Metal Complexes as Promising Agents for Biomedical Applications

Author(s): Natalia V. Loginova*, Hleb I. Harbatsevich, Nikolai P. Osipovich, Galina A. Ksendzova, Tatsiana V. Koval’chuk, Genrikh I. Polozov

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 31 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: In this review article, a brief overview of novel metallotherapeutic agents (with an emphasis on the complexes of essential biometals) promising for medical application is presented. We have also focused on the recent work carried out by our research team, specifically the development of redox-active antimicrobial complexes of sterically hindered diphenols with some essential biometals (copper, zinc, nickel).

Results: The complexes of essential metals (manganese, iron, cobalt, nickel, copper, zinc) described in the review show diverse in vitro biological activities, ranging from antimicrobial and antiinflammatory to antiproliferative and enzyme inhibitory. It is necessary to emphasize that the type of organic ligands in these metal complexes seems to be responsible for their pharmacological activities. In the last decades, there has been a significant interest in synthesis and biological evaluation of metal complexes with redox-active ligands. A substantial step in the development of these redox-active agents is the study of their physicochemical and biological properties, including investigations in vitro of model enzyme systems, which can provide evidence on a plausible mechanism underlying the pharmacological activity. When considering the peculiarities of the pharmacological activity of the sterically hindered diphenol derivatives and their nickel(II), copper(II) and zinc(II) complexes synthesized, we took into account the following: (i) all these compounds are potential antioxidants and (ii) their antimicrobial activity possibly results from their ability to affect the electron-transport chain.

Conclusion: We obtained novel data demonstrating that the level of antibacterial and antifungal activity in the series of the above-mentioned metal-based antimicrobials depends not only on the nature of the phenolic ligands and complexing metal ions, but also on the lipophilicity and reducing ability of the ligands and metal complexes, specifically regarding the potential biotargets of their antimicrobial action – ferricytochrome c and the superoxide anion radical. The combination of antibacterial, antifungal and antioxidant activity allows one to consider these compounds as promising substances for developing therapeutic agents with a broad spectrum of activities.

Keywords: Redox-active metal complexes, biometals, diphenols, antimicrobial activity, ferricytochrome c, SODlike activity.

[1]
Bertini, I.; Gray, H.B.; Stiefel, E.I.; Valentine, J.S. Biological Inorganic Chemistry: Structure and Reactivity, J. Chem. Edu., 2007, 84, 9, 1432.
[http://dx.doi.org/10.1021/ed084p1432]
[2]
Keppler, B.K. Lippert, B., Metal Complexes in Cancer Chemotherapy. 1994, 1672-1673.
[http://dx.doi.org/10.1002/anie.199416721]
[3]
Sigel, A.; Sigel, H. Metal Ions in Biological Systems: Metal Ions and their Complexes in Medication, 2005.
[http://dx.doi.org/10.1002/aoc.897]
[4]
Alessio, E. Bioinorganic Medicinal Chemistry; Wiley‐VCH: Weinheim, 2011.
[http://dx.doi.org/10.1002/9783527633104]
[5]
Sigel, H. Metal Ions in Biological Systems., Antibiotics and Their Complexes 1st ed. 1985, 19.
[6]
Farrell, N.P. Uses of Inorganic Chemistry in Medicine, 1st ed; , 1999.
[7]
Gielen, M.; Tiekink, E.R.T. Metallotherapeutic Drugs and Metal-Based Diagnostic Agents. In: The Use of Metals in Medicine, ; 1st ed;. , 2005.
[http://dx.doi.org/10.1002/0470864052]
[8]
Dalecki, A.G.; Crawford, C.L.; Wolschendorf, F. Copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. Adv. Microb. Physiol., 2017, 70, 193-260.
[http://dx.doi.org/10.1016/bs.ampbs.2017.01.007] [PMID: 28528648]
[9]
Kelland, I.R.; Farrell, N.P. Platinum-Based Drugs in Cancer Therapy, 1st ed; , 2000.
[http://dx.doi.org/10.1385/1592590128]
[10]
Dabrowiak, J.C. Metals in Medicine, 2nd ed; , 2009.
[http://dx.doi.org/10.1002/9780470684986]
[11]
Sigel, H. Metal Ions in Biological Systems., Inorganic Drugs in Deficiency and Disease1 st ed. 1982, 14.
[12]
Jaouen, G. Bioorganometallics: Biomolecules, Labeling; Medicine 1st ed, 2006.
[http://dx.doi.org/10.1002/3527607692]
[13]
Lansdown, A.B.G. Silver in Healthcare: Its Antimicrobial Efficacy and Safety in Use ; 1st ed. , 2010.
[14]
Pinedo, H.M.; Schornagel, J.H. Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy 2 , 1996..
[http://dx.doi.org/10.1007/978-1-4899-0218-4]
[15]
Bobbarala, V. A Search for Antibacterial Agents, 1st ed; , 2012.
[http://dx.doi.org/10.5772/1085]
[16]
Sadler, P.J. Inorganic chemistry and drug design. Adv. Inorg. Chem., 1991, 36, 1-48.
[http://dx.doi.org/10.1016/S0898-8838(08)60035-5]
[17]
Guo, Z.; Sadler, P.J. Metals in Medicine. Angew. Chem. Int. Ed. Engl., 1999, 38(11), 1512-1531.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990601)38: 11<1512:AID-ANIE1512>3.0.CO;2-Y] [PMID: 29711002]
[18]
Hocharoen, L.; Cowan, J.A. Metallotherapeutics: novel strategies in drug design. Chemistry, 2009, 15(35), 8670-8676.
[http://dx.doi.org/10.1002/chem.200900821] [PMID: 19685535]
[19]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[20]
Jones, C.; Thornback, J. Medicinal Applications of Coordination Chemistry, 1st ed; , 2007.
[21]
Thompson, K.H.; Orvig, C. Metal complexes in medicinal chemistry: new vistas and challenges in drug design. Dalton Trans., 2006, (6), 761-764.
[http://dx.doi.org/10.1039/B513476E] [PMID: 16437168]
[22]
Sigel, H. Metal Ions in Biological Systems: Biological Action of Metal Ions, 1976.6.
[23]
Sigel, H. Metal Ions in Biological Systems: Concepts on Metal Ion Toxicity, 1995.20.
[24]
Lee, C.R.; Cho, I.H.; Jeong, B.C.; Lee, S.H. Strategies to minimize antibiotic resistance. Int. J. Environ. Res. Public Health, 2013, 10(9), 4274-4305.
[http://dx.doi.org/10.3390/ijerph10094274] [PMID: 24036486]
[25]
Lansdown, A.B.G. Silver in health care: antimicrobial effects and safety in use. Curr. Probl. Dermatol., 2006, 33, 17-34.
[http://dx.doi.org/10.1159/000093928] [PMID: 16766878]
[26]
Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 1995, 18(2), 321-336.
[http://dx.doi.org/10.1016/0891-5849(94)00159-H] [PMID: 7744317]
[27]
Sumner, E.R.; Shanmuganathan, A.; Sideri, T.C.; Willetts, S.A.; Houghton, J.E.; Avery, S.V. Oxidative protein damage causes chromium toxicity in yeast. Microbiology, 2005, 151(Pt 6), 1939-1948.
[http://dx.doi.org/10.1099/mic.0.27945-0] [PMID: 15942001]
[28]
Xu, F.F.; Imlay, J.A. Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl. Environ. Microbiol., 2012, 78(10), 3614-3621.
[http://dx.doi.org/10.1128/AEM.07368-11] [PMID: 22344668]
[29]
Zhang, Y.M.; Rock, C.O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol., 2008, 6(3), 222-233.
[http://dx.doi.org/10.1038/nrmicro1839] [PMID: 18264115]
[30]
Pereira, Y.; Lagniel, G.; Godat, E.; Baudouin-Cornu, P.; Junot, C.; Labarre, J. Chromate causes sulfur starvation in yeast. Toxicol. Sci., 2008, 106(2), 400-412.
[http://dx.doi.org/10.1093/toxsci/kfn193] [PMID: 18794233]
[31]
Linley, E.; Denyer, S.P.; McDonnell, G.; Simons, C.; Maillard, J.Y. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J. Antimicrob. Chemother., 2012, 67(7), 1589-1596.
[http://dx.doi.org/10.1093/jac/dks129] [PMID: 22532463]
[32]
Chaudhary, A.; Bansal, N.; Gajraj, A.; Singh, R.V. Antifertility, antibacterial, antifungal and percent disease incidence aspects of macrocyclic complexes of manganese(II). J. Inorg. Biochem., 2003, 96(2-3), 393-400.
[http://dx.doi.org/10.1016/S0162-0134(03)00157-0] [PMID: 12888275]
[33]
Doctrow, S.R.; Huffman, K.; Marcus, C.B.; Musleh, W.; Bruce, A.; Baudry, M.; Malfroy, B. Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol., 1997, 38, 247-269.
