Recent Advances in Curcumin Nanocarriers for the Treatment of Different Types of Cancer with Special Emphasis on In Vitro Cytotoxicity and Cellular Uptake Studies

Author(s): Jai B. Sharma, Shailendra Bhatt*, Asmita Sharma, Manish Kumar

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers.

Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied.

Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin.

Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin.

Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.

Keywords: Curcumin, cancer, nanoparticles, ligand targeting, cytotoxicity study, bioavailability.

[1]
Huang, W.K.; Juang, Y.Y.; Chung, C.C.; Chang, S.H.; Chang, J.W.C.; Lin, Y.C.; Wang, H.M.; Chang, H.K.; Chen, J.S.; Tsai, C.S.; Yu, K.H. Timing and risk of mood disorders requiring psychotropics in long-term survivors of adult cancers: A nationwide cohort study. J. Affect. Disorders , 2018, 236, 80-87.
[2]
Rodzinski, A.; Guduru, R.; Liang, P.; Hadjikhani, A.; Stewart, T.; Stimphil, E.; Runowicz, C.; Cote, R.; Altman, N.; Datar, R.; Khizroev, S. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci. Reports, 2016, 6, 20867.
[3]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[4]
Shi, G.N.; Zhang, C.N.; Xu, R.; Niu, J.F.; Song, H.J.; Zhang, X.Y.; Wang, W.W.; Wang, Y.M.; Li, C.; Wei, X.Q.; Kong, D.L. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials, 2017, 113, 191-202.
[5]
Turner, N.; Ware, O.; Bosenberg, M. Genetics of metastasis: melanoma and other cancers. Clin. Experiment. Metastasis, 2018, 35, 379-391.
[6]
Marta, T.; Luca, S.; Serena, M.; Luisa, F.; Fabio, C. What is the role of nanotechnology in diagnosis and treatment of metastatic breast cancer? Promising scenarios for the near future. J. Nanomaterials, 2016, 20165436458
[7]
Doktorovova, S.; Souto, E.B.; Silva, A.M. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): In vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharmaceut. Develop Technol., , 2018, 23(1), 96-105.
[8]
Bianchi, G.; Ravera, S.; Traverso, C.; Amaro, A.; Piaggio, F.; Emionite, L.; Bachetti, T.; Pfeffer, U.; Raffaghello, L. Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis, 2018, 39(9), 1141-1150.
[9]
Xie, J.; Yong, Y.; Dong, X.; Du, J.; Guo, Z.; Gong, L.; Zhu, S.; Tian, G.; Yu, S.; Gu, Z.; Zhao, Y. Therapeutic nanoparticles based on curcumin and bamboo charcoal nanoparticles for chemo-photothermal synergistic treatment of cancer and radioprotection of normal cells. ACS Applied Mater. Interfaces, 2017, 9(16), 14281-14291.
[10]
Sahin, K.; Orhan, C.; Tuzcu, M.; Sahin, N.; Tastan, H.; Özercan, İ.H.; Güler, O.; Kahraman, N.; Kucuk, O.; Ozpolat, B. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prevent Res. , 2018, 11(1), 59-67.
[11]
Fehl, D.J.; Ahmed, M. Curcumin promotes the oncoltyic capacity of vesicular stomatitis virus for the treatment of prostate cancers. Virus Res., 2017, 228, 14-23.
[12]
Bimonte, S.; Barbieri, A.; Palma, G.; Rea, D.; Luciano, A.; D’Aiuto, M.; Arra, C.; Izzo, F. Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer. BioMed Res. Int., 2015, 2015878134
[13]
Larasati, Y.A.; Yoneda-Kato, N.; Nakamae, I.; Yokoyama, T.; Meiyanto, E.; Kato, J.Y. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Reports, 2018, 8(1), 2039.
[14]
Li, M.; Yue, G.G.L.; Tsui, S.K.W.; Fung, K.P.; Bik-San Lau, C. Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. Phytomedicine, 2018, 46, 131-141.
[15]
Jose, A.; Labala, S.; Ninave, K.M.; Gade, S.K.; Venuganti, V.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech, 2018, 19(1), 166-175.
