Antioxidant Capacity, Phytochemical Analysis and Identification of Active Compounds in Anchomanes difformis

Author(s): Toyin Dorcas Alabi, Nicole Lisa Brooks, Oluwafemi Omoniyi Oguntibeju*

Journal Name: The Natural Products Journal

Volume 10 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Anchomanes difformis (ENGL: Blume) is a specie of flowering plants in the family Araceae. Anchomanes difformis is commonly reported for ameliorating hyperglycemia, inflammation, ulcer, malaria, and inhibiting microbial growth.

Objective: This study evaluated total yields of phytochemicals present, measured antioxidant capacities and identified bioactive compounds in the leaves and rhizome extracts of A. difformis using solvents of different polarity (ethyl acetate, ethanol and water).

Methods: Total polyphenolic, flavonoid content and alkaloids were measured, ORAC, TEAC and FRAP were performed as antioxidant capacity indices, and identification of bioactive compounds was done using UPLC-MS and HPLC.

Results: All extracts contained polyphenols, flavonols, flavanols, and alkaloids in varying concentrations. All extracts exhibited antioxidant properties. However, aqueous leaves extract had the highest antioxidant properties and polyphenols with significance (p<0.05). Thirty-four compounds were identified altogether in the leaves and rhizome.

Conclusion: A. difformis leaves and rhizome are potential sources of natural antioxidants and can serve as potential therapeutic agents against diseases linked with oxidative stress. Presence of health-promoting compounds indicates possible ameliorative potentials of A. difformis.

Keywords: Anchomanes difformis, antioxidant, bioactive compounds, medicinal plant, phytochemicals, polyphenolic, flavonoid.