[http://dx.doi.org/10.1016/s1054-3589(08)60987-4] [PMID: 8895812]
[34]
Vajragupta, O.; Boonchoong, P.; Watanabe, H.; Tohda, M.; Kummasud, N.; Sumanont, Y. Manganese complexes of curcumin and its derivatives: evaluation for the radical scavenging ability and neuroprotective activity. Free Radic. Biol. Med., 2003, 35(12), 1632-1644.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.011] [PMID: 14680686]
[35]
Troxell, B.; Xu, H.; Yang, X.F. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. J. Biol. Chem., 2012, 287(23), 19284-19293.
[http://dx.doi.org/10.1074/jbc.M112.344903] [PMID: 22500025]
[36]
García-Ramos, J.C.; Toledano-Magaña, Y.; Talavera-Contreras, L.G.; Flores-Álamo, M.; Ramírez-Delgado, V.; Morales-León, E.; Ortiz-Frade, L.; Gutiérrez, A.G.; Vázquez-Aguirre, A.; Mejía, C.; Carrero, J.C.; Laclette, J.P.; Moreno-Esparza, R.; Ruiz-Azuara, L. Potential cytotoxic and amoebicide activity of first row transition metal compounds with 2,9-bis-(2′,5′-diazahexanyl)-1,1-phenanthroline (L1). Dalton Trans., 2012, 41(34), 10164-10174.
[http://dx.doi.org/10.1039/c2dt30224a] [PMID: 22722265]
[37]
Verduzco-Ramírez, A.; Manzanilla-Dávila, S.G.; Morales-Guillén, M.E.; García-Ramos, J.C.; Toledano-Magaña, Y.; Marin-Becerra, A.; Flores-Álamo, M.; Ortiz-Frade, L.A.; Olguín-Contreras, L.F.; Ruiz-Azuara, L. Essential metal-based drugs: correlation between redox potential and biological activity of M2+ with a N2O2 ligand. J. Mex. Chem. Soc., 2017, 61(2), 109-119.
[http://dx.doi.org/10.29356/jmcs.v61i2.258]
[38]
Mendu, P.; Kumari, C.G.; Ragi, R. Synthesis, characterization, DNA binding, DNA cleavage and antimicrobial studies of Schiff base ligand and its metal complexes. J. Fluoresc., 2015, 25(2), 369-378.
[http://dx.doi.org/10.1007/s10895-015-1520-6] [PMID: 25663196]
[39]
Krstic, N.S.; Nikolic, R.S.; Stankovic, M.N.; Nikolic, N.G.; Dordevic, D.M. Coordination compounds of M(II) biometal ions with acid-type anti-inflammatory drugs as ligands - a review. Trop. J. Pharm. Res., 2015, 14(2), 337-349.
[http://dx.doi.org/10.4314/tjpr.v14i2.21]
[40]
Bouchoucha, A.; Terbouche, A.; Bourouina, A.; Djebbar, S. New complexes of manganese(II), nickel(II) and copper(II) with derived benzoxazole ligands: synthesis, characterization, DFT, antimicrobial activity, acute and subacute toxicity. Inorg. Chim. Acta, 2014, 418, 187-197.
[http://dx.doi.org/10.1016/j.ica.2014.04.016]
[41]
Prathima, B.; Rao, Y.S.; Ramesh, G.N.; Jagadeesh, M.; Reddy, Y.P.; Chalapathi, P.V.; Reddy, A.V. Synthesis, spectral characterization and biological activities of Mn(II) and Co(II) complexes with benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(1), 39-44.
[http://dx.doi.org/10.1016/j.saa.2011.01.029] [PMID: 21420899]
[42]
Psomas, G. Mononuclear metal complexes with ciprofloxacin: synthesis, characterization and DNA-binding properties. J. Inorg. Biochem., 2008, 102(9), 1798-1811.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.05.012] [PMID: 18621421]
[43]
Geraghty, M.; Sheridan, V.; Mccann, M.; Devereux, M.; Mckee, V. Synthesis and anti-candida activity of copper(II) and manganese(II) carboxylate complexes: x-ray crystal structures of [Cu(sal)(bipy) C2H5OH.H2O and [Cu(norb) (phen)2 6.5H2O (salH2=salicylic acid; norbH2=cis-5-norbornene-endo-2,3-dicarboxyl. Polyhedron, 1999, 18(22), 2931-2939.
[http://dx.doi.org/10.1016/S0277-5387(99)00201-6]
[44]
Xu, Z.D.; Liu, H.; Xiao, S.L.; Yang, M.; Bu, X.H. Synthesis, crystal structure, antitumor activity and DNA-binding study on the Mn(II) complex of 2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline. J. Inorg. Biochem., 2002, 90(3-4), 79-84.
[http://dx.doi.org/10.1016/S0162-0134(02)00416-6] [PMID: 12031799]
[45]
Tovmasyan, A.; Carballal, S.; Ghazaryan, R.; Melikyan, L.; Weitner, T.; Maia, C.G.C.; Reboucas, J.S.; Radi, R.; Spasojevic, I.; Benov, L.; Batinic-Haberle, I. Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg. Chem., 2014, 53(21), 11467-11483.
[http://dx.doi.org/10.1021/ic501329p] [PMID: 25333724]
[46]
Haberle, I.B.; Reboucas, J.S.; Benov, L.; Spasojevic, I. 52 Chemistry, biology and medical effects of water soluble metalloporphyrins. Handbook of Porphyrin Science, 2011, 11, 291-393..
[http://dx.doi.org/10.1142/9789814322386_0004]
[47]
Olar, R.; Badea, M.; Marinescu, D.; Chifiriuc, M.C.; Bleotu, C.; Grecu, M.N.; Iorgulescu, E.E.; Lazar, V.N. N-dimethylbiguanide complexes displaying low cytotoxicity as potential large spectrum antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 3027-3034.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.033] [PMID: 20403647]
[48]
Turel, I. The interactions of metal ions with quinolone antibacterial agents. Coord. Chem. Rev., 2002, 232(1-2), 27-47.
[http://dx.doi.org/10.1016/S0010-8545(02)00027-9]
[49]
Belaid, S.; Landreau, A.; Djebbar, S.; Benali-Baitich, O.; Bouet, G.; Bouchara, J.P. Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N′-O-phenylenebis (salicyl- ideneimine). J. Inorg. Biochem., 2008, 102(1), 63-69.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.07.001] [PMID: 17870175]
[50]
Rizzotto, M. Metal Complexes as Antimicrobial Agents, A Search for Antibacterial Agents, InTech, Rijeka, 2012. Available from:. https://www.intechopen.com/books/a-search-for-antibacterial-agents/metalcomplexes-as-antimicrobial-agents
[http://dx.doi.org/10.5772/45651]
[51]
Li, Q.X.; Tang, H.A.; Li, Y.Z.; Wang, M.; Wang, L.F.; Xia, C.G. Synthesis, characterization, and antibacterial activity of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with vitamin K3-thiosemicarbazone. J. Inorg. Biochem., 2000, 78(2), 167-174.
[http://dx.doi.org/10.1016/S0162-0134(99)00226-3] [PMID: 10766340]
[52]
Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med., 1999, 341(26), 1986-1995.
[http://dx.doi.org/10.1056/NEJM199912233412607] [PMID: 10607817]
[53]
Ma, Y.; Zhou, T.; Kong, X.; Hider, R.C. Chelating agents for the treatment of systemic iron overload. Curr. Med. Chem., 2012, 19(17), 2816-2827.
[http://dx.doi.org/10.2174/092986712800609724] [PMID: 22455586]
[54]
Gupta, A.; Crumbliss, A.L. Treatment of iron deficiency anemia: are monomeric iron compounds suitable for parenteral administration? J. Lab. Clin. Med., 2000, 136(5), 371-378.
[http://dx.doi.org/10.1067/mlc.2000.110368] [PMID: 11079464]
[55]
Berk, M.S.; Novich, M.A. Treatment of iron deficiency anemia with ferrous fumarate. Am. J. Obstet. Gynecol., 1962, 83(2), 203-206.
[http://dx.doi.org/10.1016/0002-9378(62)90630-0] [PMID: 13867867]
[56]
Camaschella, C. New insights into iron deficiency and iron deficiency anemia. Blood Rev., 2017, 31(4), 225-233.
[http://dx.doi.org/10.1016/j.blre.2017.02.004] [PMID: 28216263]
[57]
Christides, T.; Wray, D.; McBride, R.; Fairweather, R.; Sharp, P. Iron bioavailability from commercially available iron supplements. Eur. J. Nutr., 2015, 54(8), 1345-1352.
[http://dx.doi.org/10.1007/s00394-014-0815-8] [PMID: 25526967]
[58]
Brown, D.A.; Chidambaram, M.V. Iron-containing drugs. Metal. Ions in Biological. Systems., 1982, 14, 257-313.