[16]
Pan, Z.; Zhuang, J.; Ji, C.; Cai, Z.; Liao, W.; Huang, Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett., 2018, 15(4), 4821-4826.
[17]
Green, C.E.; Mitchell, S.A. The effects of blanching, harvest time and location (with a minor look at postharvest blighting) on oleoresin yields, percent curcuminoids and levels of antioxidant activity of turmeric (Curcuma longa) rhizomes grown in Jamaica. Mod. Chem. Appl., 2014, 2(140), 2-9.
[18]
Tang, J.; Ji, H.; Ren, J.; Li, M.; Zheng, N.; Wu, L. Solid lipid nanoparticles with TPGS and Brij 78: A co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multidrug resistance in vitro. Oncol. Lett., 2017, 13(1), 389-395.
[19]
Baek, J.S.; Cho, C.W. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget, 2017, 8(18), 30369.
[20]
Zhao, M.; Zhao, M.; Fu, C.; Yu, Y.; Fu, A. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes. Int. J. Nanomedi, 2018, 13, 1601.
[21]
Ravichandiran, V.; Masilamani, K.; Senthilnathan, B.; Maheshwaran, A.; Wui Wong, T.; Roy, P. Quercetin-decorated curcumin liposome design for cancer therapy: In-vitro and in-vivo studies. Curr. Drug Deliv., 2017, 14(8), 1053-1059.
[22]
Tefas, L.R.; Sylvester, B.; Tomuta, I.; Sesarman, A.; Licarete, E.; Banciu, M.; Porfire, A. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des. Develop Ther., 2017, 11, 1605-16021.
[23]
Hong, J.; Liu, Y.; Xiao, Y.; Yang, X.; Su, W.; Zhang, M.; Liao, Y.; Kuang, H.; Wang, X. High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: In vitro and in vivo evaluation. Drug Deliv., 2017, 24(1), 109-120.
[24]
Sahu, B.P.; Hazarika, H.; Bharadwaj, R.; Loying, P.; Baishya, R.; Dash, S.; Das, M.K. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin. Drug Deliv., 2016, 13(8), 1065-1074.
[25]
Seleci, D.A.; Seleci, M.; Stahl, F.; Scheper, T. Tumor homing and penetrating peptide-conjugated niosomes as multi-drug carriers for tumor-targeted drug delivery. RSC Advan, 2017, 7(53), 33378-33384.
[26]
Szczepanowicz, K.; Jantas, D.; Piotrowski, M.; Staroń, J.; Leśkiewicz, M.; Regulska, M.; Lasoń, W.; Warszyński, P. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity. Nanotechnology, 2016, 27(35)355101
[27]
Kamaraj, S.; Palanisamy, U.M.; Mohamed, M.S.B.K.; Gangasalam, A.; Maria, G.A.; Kandasamy, R. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur. J. Pharmaceut Sci., 2018, 116, 48-60.
[28]
de Matos, R.P.A.; Calmon, M.F.; Amantino, C.F.; Villa, L.L.; Primo, F.L.; Tedesco, A.C.; Rahal, P. Effect of curcumin-nanoemulsion associated with photodynamic therapy in cervical carcinoma cell lines. BioMed Res. Int.,2018, 2018.
[29]
Fan, R.; Li, X.; Deng, J.; Gao, X.; Zhou, L.; Zheng, Y.; Tong, A.; Zhang, X.; You, C.; Guo, G. Dual drug loaded biodegradable nanofibrous microsphere for improving anti-colon cancer activity. Sci. Reports,, 2016, 6, 28373.
[30]
Zhang, J.; Li, S.; An, F.F.; Liu, J.; Jin, S.; Zhang, J.C.; Wang, P.C.; Zhang, X.; Lee, C.S.; Liang, X.J. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale, 2015, 7(32), 13503-13510.
[31]
Luong, D.; Kesharwani, P.; Alsaab, H.O.; Sau, S.; Padhye, S.; Sarkar, F.H.; Iyer, A.K.2017 Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surfaces B Biointerfaces, 2017, 157, 490-502.
