. Curr. Opin. Struct. Biol., 2001, 11(1), 70-82.
Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol., 2004, 15(1), 3-16.
Bednarska, N.G.; Schymkowitz, J.; Rousseau, F.; Van Eldere, J. Protein aggregation in bacteria: The thin boundary between functionality and toxicity. Microbiology, 2013, 159(9), 1795-1806.
Idicula-Thomas, S.; Balaji, P.V. Protein aggregation: A perspective from amyloid and inclusion-body formation. Curr. Sci., 2007, 92(6), 1-6.
Tyedmers, J.; Mogk, A.; Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol., 2010, 11(11), 777-788.
Fink, A.L. Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Fold. Des., 1998, 3(1), R9-R23.
Stefani, M.; Dobson, C.M. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med., 2003, 81(11), 678-699.
Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci., 2003, 4(1), 49-60.
Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10(7s), S10.
Surguchov, A. Intracellular dynamics of synucleins: “here, there and everywhere”. In: International review of cell and molecular biology, Academic Press: Cambridge. 2015, 320, 103-169.
Safaei-Ghomi, J.; Batooli, H. Determination of bioactive molecules from flowers, leaves, stems and roots of Perovskia abrotanoides Karel growing in central Iran by nano scale injection. Dig. J. Nanomater. Biosci, 2010, 5, 551-556.
Sardashti, A.R.; Valizadeh, J.; Adhami, Y. Variation in the essential oil composition of Perovskia abrotonoides of different growth stage in Baluchestan. Middle East J. Sci. Res., 2013, 13(6), 781-784.
Jaafari, M.R.; Hooshmand, S.; Samiei, A.; Hossainzadeh, H. Evaluation of-leishmanicidal effect of Perovskia abrotanoides Karel. root extract by in vitro leishmanicidal assay using promastigotes of Leishmania major. Pharmacol. Online, 2007, 1, 299-303.
Beikmohammadi, M. The evaluation of medicinal properties of Perovskia abrotanoides Karel. Middle East J. Sci. Res., 2012, 11, 189-193.
Geryani, M.A.; Mahdian, A.; Mousavi, S.H.; Hosseini, A. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines. Avicenna J. Phytomed., 2016, 6(4), 410-417.
Oreizi, E.; Rahiminejad, M.R.; Asghari, G. Influence of environment on glandular trichomes and composition of essential oil of Perovskia abrotanoides Karel. Jundishapur J. Nat. Pharm. Prod., 2014, 9(4)e16432 [eCollection.].
Ashraf, S.N.; Zubair, M.; Rizwan, K.; Tareen, R.B.; Rasool, N.; Zio-UL-Haq, M.; Ercisli, S. Compositional studies and biological activities of Perovskia abrotanoides Kar. oils. Biol. Res., 2014, 47(1), 12.
Zaker, A.; Sykora, C.; Gossnitzer, F.; Abrishamchi, P.; Asili, J.; Mousaci, S.H.; Wawrosch, C.H. Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Ind. Crops Prod., 2015, 67, 97-102.
Sairafianpour, M.; Christensen, J.; Staerk, D.; Budnik, B.A.; Kharazmi, A.; Bagherzadeh, K.; Jaroszewski, W. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1, 2-quinones from Perovskia abrotanoides: New source of tanshinones. J. Nat. Prod., 2001, 64(11), 1398-1403.
Cao, E-H.; Liu, X-Q.; Wang, J.J.; Xu, N-F. Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells. Free Radic. Biol. Med., 1996, 20(6), 801-806.
Stefani, M.; Rigacci, S. Protein folding and aggregation into amyloid: The interference by natural phenolic compounds. Int. J. Mol. Sci., 2013, 14(6), 12411-12457.
Ghahghaei, A.; Bathaie, S.Z.; Bahraminejad, E. Mechanisms of the effects of crocin on aggregation and deposition of Aβ1–40 fibrils in Alzheimer’s disease. Int. J. Pept. Res. Ther., 2012, 18(4), 347-351.
Ferreira, N.; Santos, A.O.S.; Domingues, M.R.M.; Saraiva, M.J.; Almeida, M.R. Dietary curcumin counteracts extracellular transthyretin deposition: Insights on the mechanism of amyloid inhibition. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(1), 39-45.
Ferreira, N.; Saraiva, M.J.; Almeida, M.R. Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: “In vivo” evidence from FAP mice models. PLoS One, 2012, 7(1)e29933
Féart, C.; Samieri, C.; Barberger-Gateau, P. Mediterranean diet and cognitive function in older adults. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(1), 14.
Yang, F.; Lim, G.; Begum, A.; Ubeda, O.; Simmons, M.; Ambegaokar, S.; Chen, P.; Kayed, R.; Glabe, C.; Frautschy, S.; Cole, G. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
Ferreira, N.; Saraiva, M.J.; Almeida, M.R. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett., 2011, 585(15), 2424-2430.
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeannition, D.; Ehrhat, J.; Townseng, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814.
Meng, F.; Abedini, A.; Plesner, A.; Verchere, C.; Raleigh, D. The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry, 2010, 49(37), 8127-8133.
Ghosh, S.; Pandey, N.K.; Dasgupta, S. Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme. Int. J. Biol. Macromol., 2013, 54, 90-98.