[59]
Parrilha, G.L.; Fernandes, C.; Bortoluzzi, A.J.; Szpoganicz, B.; de Silva, M.S.; Pich, C.T.; Terenzi, H.; Horn, A. A new μ-oxo di-iron complex with suitable features to mimic metallohydrolase activity: X-ray molecular structure, aqua solution behavior and nuclease activity of the complex [Fe(HPClNOL)(SO4)]2-μ-oxo. Inorg. Chem. Commun., 2008, 11(6), 643-647.
[http://dx.doi.org/10.1016/j.inoche.2008.02.019]
[60]
Galal, S.A.; Abd El-All, A.S.; Hegab, K.H.; Magd-El-Din, A.A.; Youssef, N.S.; El-Diwani, H.I. Novel antiviral benzofuran-transition metal complexes. Eur. J. Med. Chem., 2010, 45(7), 3035-3046.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.034] [PMID: 20398971]
[61]
Bacchi, A.; Carcelli, M.; Pelagatti, P.; Pelizzi, C.; Pelizzi, G.; Zani, F. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes. J. Inorg. Biochem., 1999, 75(2), 123-133.
[http://dx.doi.org/10.1016/S0162-0134(99)00045-8] [PMID: 10450607]
[62]
Sandbhor, U.; Padhye, S.; Billington, D.; Rathbone, D.; Franzblau, S.; Anson, C.E.; Powell, A.K. Metal complexes of carboxamidrazone analogs as antitubercular agents. 1. Synthesis, X-ray crystal-structures, spectroscopic properties and antimycobacterial activity against Mycobacterium tuberculosis H(37). Rv. J. Inorg. Biochem., 2002, 90(3-4), 127-136.
[http://dx.doi.org/10.1016/S0162-0134(02)00406-3] [PMID: 12031804]
[63]
Laborde, J.; Deraeve, C.; de Mesquita Vieira, F.G.; Sournia-Saquet, A.; Rechignat, L.; Villela, A.D.; Abbadi, B.L.; Macchi, F.S.; Pissinate, K.; Bizarro, C.V.; Machado, P.; Basso, L.A.; Pratviel, G.; de França Lopes, L.G.; Sousa, E.H.S.; Bernardes-Génisson, V. Synthesis and mechanistic investigation of iron(II) complexes of isoniazid and derivatives as a redox-mediated activation strategy for anti-tuberculosis therapy. J. Inorg. Biochem., 2018, 179, 71-81.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.013] [PMID: 29175704]
[64]
Sousa, E.H.S.; Basso, L.A.; Santos, D.S.; Diógenes, I.C.N.; Longhinotti, E.; Lopes, L.G.; Moreira, I.D. Isoniazid metal complex reactivity and insights for a novel anti-tuberculosis drug design. J. Biol. Inorg. Chem., 2012, 17(2), 275-283.
[http://dx.doi.org/10.1007/s00775-011-0848-x] [PMID: 21952749]
[65]
Siddiqi, Z.A.; Sharma, P.K.; Shahid, M.; Khalid, M. Anjuli; Siddique, A.; Kumar, S. Superoxide scavenging and antimicrobial activities of novel transition metal complexes of oxydiacetate dianion as primary ligand: spectral characterization, cyclic voltammetric investigations and crystal structure. Eur. J. Med. Chem., 2012, 57, 102-111.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.043] [PMID: 23047227]
[66]
Raza, A.; Xu, X.; Xia, L.; Xia, C.; Tang, J.; Ouyang, Z. Quercetin-iron complex: Synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies. J. Fluoresc., 2016, 26(6), 2023-2031.
[http://dx.doi.org/10.1007/s10895-016-1896-y] [PMID: 27481501]
[67]
Mjos, K.D.; Cawthray, J.F.; Polishchuk, E.; Abrams, M.J.; Orvig, C. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials. Dalton Trans., 2016, 45(33), 13146-13160.
[http://dx.doi.org/10.1039/C6DT01315E] [PMID: 27315225]
[68]
Abdel-Rahman, L.H.; El-Khatib, R.M.; Nassr, L.A.E.; Abu-Dief, A.M.; Ismael, M.; Seleem, A.A. Metal based pharmacologically active agents: synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 366-378.
[http://dx.doi.org/10.1016/j.saa.2013.07.056] [PMID: 24001978]
[69]
Md Yusof, E.N.; S.A., Ravoof T.B.; Tiekink, E.R.; Veerakumarasivam, A.; Crouse, K.A.; Mohamed Tahir, M.I.; Ahmad, H. Synthesis, characterization and biological evaluation of transition metal complexes derived from N, S bidentate ligands. Int. J. Mol. Sci., 2015, 16(5), 11034-11054.
[http://dx.doi.org/10.3390/ijms160511034] [PMID: 25988384]
[70]
Chew, K.B.; Tarafder, M.T.H.; Crouse, K.A.; Ali, A.M.; Yamin, B.M.; Fun, H.K. Synthesis, characterization and bio-activity of metal complexes of bidentate N-S isomeric Schiff bases derived from S-methyldithiocarbazate (SMDTC) and the X-ray structure of the bis[S-methyl-β-N-(2-furyl-methylketone) dithiocarbazato]cadmium(II) complex. Polyhedron, 2004, 23(8), 1385-1392.
[http://dx.doi.org/10.1016/j.poly.2004.02.018]
[71]
Easmon, J.; Pürstinger, G.; Heinisch, G.; Roth, T.; Fiebig, H.H.; Holzer, W.; Jäger, W.; Jenny, M.; Hofmann, J. Synthesis, cytotoxicity, and antitumor activity of copper(II) and iron(II) complexes of (4)N-azabicyclo[3.2.2]nonane thiosemicarbazones derived from acyl diazines. J. Med. Chem., 2001, 44(13), 2164-2171.
[http://dx.doi.org/10.1021/jm000979z] [PMID: 11405653]
[72]
Kobayashi, M.; Shimizu, S. Cobalt proteins. Eur. J. Biochem., 1999, 261(1), 1-9.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00186.x] [PMID: 10103026]
[73]
Jiménez-Garrido, N.; Perelló, L.; Ortiz, R.; Alzuet, G.; González-Alvarez, M.; Cantón, E.; Liu-González, M.; García-Granda, S.; Pérez-Priede, M. Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin. J. Inorg. Biochem., 2005, 99(3), 677-689.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.11.016] [PMID: 15708788]
[74]
El-Ayaan, U.; Abdel-Aziz, A.A.M. Synthesis, antimicrobial activity and molecular modeling of cobalt and nickel complexes containing the bulky ligand: bis[N-(2,6-diisopropylphenyl)imino] acenaphthene. Eur. J. Med. Chem., 2005, 40(12), 1214-1221.
[http://dx.doi.org/10.1016/j.ejmech.2005.06.009] [PMID: 16126307]
[75]
Singh, K.; Barwa, M.S.; Tyagi, P. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur. J. Med. Chem., 2006, 41(1), 147-153.
[http://dx.doi.org/10.1016/j.ejmech.2005.06.006] [PMID: 16271421]
[76]
Hothi, H.S.; Makkar, A.; Sharma, J.R.; Manrao, M.R. Synthesis and antifungal potential of Co(II) complexes of 1-(2′-hydroxyphenyl) ethylideneanilines. Eur. J. Med. Chem., 2006, 41(2), 253-255.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.016] [PMID: 16256249]
[77]
Netalkar, P.P.; Netalkar, S.P.; Budagumpi, S.; Revankar, V.K. Synthesis, crystal structures and characterization of late first row transition metal complexes derived from benzothiazole core: anti-tuberculosis activity and special emphasis on DNA binding and cleavage property. Eur. J. Med. Chem., 2014, 79, 47-56.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.083] [PMID: 24721314]
[78]
Shebl, M.; Khalil, S.M.E.; Taha, A.; Mahdi, M.A.N. Synthesis, spectroscopic studies, molecular modeling and antimicrobial activity of binuclear Co(II) and Cu(II) complexes of 4,6-diacetylresorcinol. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 113, 356-366.
[http://dx.doi.org/10.1016/j.saa.2013.04.131] [PMID: 23743042]
[79]
Kamalakannan, P.; Venkappayya, D. Synthesis and characterization of cobalt and nickel chelates of 5-dimethylaminomethyl-2-thiouracil and their evaluation as antimicrobial and anticancer agents. J. Inorg. Biochem., 2002, 90(1-2), 22-37.
[http://dx.doi.org/10.1016/S0162-0134(02)00413-0] [PMID: 12009252]
[80]
Ibrahim, S.A.; Makhlouf, M.T.; Abdel-Hafez, A.A.; Moharram, A.M. Some transition metal chelates of 8-hydroxyquinoline-5-sulfonamides as possible drugs. J. Inorg. Biochem., 1986, 28(1), 57-65.