[32]
Salehiabar, M.; Nosrati, H.; Javani, E.; Aliakbarzadeh, F.; Manjili, H.K.; Davaran, S.; Danafar, H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol., 2018, 115, 83-89.
[33]
Lu, M.; Chen, X.; Xiao, J.; Xiang, J.; Yang, L.; Chen, D. FOXO3a reverses the Cisplatin resistance in ovarian cancer. Arch. Med. Res., 2018, 49(2), 84-88.
[34]
Xu, Y.; Chen, W.R.; Tsosie, J.K.; Xie, X.; Li, P.; Wan, J.; He, C.; Chen, M. Niosomes encapsulation of curcumin: Characterisation and cytotoxic effect on ovarian cancer cells. J. Nanomater., 2016, 20166365295
[35]
Bondì, M.L.; Emma, M.R.; Botto, C.; Augello, G.; Azzolina, A.; Di Gaudio, F.; Craparo, E.F.; Cavallaro, G.; Bachvarov, D.; Cervello, M. Biocompatible lipid nanoparticles as carriers to improve curcumin efficacy in ovarian cancer treatment. J. Agricult Food Chem., 2017, 65(7), 1342-1352.
[36]
Baghbani, F.; Moztarzadeh, F. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surfaces B Biointerfaces, 2017, 153, 132-140.
[37]
Luong, D.; Sau, S.; Kesharwani, P.; Iyer, A.K. Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules, 2017, 18(4), 1197-1209.
[38]
Gawde, K.A.; Sau, S.; Tatiparti, K.; Kashaw, S.K.; Mehrmohammadi, M.; Azmi, A.S.; Iyer, A.K. Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surfaces B Biointerfaces, 2018, 167, 8-19.
[39]
McFaline-Figueroa, J.R.; Lee, E.Q. Brain tumors. Am. J. Med., 2018, 131(8), 874-882.
[40]
Maiti, P.; Al-Gharaibeh, A.; Kolli, N.; Dunbar, G.L. Solid lipid curcumin particles induce more DNA fragmentation and cell death in cultured human glioblastoma cells than does natural curcumin. Oxid. Med. Cell. Longev., 2017, 20179656719
[41]
Montalbán, M.G.; Coburn, J.M.; Lozano-Pérez, A.A.; Cenis, J.L.; Víllora, G.; Kaplan, D.L. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials, 2018, 8(2), 126.
[42]
Zhang, H.; Zhu, Y.; Sun, X.; He, X.; Wang, M.; Wang, Z.; Wang, Q.; Zhu, R.; Wang, S. Curcumin-loaded layered double hydroxide nanoparticles-induced autophagy for reducing glioma cell migration and invasion. J. Biomed. Nanotechnol., 2016, 12(11), 2051-2062.
[43]
Ghorbani, M.; Bigdeli, B.; Jalili-baleh, L.; Baharifar, H.; Akrami, M.; Dehghani, S.; Goliaei, B.; Amani, A.; Lotfabadi, A.; Rashedi, H.; Haririan, I. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold-iron oxide nanocomposites: A pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur. J.Pharmaceut Sci., 2018, 114, 175-188.
[44]
Custodio-Santos, T.; Videira, M.; Brito, M.A. Brain metastasization of breast cancer. Biochim. Biophys. Acta (BBA). Rev. Cancer, 2017, 1868(1), 132-147.
[45]
Engel, C.L.; Sharima Rasanayagam, M.; Gray, J.M.; Rizzo, J. Work and female breast cancer: The state of the evidence, 2002–2017. New Solutions, 2018, 28(1), 55-78.
[46]
Baek, J.S.; Cho, C.W. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur. J. Pharmaceut Biopharmaceut., 2017, 117, 132-140.
[47]
Khan, M.N.; Haggag, Y.A.; Lane, M.E.; McCarron, P.A.; Tambuwala, M.M. Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1α and nuclear p65 (Rel A). Curr. Drug Deliv., 2018, 15(2), 286-295.