[1]
Prescott, C.; Bottle, S.E. Biological relevance of free radicals and nitroxides. Cell Biochem. Biophys., 2017, 75(2), 227-240.
[http://dx.doi.org/10.1007/s12013-016-0759-0] [PMID: 27709467]
[2]
Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India, 2004, 52(794804), 794-804.
[PMID: 15909857]
[3]
Ullah, M.F.; Khan, M.W. Food as medicine: Potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac. J. Cancer Prev., 2008, 9(2), 187-195.
[PMID: 18712957]
[4]
Vertuani, S.; Angusti, A.; Manfredini, S. The antioxidants and pro-antioxidants network: An overview. Curr. Pharm. Des., 2004, 10(14), 1677-1694.
[http://dx.doi.org/10.2174/1381612043384655] [PMID: 15134565]
[5]
Rubalya, V.S.; Neelamegam, P. Antioxidant potential in vegetable oil. Res. J. Chem. Environ., 2012, 16(2), 87-94.
[6]
Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem., 2013, 1(6), 168-182.
[7]
Koolen, H.H.; Pral, E.M.; Alfieri, S.C.; Marinho, J.V.; Serain, A.F.; Hernández-Tasco, A.J.; Andreazza, N.L.; Salvador, M.J. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis. Phytochemistry, 2017, 134, 106-113.
[http://dx.doi.org/10.1016/j.phytochem.2016.11.008] [PMID: 27889243]
[8]
Justino, A.B.; Miranda, N.C.; Franco, R.R.; Martins, M.M.; Silva, N.M.D.; Espindola, F.S. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed. Pharmacother., 2018, 100, 83-92.
[http://dx.doi.org/10.1016/j.biopha.2018.01.172] [PMID: 29425747]
[9]
Pandey, K.B.; Rizvi, S.I. Role of red grape polyphenols as antidiabetic agents. Integr. Med. Res., 2014, 3(3), 119-125.
[http://dx.doi.org/10.1016/j.imr.2014.06.001] [PMID: 28664087]
[10]
Manohar, C.M.; Xue, J.; Murayyan, A.; Neethirajan, S.; Shi, J. Antioxidant activity of polyphenols from Ontario grown onion varieties using pressurized low polarity water technology. J. Funct. Foods, 2017, 31, 52-62.
[http://dx.doi.org/10.1016/j.jff.2017.01.037]
[11]
Du, Y.; Guo, H.; Lou, H. Grape seed polyphenols protect cardiac cells from apoptosis via induction of endogenous antioxidant enzymes. J. Agric. Food Chem., 2007, 55(5), 1695-1701.
[http://dx.doi.org/10.1021/jf063071b] [PMID: 17295515]
[12]
Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr., 2003, 133(10), 3248S-3254S.
[http://dx.doi.org/10.1093/jn/133.10.3248S] [PMID: 14519822]
[13]
Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr., 2014, 111(1), 1-11.
[http://dx.doi.org/10.1017/S000711451300278X] [PMID: 23953879]
[14]
Silva, B.; Oliveira, P.J.; Dias, A.; Malva, J.O. Quercetin, kaempferol and biapigenin from Hypericum perforatum are neuroprotective against excitotoxic insults. Neurotox. Res., 2008, 13(3-4), 265-279.
[http://dx.doi.org/10.1007/BF03033510] [PMID: 18522906]
[15]
Mithöfer, A.; Maffei, M.E. General mechanisms of plant defense and plant toxins; Plant Toxins, 2017, pp. 3-24.
[http://dx.doi.org/10.1007/978-94-007-6464-4_21]
[16]
Sahebi, M.; Hanafi, M.M.; van Wijnen, A.J.; Akmar, A.S.N.; Azizi, P.; Idris, A.S.; Taheri, S.; Foroughi, M. Profiling secondary metabolites of plant defence mechanisms and oil palm in response to Ganoderma boninense attack. Int. Biodeterior. Biodegradation, 2017, 122, 151-164.
[http://dx.doi.org/10.1016/j.ibiod.2017.04.016]
[17]
Kumar, A. Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of erberine: An update. Eur. J. Pharmacol., 2015, 761, 288-297.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.068] [PMID: 26092760]
[18]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[19]
Malviya, N.; Jain, S.; Malviya, S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm., 2010, 67(2), 113-118.
[PMID: 20369787]
[20]
Oghale, O.U.; Idu, M.D. Phytochemistry, anti-asthmatic and antioxidant activities of Anchomanes difformis (Blume) Engl. leaf extract. Asian Pac. J. Trop. Biomed., 2016, 6(3), 225-231.
[http://dx.doi.org/10.1016/j.apjtb.2015.12.007]
[21]
Aderonke, S.O.; Ezinwanne, A.J. Evaluation of the anti-diabetic activity of ethanol extract of Anchomanes difformis (Araceae) leaves in albino rats. Int. Res. J. Pharm., 2015, 6(2), 90-93.
[http://dx.doi.org/10.7897/2230-8407.06221]
[22]
Adebayo, A.H.; John-Africa, L.B.; Agbafor, A.G.; Omotosho, O.E.; Mosaku, T.O. Anti-nociceptive and anti-inflammatory activities of extract of Anchomanes difformis in rats. Pak. J. Pharm. Sci., 2014, 27(2), 265-270.
[PMID: 24577913]
[23]