[http://dx.doi.org/10.1016/0162-0134(86)80023-X] [PMID: 3760863]
[81]
Herrero, L.A.; Cerro-Garrido, J.C.; Terrón-Homar, A. A calorimetric study of 3d metal ions-acyclovir interactions. The 2-hydroxyethoxymethyl group of acyclovir mimics the role of ribose in deoxy-guanosine and guanosine promoting the coordination through N(7). J. Inorg. Biochem., 2001, 86(4), 677-680.
[http://dx.doi.org/10.1016/S0162-0134(01)00228-8] [PMID: 11583785]
[82]
Anitha, C.; Sheela, C.D.; Tharmaraj, P.; Sumathi, S. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 493-500.
[http://dx.doi.org/10.1016/j.saa.2012.05.053] [PMID: 22728967]
[83]
Gao, F.; Yang, P.; Xie, J.; Wang, H. Synthesis, characterization and antibacterial activity of novel Fe(III), Co(II), and Zn(II) complexes with norfloxacin. J. Inorg. Biochem., 1995, 60(1), 61-67.
[http://dx.doi.org/10.1016/0162-0134(95)00002-6] [PMID: 7595471]
[84]
Betanzos-Lara, S.; Chmel, N.P.; Zimmerman, M.T.; Barrón-Sosa, L.R.; Garino, C.; Salassa, L.; Rodger, A.; Brumaghim, J.L.; Gracia-Mora, I.; Barba-Behrens, N. Redox-active and DNA-binding coordination complexes of clotrimazole. Dalton Trans., 2015, 44(8), 3673-3685.
[http://dx.doi.org/10.1039/C4DT02883J] [PMID: 25561277]
[85]
Sharma, R.C.; Varshney, V.K. Antimicrobial and cytotoxic activity of transition metal chelates with some heterocyclic imines. J. Inorg. Biochem., 1991, 41(4), 299-304.
[http://dx.doi.org/10.1016/0162-0134(91)80023-B] [PMID: 2056311]
[86]
Keypour, H.; Mahmoudabadi, M.; Shooshtari, A.; Bayat, M.; Karamian, R.; Asadbegy, M.; Gable, R.W. Synthesis, crystal structure, theoretical studies and biological properties of three novel trigonal prismatic Co(II), Ni(II) and Cu(II) macrocyclic Schiff base complexes incorporating piperazine moiety. Inorg. Chim. Acta, 2018, 478, 176-186.
[http://dx.doi.org/10.1016/j.ica.2018.02.028]
[87]
Weiqun, Z.; Wen, Y.; Liqun, X.; Xianchen, C. N-Benzoyl-N'-dialkylthiourea derivatives and their Co(III) complexes: structure, and antifungal. J. Inorg. Biochem., 2005, 99(6), 1314-1319.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.03.004] [PMID: 15917085]
[88]
Nagar, R.; Mohan, G. Synthetic and pharmacological studies on some transition metal chelates involving N-pyrimidino benzamide-2-carboxylic acid as ligand. J. Inorg. Biochem., 1991, 42(1), 9-16.
[http://dx.doi.org/10.1016/0162-0134(91)80027-F] [PMID: 2066740]
[89]
Geraghty, M.; McCann, M.; Devereux, M.; McKee, V. Syntheses and anti-candida activity of cobalt(II) complexes of octanedioic acid (odaH2) and nonanedioic acid (ndaH2); X-ray crystal structures of [Co(phen)3]oda.14H2O and [Co(phen)3]nda.11. 5H2O(phen=1,10-phenanthroline). Inorg. Chim. Acta, 1999, 293(2), 160-166.
[http://dx.doi.org/10.1016/S0020-1693(99)00232-7]
[90]
Sönmez, M.; Berber, I.; Akbaş, E. Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. Eur. J. Med. Chem., 2006, 41(1), 101-105.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.003] [PMID: 16293349]
[91]
Karekal, M.R.; Biradar, V.; Mathada, M.B.H. Synthesis, characterization, antimicrobial, DNA cleavage, and antioxidant studies of some metal complexes derived from Schiff base containing indole and quinoline moieties. Bioinorg. Chem. Appl., 2013, 2013 315972
[http://dx.doi.org/10.1155/2013/315972] [PMID: 24194692]
[92]
Al-Masoudi, W.A.; Faaz, R.A.; Al-Asadi, R.H.; Jabbar, H.S. Synthesis, antimicrobial activity and modelling studies of some new metal complexes of Schiff base derived from sulphonamide drug in vitro. Eur. J. Chem., 2016, 7(1), 102-106.
[http://dx.doi.org/10.5155/eurjchem.7.1.102-106.1374]
[93]
Arun, T.R.; Raman, N. Antimicrobial efficacy of phenanthrenequinone based Schiff base complexes incorporating methionine amino acid: structural elucidation and in vitro bio assay. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 127, 292-302.
[http://dx.doi.org/10.1016/j.saa.2014.02.074] [PMID: 24632238]
[94]
Ajibade, P.A.; Kolawole, G.A.; O’Brien, P.; Helliwell, M.; Raftery, J. Cobalt(II) comple- xes of the antibiotic sulfadiazine, the X-ray single crystal structure of.[Co(C10H9N4 O2S)2 (CH3OH)2] Inorg. Chim. Acta, 2006, 359(10), 3111-3116.
[http://dx.doi.org/10.1016/j.ica.2006.03.030]
[95]
Bellú, S.; Hure, E.; Trapé, M.; Trossero, C.; Molina, G.; Drogo, C.; Williams, P.A.M.; Atria, A.M.; Muñoz Acevedo, J.C.; Zacchino, S.; Sortino, M.; Campagnoli, D.; Rizzotto, M. Synthesis, structure and antifungal properties of Co(II)-sulfathiazolate complexes. Polyhedron, 2005, 24(4), 501-509.
[http://dx.doi.org/10.1016/j.poly.2004.12.017]
[96]
Nielsen, F.H. Ultratrace elements in nutrition. Annu. Rev. Nutr., 1984, 4, 21-41.
[http://dx.doi.org/10.1146/annurev.nu.04.070184.000321] [PMID: 6087860]
[97]
Walsh, C.T.; Orme-Johnson, W.H. Nickel enzymes. Biochemistry, 1987, 26(16), 4901-4906.
[http://dx.doi.org/10.1021/bi00390a001] [PMID: 3311157]
[98]
Boer, J.L.; Mulrooney, S.B.; Hausinger, R.P. Nickel-dependent metalloenzymes. Arch. Biochem. Biophys., 2014, 544, 142-152.
[http://dx.doi.org/10.1016/j.abb.2013.09.002] [PMID: 24036122]
[99]
Krishna, N.R.S.; Pattabhi, V.; Rajan, S.S. Metal induced conformational changes in human insulin: crystal structures of Sr2+, Ni2+ and Cu2+ complexes of human insulin. Protein Pept. Lett., 2011, 18(5), 457-466.
[http://dx.doi.org/10.2174/092986611794927929] [PMID: 21171943]
[100]
Jouad, E.M.; Larcher, G.; Allain, M.; Riou, A.; Bouet, G.M.; Khan, M.A.; Thanh, X.D. Synthesis, structure and biological activity of nickel(II) complexes of 5-methyl 2-furfural thiosemicarbazone. J. Inorg. Biochem., 2001, 86(2-3), 565-571.
[http://dx.doi.org/10.1016/S0162-0134(01)00220-3] [PMID: 11566328]
[101]
Chaudhary, R.G.; Tanna, J.A.; Gandhare, N.V.; Rai, A.R.; Juneja, H.D. Synthesis of nickel nanoparticles: microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv. Mater. Lett., 2015, 6(611), 990-998.
[http://dx.doi.org/10.5185/amlett.2015.5901]
[102]
Rowinska-Zyrek, M.; Zakrzewska-Czerwinska, J.; Zawilak-Pawlik, A.; Kozlowski, H. Ni2+ chemistry in pathogens-a possible target for eradication. Dalton Trans., 2014, 43(24), 8976-8989.
[http://dx.doi.org/10.1039/C4DT00421C] [PMID: 24781528]
[103]
Chen, W.; Li, Y.; Cui, Y.; Zhang, X.; Zhu, H.L.; Zeng, Q. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. Eur. J. Med. Chem., 2010, 45(10), 4473-4478.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.007] [PMID: 20691510]
[104]
Dharmaraja, J.; Subbaraj, P.; Esakkidurai, T.; Shobana, S. Coordination behavior and bio-potent aspects of Ni(II) with 2-aminobenzamide and some amino acid mixed ligands-Part II: Synthesis, spectral, morphological, pharmacological and DNA interaction studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 604-614.
[http://dx.doi.org/10.1016/j.saa.2014.04.184] [PMID: 24892541]
[105]
Genc, Z.K.; Selcuk, S.; Sandal, S.; Colak, N.; Keser, S.; Sekerci, M.; Karatepe, M. Spectroscopic, antiproliferative and antiradical properties of Cu(II), Ni(II), and Zn(II) complexes with amino acid based Schiff bases. Med. Chem. Res., 2014, 23(5), 2476-2485.