[48]
Medel, S.; Syrova, Z.; Kovacik, L.; Hrdy, J.; Hornacek, M.; Jager, E.; Hruby, M.; Lund, R.; Cmarko, D.; Stepanek, P.; Raska, I. Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. Eur. Polymer J., 2017, 93, 116-131.
[49]
Zhou, S.; Li, J.; Xu, H.; Zhang, S.; Chen, X.; Chen, W.; Yang, S.; Zhong, S.; Zhao, J.; Tang, J. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene, 2017, 622, 1-12.
[50]
Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Develop. Industrial Pharm, 2017, 43(5), 847-861.
[51]
Malekmohammadi, S.; Hadadzadeh, H.; Farrokhpour, H.; Amirghofran, Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: A new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter, 2018, 14(12), 2400-2410.
[52]
Bai, F.; Diao, J.; Wang, Y.; Sun, S.; Zhang, H.; Liu, Y.; Wang, Y.; Cao, J. A new water-soluble nanomicelle formed through self-assembly of pectin–curcumin conjugates: Preparation, characterization, and anticancer activity evaluation. J. . Agricult Food Chem., 2017, 65(32), 6840-6847.
[53]
Choi, J.S. Development of surface curcumin nanoparticles modified with biological macromolecules for anti-tumor effects. Int. J. Biol. Macromol., 2016, 92, 850-859.
[54]
Bugos, K.G. Issues in adult blood cancer survivorship care. Semin. Oncol. Nursing, 2015, 31(1), 60-66.
[55]
Guorgui, J.; Wang, R.; Mattheolabakis, G.; Mackenzie, G.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch. Biochem. Biophys., 2018, 648, 12-19.
[56]
Petrov, P.D.; Yoncheva, K.; Gancheva, V.; Konstantinov, S.; Trzebicka, B. Multifunctional block copolymer nanocarriers for co-delivery of silver nanoparticles and curcumin: Synthesis and enhanced efficacy against tumor cells. Eur. Polymer J., 2016, 81, 24-33.
[57]
Dash, T.K.; Konkimalla, V.B. Selection of P-glycoprotein inhibitor and formulation of combinational nanoformulation containing selected agent curcumin and DOX for reversal of resistance in K562 cells. Pharmaceut. Res., 2017, 34(8), 1741-1750.
[58]
Tian, S.; Chen, H.; Tan, W. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer. Biochem. Biophys. Res. Commun., 2018, 499(4), 1019-1024.
[59]
Li, C.; Ge, X.; Wang, L. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Biomed. Pharmacother., 2017, 86, 628-636.
[60]
Khan, M.A.; Zafaryab, M.; Mehdi, S.H.; Ahmad, I.; Rizvi, M.; Moshahid, A. Physicochemical characterization of curcumin loaded chitosan nanoparticles: Implications in cervical cancer. Anticancer. Agents Med. Chem., 2018, 18(8), 1131-1137.
[61]
Wu, C. Systemic therapy for colon cancer. Surg. Oncol. Clin., 2018, 27(2), 235-242.
[62]
Jyoti, K.; Bhatia, R.K.; Martis, E.A.; Coutinho, E.C.; Jain, U.K.; Chandra, R.; Madan, J. Soluble curcumin amalgamated chitosan microspheres augmented drug delivery and cytotoxicity in colon cancer cells: In vitro and in vivo study. Colloids Surfaces B Biointerfaces, 2016, 148, 674-683.
[63]
Bagheri, R.; Sanaat, Z.; Zarghami, N. Synergistic effect of free and nano-encapsulated chrysin-curcumin on inhibition of hTERT gene expression in SW480 colorectal cancer cell line. Drug Res,, 2018, 68(06), 335-343.
[64]
Lotfi-Attari, J.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Alipour, S.; Farajzadeh, R.; Javidfar, S.; Zarghami, N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutrition Cancer, 2017, 69(8), 1290-1299.
[65]
Sesarman, A.; Tefas, L.; Sylvester, B.; Licarete, E.; Rauca, V.; Luput, L.; Patras, L.; Banciu, M.; Porfire, A. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol. Reports,, 2018, 70(2), 331-339.