Okpo, S.O.; Ching, F.P.; Ayinde, B.A.; Udi, O.O.; Alonge, P.O.; Eze, G.O. Gastroprotective effects of the ethyl acetate fraction of Anchomanes difformis (Engl). Int. J. Health Res., 2011, 4(4), 155-161.
[24]
Ahmed, H.A. Anchomanes difformis: A multipurpose phytomedicine. IOSR J. Pharm. Biol. Sci., 2018, 13(2), 62-65.
[25]
Aliyu, A.B.; Musa, A.M.; Oshanimi, J.A.; Ibrahim, H.A.; Oyewale, A.O. Phytochemical analyses and mineral elements composition of some medicinal plants of Northern Nigeria. Niger. J. Pharm. Sci., 2008, 7(1), 119-125.
[26]
Udje, T.D.; Brooks, N.; Oguntibeju, O.O. Medicinal activities of Anchomanes difformis and its potential in the treatment of diabetes mellitus and other disease conditions: A review. In: Bioactive Compounds of Medicinal Plants; Goyal, M.R.; Ayeleso, A.O., Eds.; Apple Academic Press: New York, NY, 2018; pp. 259-276.
[27]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[28]
Nkoh, N.J.; Ngemenya, M.N.; Samje, M.; Yong, J.N. Anti-onchocercal and antibacterial activities of crude extracts and secondary metabolites from the Rhizome of Anchomanes difformis (Araceae). J. Cameroon Academy of Sci., 2015, 12(1), 19-30.
[29]
Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 2008, 16(9), 2081-2087.
[http://dx.doi.org/10.1038/oby.2008.315] [PMID: 18551111]
[30]
Granado-Serrano, A.B.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Quercetin modulates NF-κB and AP-1/JNK pathways to induce cell death in human hepatoma cells. Nutr. Cancer, 2010, 62(3), 390-401.
[http://dx.doi.org/10.1080/01635580903441196] [PMID: 20358477]
[31]
Loke, W.M.; Proudfoot, J.M.; Hodgson, J.M.; McKinley, A.J.; Hime, N.; Magat, M.; Stocker, R.; Croft, K.D. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 749-757.
[http://dx.doi.org/10.1161/ATVBAHA.109.199687] [PMID: 20093625]
[32]
Gupta, C.; Prakash, D.; Gupta, S. Relationships between bioactive food components and their health benefits. In: Introduction to functional food science textbook; Martirosyan, D.M., Ed.; CreateSpace Independent Publishing Platform: Scotts Valley, USA, 2013; pp. 66-85.
[33]
Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1194-1200.
[http://dx.doi.org/10.1080/14756360902779326] [PMID: 19772492]
[34]
Socodato, R.; Portugal, C.C.; Canedo, T.; Domith, I.; Oliveira, N.A.; Paes-de-Carvalho, R.; Relvas, J.B.; Cossenza, M. c-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity. Free Radic. Biol. Med., 2015, 79, 45-55.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.019] [PMID: 25486178]
[35]
Hu, B.; Cui, F.; Yin, F.; Zeng, X.; Sun, Y.; Li, Y. Caffeoylquinic acids competitively inhibit pancreatic lipase through binding to the catalytic triad. Int. J. Biol. Macromol., 2015, 80, 529-535.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.031] [PMID: 26193679]
[36]
dos Santos, M.D.; Gobbo-Neto, L.; Albarella, L.; de Souza, G.E.P.; Lopes, N.P. Analgesic activity of di-caffeoylquinic acids from roots of Lychnophora ericoides (Arnica da serra). J. Ethnopharmacol., 2005, 96(3), 545-549.
[http://dx.doi.org/10.1016/j.jep.2004.09.043] [PMID: 15619576]
[37]
Ferreira, A.A.; Amaral, F.A.; Duarte, I.D.G.; Oliveira, P.M.; Alves, R.B.; Silveira, D.; Azevedo, A.O.; Raslan, D.S.; Castro, M.S.A. Antinociceptive effect from Ipomoea cairica extract. J. Ethnopharmacol., 2006, 105(1-2), 148-153.
[http://dx.doi.org/10.1016/j.jep.2005.10.012] [PMID: 16307856]
[38]
Guan, Y.; Dong, J.; Chen, S.; Liu, M.; Wang, D.; Zhang, X.; Wang, H.; Lin, Z. Spectroscopic studies of the interaction mechanisms between mono-caffeoylquinic acids and transferrin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 181, 82-90.
[http://dx.doi.org/10.1016/j.saa.2017.03.025] [PMID: 28342427]
[39]
Chen, J.L.; Duan, W.J.; Luo, S.; Li, S.; Ma, X.H.; Hou, B.N.; Cheng, S.Y.; Fang, S.H.; Wang, Q.; Huang, S.Q.; Chen, Y.B. Ferulic acid attenuates brain microvascular endothelial cells damage caused by oxygen-glucose deprivation via punctate-mitochondria-dependent mitophagy. Brain Res., 2017, 1666, 17-26.
[http://dx.doi.org/10.1016/j.brainres.2017.04.006] [PMID: 28438530]
[40]
Liao, Z.; He, H.; Zeng, G.; Liu, D.; Tang, L.; Yin, D.; Chen, D.; He, M. Delayed protection of Ferulic acid in isolated hearts and cardiomyocytes: Upregulation of heat-shock protein 70 via NO-ERK1/2 pathway. J. Funct. Foods, 2017, 34, 18-27.
[http://dx.doi.org/10.1016/j.jff.2017.04.012]
[41]