[http://dx.doi.org/10.1007/s00044-013-0826-7]
[106]
Ibrahim, S.A.; El-Gahami, M.A.; Khafagi, Z.A.; El-Gyar, S.A. Structure and antimicrobial activity of some new azopyrazolone chelates of Ni(II) and Cu(II) acetates, sulfates, and nitrates. J. Inorg. Biochem., 1991, 43(1), 1-7.
[http://dx.doi.org/10.1016/0162-0134(91)84063-F] [PMID: 1940898]
[107]
Kokare, D.G.; Naik, K.; Nevrekar, A.; Kotian, A.; Kamat, V.; Revankar, V.K. Synthesis and spectroscopic characterization of transition metal complexes derived from novel benzofuran hydrazone chelating ligand: DNA cleavage studies and antimicrobial activity with special emphasis on antituberculosis. Appl. Organomet. Chem., 2016, 30(4), 181-187.
[http://dx.doi.org/10.1002/aoc.3413]
[108]
Thomachan, S.; Sindhu, S.; John, V.D. Cytotoxic and antifungal activities of curcuminoid analogue with methyl substituted phenyl ring and the transition metal chelates. IOSR-JAC, 2015, 8(9), 19-25.
[http://dx.doi.org/10.9790/5736-08911925 ]
[109]
Cvek, B.; Milacic, V.; Taraba, J.; Dou, Q.P. Ni(II), Cu(II), and Zn(II) diethyldithiocarbamate complexes show various activities against the proteasome in breast cancer cells. J. Med. Chem., 2008, 51(20), 6256-6258.
[http://dx.doi.org/10.1021/jm8007807] [PMID: 18816109]
[110]
Akbar Ali, M.; Mirza, A.H.; Butcher, R.J.; Tarafder, M.T.H.; Ali, M.A. Synthetic, spectroscopic, biological and X-ray crystallographic structural studies on a novel pyridine-nitrogen-bridged dimeric nickel(II) complex of a pentadentate N3S2 ligand. Inorg. Chim. Acta, 2001, 320(1-2), 1-6.
[http://dx.doi.org/10.1016/S0020-1693(01)00452-2]
[111]
Özbek, N.; Alyar, S.; Alyar, H.; Şahin, E.; Karacan, N. Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 108, 123-132.
[http://dx.doi.org/10.1016/j.saa.2013.01.005] [PMID: 23466322]
[112]
Hunter, T.M.; Paisey, S.J.; Park, H.S.; Cleghorn, L.; Parkin, A.; Parsons, S.; Sadler, P.J. Configurations of metallocyclams and relevance to anti-HIV activity. J. Inorg. Biochem., 2004, 98(5), 713-719.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.10.018] [PMID: 15134916]
[113]
El-Sawaf, A.K.; El-Essawy, F.; Nassar, A.A.; El-Samanody, E.S.A. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand. J. Mol. Struct., 2018, 1157, 381-394.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.075]
[114]
Kasuga, N.C.; Sekino, K.; Koumo, C.; Shimada, N.; Ishikawa, M.; Nomiya, K. Synthesis, structural characterization and antimicrobial activities of 4- and 6-coordinate nickel(II) complexes with three thiosemicarbazones and semicarbazone ligands. J. Inorg. Biochem., 2001, 84(1-2), 55-65.
[http://dx.doi.org/10.1016/S0162-0134(00)00221-X] [PMID: 11330482]
[115]
Afrasiabi, Z.; Sinn, E.; Lin, W.; Ma, Y.; Campana, C.; Padhye, S. Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: synthesis, structure, spectroscopy, and biological activity. J. Inorg. Biochem., 2005, 99(7), 1526-1531.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.04.012] [PMID: 15927263]
[116]
Selvamurugan, S.; Ramachandran, R.; Vijayan, P.; Manikandan, R.; Prakash, G.; Viswanathamurthi, P.; Velmurugan, K.; Nandhakumar, R.; Endo, A. Synthesis, crystal structure and biological evaluation of Ni(II) complexes containing 4-chromone-N(4)-substituted thiosemicarbazone ligands. Polyhedron, 2016, 107, 57-67.
[http://dx.doi.org/10.1016/j.poly.2016.01.011]
[117]
Vijayan, P.; Viswanathamurthi, P.; Velmurugan, K.; Nandhakumar, R.; Balakumaran, M.D.; Kalaichelvan, P.T.; Malecki, J.G. Nickel(II) and copper(II) complexes constructed with N2S2 hybrid benzamidine-thiosemicarbazone ligand: synthesis, X-ray crystal structure, DFT, kinetico-catalytic and in vitro biological applications. RSC Advances, 2015, 5(125), 103321-103342.
[http://dx.doi.org/10.1039/C5RA18568H]
[118]
del Campo, R.; Criado, J.J.; García, E.; Hermosa, M.R.; Jiménez-Sánchez, A.; Manzano, J.L.; Monte, E.; Rodríguez-Fernández, E.; Sanz, F. Thiourea derivatives and their nickel(II) and platinum(II) complexes: antifungal activity. J. Inorg. Biochem., 2002, 89(1-2), 74-82.
[http://dx.doi.org/10.1016/S0162-0134(01)00408-1] [PMID: 11931966]
[119]
del Campo, R.; Criado, J.J.; Gheorghe, R.; González, F.J.; Hermosa, M.R.; Sanz, F.; Manzano, J.L.; Monte, E.; Rodríguez-Fernández, E. N-benzoyl-N'-alkylthioureas and their complexes with Ni(II), Co(III) and Pt(II) - crystal structure of 3-benzoyl-1-butyl-1-methyl-thiourea: activity against fungi and yeast. J. Inorg. Biochem., 2004, 98(8), 1307-1314.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.03.019] [PMID: 15271506]
[120]
Singh, K.; Kumar, Y.; Puri, P.; Sharma, C.; Aneja, K.R. Antimicrobial, spectral and thermal studies of divalent cobalt, nickel, copper and zinc complexes with triazole Schiff bases. Arab. J. Chem., 2017, 10, S978-S987.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.038]
[121]
Madsen, E.; Gitlin, J.D. Copper and iron disorders of the brain. Annu. Rev. Neurosci., 2007, 30, 317-337.
[http://dx.doi.org/10.1146/annurev.neuro.30.051606.094232] [PMID: 17367269]
[122]
Borkow, G.; Gabbay, J. Copper as a biocidal tool. Curr. Med. Chem., 2005, 12(18), 2163-2175.
[http://dx.doi.org/10.2174/0929867054637617] [PMID: 16101497]
[123]
Sorenson, J.R.J. Inflammatory Diseases and Copper, 1st ed; , 1982.
[http://dx.doi.org/10.1007/978-1-4612-5829-2]
[124]
Ruiz, M.; Perelló, L.; Ortiz, R.; Castiñeiras, A.; Maichle-Mössmer, C.; Cantón, E. Synthesis, characterization, and crystal structure of [Cu(cinoxacinate)2 2H2O complex: a square-planar CuO4 chromophore. Antibacterial studies. J. Inorg. Biochem., 1995, 59(4), 801-810.
[http://dx.doi.org/10.1016/0162-0134(94)00068-L] [PMID: 7595467]
[125]
Devereux, M.; McCann, M.; Shea, D.O.; Kelly, R.; Egan, D.; Deegan, C.; Kavanagh, K.; McKee, V.; Finn, G. Synthesis, antimicrobial activity and chemotherapeutic potential of inorganic derivatives of 2-(4′-thiazolyl) benzimidazole [thiabendazole]: X-ray crystal structures of [Cu(TBZH)2Cl]Cl.H2O.EtOH and TBZH2NO3 (TBZH= thia- bendazole). J. Inorg. Biochem., 2004, 98(6), 1023-1031.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.02.020] [PMID: 15149811]
[126]
Simó, B.; Perelló, L.; Ortiz, R.; Castiñeiras, A.; Latorre, J.; Cantón, E. Interactions of metal ions with a 2,4-diaminopyrimidine derivative (trimethoprim). Antibacterial studies. J. Inorg. Biochem., 2000, 81(4), 275-283.
[http://dx.doi.org/10.1016/S0162-0134(00)00118-5] [PMID: 11065191]
[127]
Dalecki, A.G.; Haeili, M.; Shah, S.; Speer, A.; Niederweis, M.; Kutsch, O.; Wolschendorf, F. Disulfiram and copper ions kill Mycobacterium tuberculosis in a synergistic manner. Antimicrob. Agents Chemother., 2015, 59(8), 4835-4844.
[http://dx.doi.org/10.1128/AAC.00692-15] [PMID: 26033731]
[128]
Segla, P.; Mikloš, D.; Olejníková, P.; Kaliňáková, B.; Hudecová, D.; Palicová, M.; Švorec, J.; Valko, M.; Melník, M.; Glowiak, T. Copper(II) pyridinecarboxylate adducts with chelating ligands as potential antimicrobial agents. Inorg. Chim. Acta, 2004, 357, 4172-4180.