Bieschke, J.; Russ, J.; Friedrich, R.; Ehrnhoefer, D.; Wobst, H.; Neugebauer, K.; Wanker, E. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci., 2010, 107(17), 7710-7715.
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H-L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
Ghahghaei, A. Valizadeh. J.; Nazari, S.; Ravandeh, M. Chaperone potential of Pulicaria undulata extract in preventing aggregation of stressed proteins. AAPS PharmSciTech, 2014, 15(3), 658-664.
Ghisaidoobe, A.B.; Chung, S.J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci., 2014, 15(12), 22518-22538.
Singer, S. J. Physical biochemistry: Applications to biochemistry and molecular biology. In: A series of books in biology; David Freifelder, Ed; Macmillan: New York. , 1982.
Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res., 2008, 25(7), 1487-1499.
Correcirc, D.H.; Ramos, C.H. The use of circular dichroism spectroscopy to study protein folding, form and function. Afr. J. Biochem. Res., 2009, 3(5), 164-173.
Farahbakhsh, Z.T.; Huang, Q.; Ding, L.L.; Altenbach, C.; Steinhoff, H-J.; Horwitz, J.; Hubbell, W.L. Interaction of. alpha.-crystallin with Spin-Labeled Peptides. Biochemistry, 1995, 34(2), 509-516.
Carver, J.A.; Lindner, R.A.; Lyon, C.; Canet, D.; Hernandez, H.; Dobson, C.M.; Redfield, C. The interaction of the molecular chaperone α-crystallin with unfolding α-lactalbumin: A structural and kinetic spectroscopic study. J. Mol. Biol., 2002, 318(3), 815-827.
Lindner, R.A.; Kapur, A.; Mariani, M.; Titmuss, S.J.; Carver, J.A. Structural alterations of α‐crystallin during its chaperone action. Eur. J. Biochem., 1998, 258(1), 170-183.
Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2000, 287(2), 252-260.
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent. Biochem. Soc. Trans., 2007, 35(5), 1156-1160.
Roth, Z.; Aroyo, A.; Yavin, S.; Arav, A. The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice. Theriogenology, 2008, 70(6), 887-897.
Gordon, M.H.; Roedig-Penman, A. Antioxidant activity of quercetin and myricetin in liposomes. Chem. Phys. Lipids, 1998, 97(1), 79-85.
Vissers, M.N.; Zock, P.L.; Katan, M.B. Bioavailability and antioxidant effects of olive oil phenols in humans: A review. Eur. J. Clin. Nutr., 2004, 58(6), 955.
Hamaguchi, T. K.; One, A.; Murase, A.; Yamada, M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J. Pathol., 2009, 175(6), 2557-2565.
Ono, K.; Yoshiike, Y.; Takashima, A.; Haseqawa, K.; Naiki, H.; Yamada, M. Potent anti‐amyloidogenic and fibril‐destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87(1), 172-181.
Daval, M.; Bedrood, S.; Gurlo, T.; Huang, C.J.; Costes, S. The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid, 2010, 17(3-4), 118-128.
Sgarbossa, A. Natural biomolecules and protein aggregation: Emerging strategies against amyloidogenesis. Int. J. Mol. Sci., 2012, 13(12), 17121-17137.
Mecocci, P.; Polidori, M.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 631-638.
Palhano, F.L.; Lee, J.; Grimster, N.P.; Kelly, J.W. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J. Am. Chem. Soc., 2013, 135(20), 7503-7510.
Weng, X.C.; Gordon, M.H. Antioxidant activity of quinones extracted from tanshen (Salvia miltiorrhiza Bunge). J. Agric. Food Chem., 1992, 40(8), 1331-1336.
Dong, Y.; Morris-Natschke, S.L.; Lee, K-H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat. Prod. Rep., 2011, 28(3), 529-542.
Gao, S.; Liu, Z.; Li, H.; Liu, P.; Xu, S. Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis, 2012, 220(1), 3-10.
Yuan, S.; Wang, X.; Wei, Y. Anticancer effect of tanshinone and its mechanisms. Ai Zheng, 2003, 22(12), 1363-1366.
Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci., 1999, 24(9), 329-332.
Dobson, C.M. The structural basis of protein folding and its links with human disease. Philosoph. Transact. Roy. Soc. Lond. B: Biolog. Sci., 2001, 356(1406), 133-145.
Johansson, J. Molecular determinants for amyloid fibril formation: Lessons from lung surfactant protein. C. Swiss Med. Wkly., 2003, 133, 275-282.
Carrell, R.; Gooptu, B. Conformational changes and disease - serpins, prions and alzheimer’s. Curr. Opin. Struct. Biol., 1998, 8, 799-809.
De la Paz, M.; Serrano, L. Sequence deteminants of amyloid fibril formation. Proc. Natl. Acad. Sci. USA, 2004, 101, 87-92.
DuBay, K.F.; Pawar, A.P.; Chiti, F.; Zurdu, J.; Dobson, C.M.; Vendruscolo, M. Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol., 2004, 341, 1317-1326.
Pawar, A.P.; Dubay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative disease. J. Mol. Biol., 2005, 350, 379-392.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 25 April, 2019
Page: [113 - 121]
Pages: 9
DOI: 10.2174/2210315509666190425125312
Price: $25

Article Metrics

PDF: 13