[66]
Varshosaz, J.; Jajanian-Najafabadi, A.; Soleymani, A.; Khajavinia, A. Poly (butylene adipate-co-terephthalate) electrospun nanofibers loaded with 5-fluorouracil and curcumin in treatment of colorectal cancer cells. Polymer Testing, 2018, 65, 217-230.
[67]
Kumar, S.U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y.S. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr. Polymers,, 2018, 188, 252-259.
[68]
Sabra, R.; Billa, N.; Roberts, C.J. An augmented delivery of the anticancer agent, curcumin, to the colon. React. Funct. Polymers,, 2018, 123, 54-60.
[69]
Kumari, M.; Ray, L.; Purohit, M.P.; Patnaik, S.; Pant, A.B.; Shukla, Y.; Kumar, P.; Gupta, K.C. Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich’s ascites carcinoma bearing mice. Eur. J. Pharmaceut. Biopharmaceut, 2017, 117, 346-362.
[70]
Xu, H.; Wang, T.; Yang, C.; Li, X.; Liu, G.; Yang, Z.; Singh, P.K.; Krishnan, S.; Ding, D. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation. Adv. Funct. Mater., 2018, 28(14)1707140
[71]
Canal, C.; Fontelo, R.; Hamouda, I.; Guillem-Marti, J.; Cvelbar, U.; Ginebra, M.P. Plasma-induced selectivity in bone cancer cells death. Free Radic. Biol. Med., 2017, 110, 72-80.
[72]
Wang, L.; Wang, W.; Rui, Z.; Zhou, D. The effective combination therapy against human osteosarcoma: Doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv., 2016, 23(9), 3200-3208.
[73]
Otsubo, K.; Okamoto, I.; Hamada, N.; Nakanishi, Y. Anticancer drug treatment for advanced lung cancer with interstitial lung disease. Respir. Invest., 2018, 56(4), 307-311.
[74]
Sadeghzadeh, H.; Pilehvar-Soltanahmadi, Y.; Akbarzadeh, A.; Dariushnejad, H.; Sanjarian, F.; Zarghami, N. The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells. Anticancer. Agents Med. Chem., 2017, 17(10), 1363-1373.
[75]
Ranjan, A.P.; Mukerjee, A.; Gdowski, A.; Helson, L.; Bouchard, A.; Majeed, M.; Vishwanatha, J.K. Curcumin-ER prolonged subcutaneous delivery for the treatment of non-small cell lung cancer. J. Biomed. Nanotechnol., 2016, 12(4), 679-688.
[76]
Huang, W.T.; Larsson, M.; Lee, Y.C.; Liu, D.M.; Chiou, G.Y. Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: Enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells. Eur. J. Pharmaceut. Biopharmaceut, 2016, 109, 165-173.
[77]
Jyoti, K.; Pandey, R.S.; Kush, P.; Kaushik, D.; Jain, U.K.; Madan, J. Inhalable bioresponsive chitosan microspheres of doxorubicin and soluble curcumin augmented drug delivery in lung cancer cells. Int. J. Biol. Macromol., 2017, 98, 50-58.
[78]
Allum, W.; Lordick, F.; Alsina, M.; Andritsch, E.; Ba-Ssalamah, A.; Beishon, M.; Braga, M.; Caballero, C.; Carneiro, F.; Cassinello, F.; Dekker, J.W. ECCO essential requirements for quality cancer care: oesophageal and gastric cancer. Crit. Rev. Oncol. Hematol., 2018, 122, 179-193.
[79]
Dhivya, R.; Ranjani, J.; Bowen, P.K.; Rajendhran, J.; Mayandi, J.; Annaraj, J. Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater. Sci.Engin C, 2017, 80, 59-68.
[80]
Jiang, H.; Geng, D.; Liu, H.; Li, Z.; Cao, J. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors. Drug Deliv., 2016, 23(9), 3665-3673.
[81]
Xu, J.W.; Wang, L.; Cheng, Y.G.; Zhang, G.Y.; Hu, S.Y.; Zhou, B.; Zhan, H.X. Immunotherapy for pancreatic cancer: A long and hopeful journey. Cancer Lett., 2018, 425, 143-151.