[http://dx.doi.org/10.1016/j.ica.2004.06.047]
[129]
Lemoine, P.; Viossat, B.; Morgant, G.; Greenaway, F.T.; Tomas, A.; Dung, N.H.; Sorenson, J.R. Synthesis, crystal structure, EPR properties, and anti-convulsant activities of binuclear and mononuclear 1,10-phenanthroline and salicylate ternary copper(II) complexes. J. Inorg. Biochem., 2002, 89(1-2), 18-28.
[http://dx.doi.org/10.1016/S0162-0134(01)00324-5] [PMID: 11931959]
[130]
Ruiz-Azuara, L.; Bravo-Gómez, M.E. Copper compounds in cancer chemo- therapy. Curr. Med. Chem., 2010, 17(31), 3606-3615.
[http://dx.doi.org/10.2174/092986710793213751] [PMID: 20846116]
[131]
Shah, S.; Dalecki, A.G.; Malalasekera, A.P.; Crawford, C.L.; Michalek, S.M.; Kutsch, O.; Sun, J.; Bossmann, S.H.; Wolschendorf, F. 8-Hydroxyquinolines are boosting agents of copper-related toxicity in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2016, 60(10), 5765-5776.
[http://dx.doi.org/10.1128/AAC.00325-16] [PMID: 27431227]
[132]
Gershon, H.; Clarke, D.D.; Gershon, M. Synergistic antifungal action of 8-quinolinol and its bischelate with copper(II) and with mixed ligand chelates composed of copper(II), 8-quinolinol, and aromatic hydroxy acids. J. Pharm. Sci., 1989, 78(11), 975-978.
[http://dx.doi.org/10.1002/jps.2600781120] [PMID: 2516124]
[133]
Szczepanik, W.; Dworniczek, E.; Ciesiołka, J.; Wrzesiński, J.; Skała, J.; Jezowska-Bojczuk, M. In vitro oxidative activity of cupric complexes of kanamycin A in comparison to in vivo bactericidal efficacy. J. Inorg. Biochem., 2003, 94(4), 355-364.
[http://dx.doi.org/10.1016/S0162-0134(03)00029-1] [PMID: 12667707]
[134]
Djoko, K.Y.; Goytia, M.M.; Donnelly, P.S.; Schembri, M.A.; Shafer, W.M.; McEwan, A.G. Copper(II)-bis (thiosemicarbazonato) complexes as antibacterial agents: insights into their mode of action and potential as therapeutics. Antimicrob. Agents Chemother., 2015, 59(10), 6444-6453.
[http://dx.doi.org/10.1128/AAC.01289-15] [PMID: 26239980]
[135]
Djoko, K.Y.; Achard, M.E.S.; Phan, M-D.; Lo, A.W.; Miraula, M.; Prombhul, S.; Hancock, S.J.; Peters, K.M.; Sidjabat, H.; Harris, P.N.; Mitić, N.; Walsh, T.R.; Anderson, G.J.; Shafer, W.M.; Paterson, D.L.; Schenk, G.; McEwan, A.G.; Schembri, M.A. Copper ions and coordination complexes as novel carbapenem adjuvants. Antimicrob. Agents Chemother., 2018, 62(2), e02280-e17.
[http://dx.doi.org/10.1128/AAC.02280-17] [PMID: 29133551]
[136]
Creaven, B.S.; Egan, D.A.; Karcz, D.; Kavanagh, K.; McCann, M.; Mahon, M.; Noble, A.; Thati, B.; Walsh, M. Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid and 4-methylcoumarin-6,7-dioxyacetic acid: X-ray crystal structures of [Cu(cdoa)(phen)28. 8H2O and [Cu(4-Mecdoa)(phen)2 13H2O. J. Inorg. Biochem., 2007, 101(8), 1108-1119.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.04.010] [PMID: 17555821]
[137]
Sayen, S.; Carlier, A.; Tarpin, M.; Guillon, E. A novel copper(II) mononuclear complex with the non-steroidal anti-inflammatory drug diclofenac: structural characterization and biological activity. J. Inorg. Biochem., 2013, 120, 39-43.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.12.002] [PMID: 23280425]
[138]
Dorotíková, S.; Kožíšková, J.; Malček, M.; Jomová, K.; Herich, P.; Plevová, K.; Briestenská, K.; Chalupková, A.; Mistríková, J.; Milata, V.; Dvoranová, D.; Bučinský, L. Copper(II) complexes with new fluoroquinolones: synthesis, structure, spectroscopic and theoretical study, DNA damage, cytotoxicity and antiviral activity. J. Inorg. Biochem., 2015, 150, 160-173.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.06.017] [PMID: 26116423]
[139]
Haeili, M.; Moore, C.; Davis, C.J.C.; Cochran, J.B.; Shah, S.; Shrestha, T.B.; Zhang, Y.; Bossmann, S.H.; Benjamin, W.H.; Kutsch, O.; Wolschendorf, F. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2014, 58(7), 3727-3736.
[http://dx.doi.org/10.1128/AAC.02316-13] [PMID: 24752262]
[140]
Rodríguez-Argüelles, M.C.; López-Silva, E.C.; Sanmartín, J.; Pelagatti, P.; Zani, F. Copper complexes of imidazole-2-, pyrrole-2- and indol-3-carbaldehyde thiosemicarbazones: inhibitory activity against fungi and bacteria. J. Inorg. Biochem., 2005, 99(11), 2231-2239.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.07.018] [PMID: 16188319]
[141]
Loginova, N.V.; Gres, A.T.; Polozov, G.I.; Koval’chuk, T.V.; Osipovich, N.P.; Zheldakova, R.A.; Faletrov, Y.V.; Strakha, I.S.; Azarko, I.I. Redox-active metal(II) complexes of sterically hindered phenolic ligands: antibacterial activity and reduction of cytochrome C. Part III. Copper(II) complexes of cycloaminomethyl derivatives of o-diphenols. Polyhedron, 2013, 57, 39-46.
[http://dx.doi.org/10.1016/j.poly.2013.04.015]
[142]
Malhotra, R.; Singh, J.P.; Dudeja, M.; Dhindsa, K.S. Ligational behavior of N-substituted acid hydrazides towards transition metals and potentiation of their microbiocidal activity. J. Inorg. Biochem., 1992, 46(2), 119-127.
[http://dx.doi.org/10.1016/0162-0134(92)80015-N] [PMID: 1522414]
[143]
Psomas, G.; Tarushi, A.; Efthimiadou, E.K.; Sanakis, Y.; Raptopoulou, C.P.; Katsaros, N. Synthesis, structure and biological activity of copper(II) complexes with oxolinic acid. J. Inorg. Biochem., 2006, 100(11), 1764-1773.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.06.012] [PMID: 16904184]
[144]
Tamasi, G.; Serinelli, F.; Consumi, M.; Magnani, A.; Casolaro, M.; Cini, R. Release studies from smart hydrogels as carriers for piroxicam and copper(II)-oxicam complexes as anti-inflammatory and anti-cancer drugs. X-ray structures of new copper(II)-piroxicam and -isoxicam complex molecules. J. Inorg. Biochem., 2008, 102(10), 1862-1873.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.06.009] [PMID: 18667239]
[145]
Srivastva, A.N.; Singh, N.P.; Shriwastaw, C.K. In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation. Arab. J. Chem., 2016, 9(1), 48-61.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.004]
[146]
Gómez-Saiz, P.; Gil-García, R.; Maestro, M.A.; Pizarro, J.L.; Arriortua, M.I.; Lezama, L.; Rojo, T.; González-Alvarez, M.; Borrás, J.; García-Tojal, J. Structure, magnetic properties and nuclease activity of pyridine-2-carbaldehyde thiosemicarba- zonecopper(II) complexes. J. Inorg. Biochem., 2008, 102(10), 1910-1920.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.06.015] [PMID: 18692903]
[147]
Patil, S.A.; Prabhakara, C.T.; Halasangi, B.M.; Toragalmath, S.S.; Badami, P.S. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 641-651.
[http://dx.doi.org/10.1016/j.saa.2014.08.028] [PMID: 25244297]
[148]
Tarafder, M.T.; Jin, K.T.; Crouse, K.A.; Ali, A.; Yamin, B.; Fun, H.K. Coordination chemistry and bioactivity of Ni2+, Cu2+, Cd2+ and Zn2+ complexes containing bidentate Schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structure of bis[S-benzyl-β-N-(5-methyl-2-furylmethylene) dithiocarbazato] cadmium(II). Polyhedron, 2002, 21(25–26), 2547-2554.