Liu, Y.M.; Shen, J.D.; Xu, L.P.; Li, H.B.; Li, Y.C.; Yi, L.T. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int. Immunopharmacol., 2017, 45, 128-134.
[http://dx.doi.org/10.1016/j.intimp.2017.02.007] [PMID: 28213267]
[42]
Hassanzadeh, P.; Arbabi, E.; Atyabi, F.; Dinarvand, R. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci., 2017, 179, 9-14.
[http://dx.doi.org/10.1016/j.lfs.2016.08.011] [PMID: 27534908]
[43]
Chowdhury, S.; Ghosh, S.; Rashid, K.; Sil, P.C. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem. Toxicol., 2016, 97, 187-198.
[http://dx.doi.org/10.1016/j.fct.2016.09.011] [PMID: 27621051]
[44]
Lampiasi, N.; Montana, G. The molecular events behind ferulic acid mediated modulation of IL-6 expression in LPS-activated Raw 264.7 cells. Immunobiology, 2016, 221(3), 486-493.
[http://dx.doi.org/10.1016/j.imbio.2015.11.001] [PMID: 26612455]
[45]
Ghosh, S.; Basak, P.; Dutta, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol., 2017, 103, 41-55.
[http://dx.doi.org/10.1016/j.fct.2017.02.028] [PMID: 28237775]
[46]
Yang, C.S.; Lambert, J.D.; Sang, S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch. Toxicol., 2009, 83(1), 11-21.
[http://dx.doi.org/10.1007/s00204-008-0372-0] [PMID: 19002670]
[47]
Rahmani, A.H.; Al Shabrmi, F.M.; Allemailem, K.S.; Aly, S.M.; Khan, M.A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. BioMed Res. Int., 2015, 2015925640
[http://dx.doi.org/10.1155/2015/925640] [PMID: 25977926]
[48]
De Amicis, F.; Santoro, M.; Guido, C.; Russo, A.; Aquila, S. Epigallocatechin gallate affects survival and metabolism of human sperm. Mol. Nutr. Food Res., 2012, 56(11), 1655-1664.
[http://dx.doi.org/10.1002/mnfr.201200190] [PMID: 22976781]
[49]
Kim, JA Mechanisms underlying beneficial health effects of tea catechins to improve insulin resistance and endothelial dysfunction. Endocr. Metab. Immune Disord. Drug Targets, (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders)., 2008, 8(2), 82-88.
[http://dx.doi.org/10.2174/187153008784534349]
[50]
Oyama, J.I.; Shiraki, A.; Nishikido, T.; Maeda, T.; Komoda, H.; Shimizu, T.; Makino, N.; Node, K. EGCG, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle-specific deletion of MnSOD in mice. J. Cardiol., 2017, 69(2), 417-427.
[http://dx.doi.org/10.1016/j.jjcc.2016.05.019] [PMID: 27374189]
[51]
Takishima, I.; Nakamura, T.; Hirano, M.; Kitta, Y.; Kobayashi, T.; Fujioka, D.; Saito, Y.; Watanabe, K.; Watanabe, Y.; Mishina, H.; Obata, J.E.; Kawabata, K.; Tamaru, S.; Kugiyama, K. Predictive value of serial assessment of endothelial function in chronic heart failure. Int. J. Cardiol., 2012, 158(3), 417-422.
[http://dx.doi.org/10.1016/j.ijcard.2011.01.059] [PMID: 21371765]
[52]
Bataglion, G.A.; da Silva, F.M.A.; Eberlin, M.N.; Koolen, H.H.F. Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem., 2015, 180, 280-287.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.059] [PMID: 25766829]
[53]
Locatelli, D.A.; Nazareno, M.A.; Fusari, C.M.; Camargo, A.B. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem., 2017, 220, 219-224.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.001] [PMID: 27855892]
[54]
Block, E. Chemistry in a salad bowl: Allium chemistry and biochemistry. In: Garlic and other alliums: The lore and the science; Block, E., Ed.; Royal Society of Chemistry: London, 2010; pp. 100-222.
[55]
Waterhouse, A. Folin-Ciocalteau method for total phenol in wine; Department of Viticulture & Enology, University of California: Davis, USA, 2005.
[56]
Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, phenolics, and color of Cabernet franc, Merlot, and Pinot noir wines from British Columbia. J. Agric. Food Chem., 1999, 47(10), 4009-4017.
[http://dx.doi.org/10.1021/jf990449f] [PMID: 10552758]
[57]
Fadhil, S.; Reza, M.H.; Rouhollah, G.; Reza, V.R.M. Spectrophotometric determination of total alkaloids in Peganum harmala L. using bromocresol green. Res. J. Phytochem., 2007, 1(2), 79-82.
[http://dx.doi.org/10.3923/rjphyto.2007.79.82]
[58]
Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem., 2002, 50(11), 3122-3128.
[http://dx.doi.org/10.1021/jf0116606] [PMID: 12009973]
[59]
Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 4
Year: 2020
Published on: 22 April, 2019
Page: [446 - 458]
Pages: 13
DOI: 10.2174/2210315509666190422155347
Price: $25

Article Metrics

PDF: 40
HTML: 2