[82]
Arya, G.; Das, M.; Sahoo, S.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed. Pharmacother., 2018, 102, 555-566.
[83]
Le, U.M.; Hartman, A.; Pillai, G. Enhanced selective cellular uptake and cytotoxicity of epidermal growth factor-conjugated liposomes containing curcumin on EGFR-overexpressed pancreatic cancer cells. J. Drug Target., 2018, 26(8), 676-683.
[84]
Bisht, S.; Schlesinger, M.; Rupp, A.; Schubert, R.; Nolting, J.; Wenzel, J.; Holdenrieder, S.; Brossart, P.; Bendas, G.; Feldmann, G. A liposomal formulation of the synthetic curcumin analog EF24 (Lipo-EF24) inhibits pancreatic cancer progression: towards future combination therapies. J. Nanobiotechnol, 2016, 14(1), 57.
[85]
Anajafi, T.; Yu, J.; Sedigh, A.; Haldar, M.K.; Muhonen, W.W.; Oberlander, S.; Wasness, H.; Froberg, J.; Molla, M.S.; Katti, K.S.; Choi, Y. Nuclear localizing peptide-conjugated, redox-sensitive polymersomes for delivering curcumin and doxorubicin to pancreatic cancer microtumors. Mol. Pharmaceut, 2017, 14(6), 1916-1928.
[86]
Song, P.; Hai, Y.; Ma, W.; Zhao, L.; Wang, X.; Xie, Q.; Li, Y.; Wu, Z.; Li, Y.; Li, H. Arsenic trioxide combined with transarterial chemoembolization for unresectable primary hepatic carcinoma: A systematic review and meta-analysis. Medicine , 2018, 97(18)e0613
[87]
Cao, Y.; Yi, J.; Yang, X.; Liu, L.; Yu, C.; Huang, Y.; Sun, L.; Bao, Y.; Li, Y. Efficient cancer regression by a thermosensitive liposome for photoacoustic imaging-guided photothermal/chemo combinatorial therapy. Biomacromolecules, 2017, 18(8), 2306-2314.
[88]
Coughlin, S.S.; Williams, L.B.; Besenyi, G.M.; Jackson, L.W.; Anglin, J. Advancing uterine cancer survivorship among african american women. J. Natl. Med. Assoc., 2018, 110(4), 391-395.
[89]
Kumar, A.; Sirohi, V.K.; Anum, F.; Singh, P.K.; Gupta, K.; Gupta, D.; Saraf, S.A.; Dwivedi, A.; Chourasia, M.K. Enhanced apoptosis, survivin down-regulation and assisted immunochemotherapy by curcumin loaded amphiphilic mixed micelles for subjugating endometrial cancer. Nanomed. Nanotechnol. Biol. Med., 2017, 13(6), 1953-1963.
[90]
Simões, M.C.F.; Sousa, J.J.S.; Pais, A.A.C.C. Skin cancer and new treatment perspectives: A review. Cancer Lett., 2015, 357(1), 8-42.
[91]
Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250.
[92]
Araujo, C.A.C.; Leon, L.L. Biological activities of Curcuma longa L. Mem.órias do Instituto Oswaldo Cruz, 2001, 96(5), 723-728.
[93]
Pae, H.O.; Jeong, S.O.; Jeong, G.S.; Kim, K.M.; Kim, H.S.; Kim, S.A.; Kim, Y.C.; Kang, S.D.; Kim, B.N.; Chung, H.T. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells. Biochem. Biophys. Res. Commun., 2007, 353(4), 1040-1045.
[94]
Chopra, D.; Ray, L.; Dwivedi, A.; Tiwari, S.K.; Singh, J.; Singh, K.P.; Kushwaha, H.N.; Jahan, S.; Pandey, A.; Gupta, S.K.; Chaturvedi, R.K. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line. Biomaterials, 2016, 84, 25-41.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 5
Year: 2020
Published on: 17 April, 2019
Page: [577 - 590]
Pages: 14
DOI: 10.2174/2210681209666190417144126
Price: $25

Article Metrics

PDF: 11
HTML: 2