[http://dx.doi.org/10.1016/S0277-5387(02)01188-9]
[149]
Chaviara, A.T.; Christidis, P.C.; Papageorgiou, A.; Chrysogelou, E.; Hadjipavlou-Litina, D.J.; Bolos, C.A. In vivo anticancer, anti-inflammatory, and toxicity studies of mixed-ligand Cu(II) complexes of dien and its Schiff dibases with heterocyclic aldehydes and 2-amino-2-thiazoline. Crystal structure of [Cu(dien)(Br)(2a-2tzn)](Br) (H(2)O). J. Inorg. Biochem., 2005, 99(11), 2102-2109.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.07.011] [PMID: 16144711]
[150]
Li, G.Y.; Du, K.J.; Wang, J.Q.; Liang, J.W.; Kou, J.F.; Hou, X.J.; Ji, L.N.; Chao, H. Synthesis, crystal structure, DNA interaction and anticancer activity of tridentate copper(II) complexes. J. Inorg. Biochem., 2013, 119, 43-53.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.09.019]] [PMID: 23186647]
[151]
Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr., 1990, 51(2), 225-227.
[http://dx.doi.org/10.1093/ajcn/51.2.225] [PMID: 2407097]
[152]
Kirkil, G.; Hamdi Muz, M.; Seçkin, D.; Sahin, K.; Küçük, O. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir. Med., 2008, 102(6), 840-844.
[http://dx.doi.org/10.1016/j.rmed.2008.01.010] [PMID: 18295467]
[153]
Ronconi, L.; Sadler, P.J. Using coordination chemistry to design new medicines. Coord. Chem. Rev., 2007, 251, 1633-1648.
[http://dx.doi.org/10.1016/j.ccr.2006.11.017]
[154]
Sharma, R.C.; Parashar, R.K. Synthesis and biocidal activity of Zn(II) complexes of some 2,2′-substituted diphenylamines. J. Inorg. Biochem., 1987, 29(3), 225-230.
[http://dx.doi.org/10.1016/0162-0134(87)80029-6] [PMID: 3553430]
[155]
Vasile, B.S.; Oprea, O.; Voicu, G.; Ficai, A.; Andronescu, E.; Teodorescu, A.; Holban, A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin-chitosan composite with potential applications in wounds care. Int. J. Pharm., 2014, 463(2), 161-169.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.035] [PMID: 24291078]
[156]
Shalumon, K.T.; Anulekha, K.H.; Nair, S.V.; Nair, S.V.; Chennazhi, K.P.; Jayakumar, R. Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int. J. Biol. Macromol., 2011, 49(3), 247-254.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.04.005] [PMID: 21635916]
[157]
Agren, M.S.; Franzén, L.; Chvapil, M. Effects on wound healing of zinc oxide in a hydrocolloid dressing. J. Am. Acad. Dermatol., 1993, 29(2 Pt 1), 221-227.
[http://dx.doi.org/10.1016/0190-9622(93)70172-P] [PMID: 8335742]
[158]
Cai, R.; Wang, H.; Cao, M.; Hao, L.; Zhai, L.; Jiang, S.; Li, X. Synthesis and antimicrobial activity of mesoporous hydroxylapatite/zinc oxide nanofibers. Mater. Des., 2015, 87, 17-24.
[http://dx.doi.org/10.1016/j.matdes.2015.08.004]
[159]
Lemoine, P.; Viossat, B.; Dung, N.H.; Tomas, A.; Morgant, G.; Greenaway, F.T.; Sorenson, J.R.J. Synthesis, crystal structures, and anti-convulsant activities of ternary [Zn(II) (3,5-diisopropylsalicylate)(2)], [Zn(II)(salicylate)(2)] and [Zn(II)(aspirinate)(2)] complexes. J. Inorg. Biochem., 2004, 98(11), 1734-1749.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.07.010] [PMID: 15522401]
[160]
Dendrinou-Samara, C.; Tsotsou, G.; Ekateriniadou, L.V.; Kortsaris, A.H.; Raptopoulou, C.P.; Terzis, A.; Kyriakidis, D.A.; Kessissoglou, D.P. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions. J. Inorg. Biochem., 1998, 71(3-4), 171-179.
[http://dx.doi.org/10.1016/S0162-0134(98)10051-X] [PMID: 9833323]
[161]
Montazerozohori, M.; Zahedi, S.; Naghiha, A.; Zohour, M.M. Synthesis, characterization and thermal behavior of antibacterial and antifungal active zinc complexes of bis (3(4-dimethylaminophenyl)-allylidene-1,2-diaminoethane. Mater. Sci. Eng. C, 2014, 35, 195-204.
[http://dx.doi.org/10.1016/j.msec.2013.10.030] [PMID: 24411369]
[162]
Yadav, M.; Behera, D. Synthesis, characterization, and biological activity of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes of N-thiophenoyl-N′-phenylthiocarbohydrazide. J. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/721397]
[163]
Kashar, T.I.; El-Sehli, A.H. Synthesis, characterization, antimicrobial and anticancer activity of Zn(II), Pd(II) and Ru(III) complexes of dehydroacetic acid hydrazone. J. Chem. Pharm. Res., 2013, 5(11), 474-483.
[164]
Thomas, M.; Craik, J.D.; Tovmasyan, A.; Batinic-Haberle, I.; Benov, L.T. Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol., 2015, 10(5), 709-724.
[http://dx.doi.org/10.2217/fmb.14.148] [PMID: 26000647]
[165]
Li, Y.; Yang, Z.Y.; Wu, J.C. Synthesis, crystal structures, biological activities and fluorescence studies of transition metal complexes with 3-carbaldehyde chromone thiosemicarbazone. Eur. J. Med. Chem., 2010, 45(12), 5692-5701.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.025] [PMID: 20884087]
[166]
Fauci, A.S.; Touchette, N.A.; Folkers, G.K. Emerging infectious diseases: a 10-year perspective from the national institute of allergy and infectious diseases. Emerg. Infect. Dis., 2005, 11(4), 519-525.
[http://dx.doi.org/10.3201/eid1104.041167] [PMID: 15829188]
[167]
Leeb, M. Antibiotics: a shot in the arm. Nature, 2004, 431(7011), 892-893.
[http://dx.doi.org/10.1038/431892a] [PMID: 15496888]
[168]
Singh, N. Trends in the epidemiology of opportunistic fungal infections: predisposing factors and the impact of antimicrobial use practices. Clin. Infect. Dis., 2001, 33(10), 1692-1696.
[http://dx.doi.org/10.1086/323895] [PMID: 11641825]
[169]
Astruc, D. Electron Transfer and Radical Processes in Transition Metal Chemistry, 1st ed; , 1995.
[170]
Hirao, T. Conjugated systems composed of transition metals and redox-active π-conjugated ligands. Coord. Chem. Rev., 2002, 226(1-2), 81-91.
[http://dx.doi.org/10.1016/S0010-8545(01)00436-2]
[171]
Pierpont, C.G. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands. Coord. Chem. Rev., 2001, 216-217, 99-125.
[http://dx.doi.org/10.1016/S0010-8545(01)00309-5]
[172]
Lange, C.W.; Pierpont, C.G. Nickel complexes containing catecholate, benzoquinone and semiquinone radical ligands. Inorg. Chim. Acta, 1997, 263(1-2), 219-224.
[http://dx.doi.org/10.1016/S0020-1693(97)05649-1]
[173]
Shadyro, O.I.; Edimecheva, I.P.; Glushonok, G.K.; Ostrovskaya, N.I.; Polozov, G.I.; Murase, H.; Kagiya, T. Effects of phenolic compounds on reactions involving various organic radicals. Free Radic. Res., 2003, 37(10), 1087-1097.
[http://dx.doi.org/10.1080/10715760310001600417] [PMID: 14703798]
[174]
Ksendzova, G.A.; Sorokin, V.L.; Edimecheva, I.P.; Shadyro, O.I. Reactions of arylamine and aminophenol derivatives, and riboflavin with organic radicals. Free Radic. Res., 2004, 38(11), 1183-1190.
[http://dx.doi.org/10.1080/10715760400016162] [PMID: 15621695]
[175]
Shadyro, O.; Ksendzova, G.; Polozov, G.; Sorokin, V.; Boreko, E.; Savinova, O.; Dubovik, B.; Bizunok, N. Synthesis and study of antiviral and anti-radical properties of aminophenol derivatives. Bioorg. Med. Chem. Lett., 2008, 18(7), 2420-2423.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.055] [PMID: 18334296]
[176]
Shadyro, O.I.; Sorokin, V.L.; Ksendzova, G.A.; Pavlova, N.I.; Savinova, O.V.; Boreko, E.I. Synthesis and antiviral activity of sterically hindered o-aminophenol derivatives. Pharm. Chem. J., 2012, 46(7), 414-417.
[http://dx.doi.org/10.1007/s11094-012-0812-2]
[177]
Loginova, N.V.; Polozov, G.I.; Koval’chuk, T.V.; Faletrov, Y.V.; Osipovich, N.P.; Gres, A.T.; Zheldakova, R.A.; Shadyro, O.I. Pharmacologically active benzene derivatives: Synthesis, complexation with biometals, and biological evaluation of sterically hindered 1,2-dihydroxybenzene and o-aminophenol derivatives. Benzene and its Derivatives: New Uses and Impacts on Environment and Human Health, 2012, 23-68.
[178]
Coyle, B.; Kinsella, P.; McCann, M.; Devereux, M.; O’Connor, R.; Clynes, M.; Kavanagh, K. Induction of apoptosis in yeast and mammalian cells by exposure to 1,10-phenanthroline metal complexes. Toxicol. In Vitro, 2004, 18(1), 63-70.
[http://dx.doi.org/10.1016/j.tiv.2003.08.011] [PMID: 14630063]
[179]
Fadeeva, M.S.; Bertsova, Y.V.; Euro, L.; Bogachev, A.V. Cys377 residue in NqrF subunit confers Ag(+) sensitivity of Na+-translocating NADH: quinone oxidoreductase from Vibrio harveyi. Biochemistry (Mosc.), 2011, 76(2), 186-195.
[http://dx.doi.org/10.1134/S0006297911020040] [PMID: 21568851]
[180]
Docampo, R.; Moreno, S.N. Free radical metabolism of antiparasitic agents. Fed. Proc., 1986, 45(10), 2471-2476.
[PMID: 3017765]
[181]
Loginova, N.V.; Chernyavskaya, A.A.; Polozov, G.I.; Koval’chuk, T.V.; Bondarenko, E.V.; Osipovich, N.P.; Sheryakov, A.A.; Shadyro, O.I. Silver(I) interaction and complexation with sterically hindered sulfur-containing diphenol derivatives. Polyhedron, 2005, 24, 611-618.
[http://dx.doi.org/10.1016/j.poly.2005.01.007]
[182]
Loginova, N.V.; Koval’chuk, T.V.; Zheldakova, R.A.; Chernyavskaya, A.A.; Osipovich, N.P.; Glushonok, G.K.; Polozov, H.I.; Sorokin, V.L.; Shadyro, O.I. Copper (II) complexes of sterically hindered o-diphenol derivatives: synthesis, characterization and microbiological studies. Cent. Eur. J. Chem., 2006, 4(3), 440-457.
[http://dx.doi.org/10.2478/s11532-006-0025-1]
[183]
Loginova, N.V.; Koval’chuk, T.V.; Zheldakova, R.A.; Osipovich, N.P.; Sorokin, V.L.; Polozov, G.I.; Ksendzova, G.A.; Glushonok, G.K.; Chernyavskaya, A.A.; Shadyro, O.I. Synthesis and biological evaluation of copper (II) complexes of sterically hindered o-aminophenol derivatives as antimicrobial agents. Bioorg. Med. Chem. Lett., 2006, 16(20), 5403-5407.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.065] [PMID: 16890430]
[184]
Loginova, N.V.; Koval’chuk, T.V.; Zheldakova, R.A.; Chernyavskaya, A.A.; Osipovich, N.P.; Glushonok, G.K.; Polozov, G.I.; Povalishev, V.N.; Sorokin, V.L.; Shadyro, O.I. Synthesis, characterization and antifungal activity of copper (II) complexes of sterically hindered o-diphenol derivatives. Polyhedron, 2006, 25(18), 3603-3610.
[http://dx.doi.org/10.1016/j.poly.2006.07.015]
[185]
Loginova, N.V.; Koval’chuk, T.V.; Polozov, G.I.; Osipovich, N.P.; Rytik, P.G.; Kucherov, I.I.; Chernyavskaya, A.A.; Sorokin, V.L.; Shadyro, O.I. Synthesis, characterization, antifungal and anti-HIV activities of metal(II) complexes of 4,6-di-tert-butyl-3-[(2-hydroxy-ethyl)thio]benzene-1,2-diol. Eur. J. Med. Chem., 2008, 43(7), 1536-1542.
[http://dx.doi.org/10.1016/j.ejmech.2007.09.024] [PMID: 17996335]
[186]
Loginova, N.V.; Koval’chuk, T.V.; Osipovich, N.P.; Polozov, G.I.; Sorokin, V.L.; Chernyavskaya, A.A.; Shadyro, O.I. Redox-active antifungal cobalt(II) and copper(II) complexes with sterically hindered o-aminophenol derivatives. Polyhedron, 2008, 27, 985-991.
[http://dx.doi.org/10.1016/j.poly.2007.11.028]
[187]
Loginova, N.V.; Koval’chuk, T.V.; Polozov, G.I.; Osipovich, N.P.; Chernyavskaya, A.A.; Sorokin, V.L.; Shadyro, O.I. Redox-active antimicrobial metal complexes with sterically hindered o-diphenol and o-aminophenol derivatives. Biometals: Molecular Structures., Binding Properties. 2010, 59-90.
[188]
Loginova, N.V.; Faletrov, Y.V.; Koval’chuk, T.V.; Osipovich, N.P.; Polozov, G.I.; Chernyavskaya, A.A.; Zheldakova, R.A.; Azarko, I.I.; Gres, A.T.; Shadyro, O.I.; Shkumatov, V.M. Redox-active metal(II) complexes of sterically hindered phenolic ligands: antibacterial activity and reduction of cytochrome c. Polyhedron, 2010, 29, 1646-1652.
[http://dx.doi.org/10.1016/j.poly.2010.02.007]
[189]
Loginova, N.V.; Koval’chuk, T.V.; Faletrov, Y.V.; Halauko, Y.S.; Osipovich, N.P.; Polozov, G.I.; Shadyro, O.I. Redox-active metal(II) complexes of sterically hindered phenolic ligands: antibacterial activity and reduction of cytochrome c. Part II. Metal(II) complexes of o-diphenol derivatives of thioglycolic acid. Polyhedron, 2011, 30, 2581-2591.
[http://dx.doi.org/10.1016/j.poly.2011.07.008]
[190]
Loginova, N.V.; Chernyavskaya, A.A.; Polozov, G.I.; Osipovich, N.P.; Koval’chuk, T.V.; Gres, A.T.; Halauko, Y.S.; Halauko, A.S.; Zheldakova, R.A.; Faletrov, Y.V.; Azarko, I.I. Bioactive silver(I) complexes with phenolic derivatives of thioglycolic and thiopropionic acids. Mini Rev. Org. Chem., 2013, 10, 227-240.
[http://dx.doi.org/10.2174/1570193X11310030003]
[191]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[192]
Pellack-Walker, P.; Walker, J.K.; Evans, H.H.; Blumer, J.L. Relationship between the oxidation potential of benzene metabolites and their inhibitory effect on DNA synthesis in L5178YS cells. Mol. Pharmacol., 1985, 28(6), 560-566.
[PMID: 4079912]
[193]
Stoyanovsky, D.A.; Goldman, R.; Claycamp, H.G.; Kagan, V.E. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity. Arch. Biochem. Biophys., 1995, 317(2), 315-323.
[http://dx.doi.org/10.1006/abbi.1995.1169] [PMID: 7893144]
[194]
Ames, J.R.; Ryan, M.D.; Kovacic, P. Mechanism of antibacterial action: electron transfer and oxy radicals. J. Free Radic. Biol. Med., 1986, 2(5-6), 377-391.
[http://dx.doi.org/10.1016/S0748-5514(86)80040-X] [PMID: 3598067]
[195]
Huycke, M.M.; Abrams, V.; Moore, D.R. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis, 2002, 23(3), 529-536.
[http://dx.doi.org/10.1093/carcin/23.3.529] [PMID: 11895869]
[196]
McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 1969, 244(22), 6049-6055.
[PMID: 5389100]
[197]
Omar, B.A.; Flores, S.C.; McCord, J.M. Superoxide dismutase: pharmacological developments and applications. Adv. Pharmacol., 1992, 23, 109-161.
[http://dx.doi.org/10.1016/S1054-3589(08)60964-3] [PMID: 1531762]
[198]
Czapski, G.; Goldstein, S. Requirements for SOD mimics operating in vitro to work also in vivo. Free Radic. Res. Commun., 1991, 12-13(Pt 1), 167-171.
[http://dx.doi.org/10.3109/10715769109145782] [PMID: 1649084]
[199]
Guha, A.; Chattopadhyay, T.; Paul, N.D.; Mukherjee, M.; Goswami, S.; Mondal, T.K.; Zangrando, E.; Das, D. Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands. Inorg. Chem., 2012, 51(16), 8750-8759.
[http://dx.doi.org/10.1021/ic300400v] [PMID: 22867434]
[200]
Riley, D.P. Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem. Rev., 1999, 99(9), 2573-2588.
[http://dx.doi.org/10.1021/cr980432g]] [PMID: 11749493]
[201]
Loginova, N.V.; Koval’chuk, T.V.; Osipovich, N.P.; Faletrov, Y.V.; Halauko, Y.S.; Polozov, G.I.; Gres’, A.T.; Harbatsevich, H.I.; Hlushko, A.V. Zheldakova; R.A.; Shkumatov, V.M. Redox-Active Silver(I) Complexes with Sterically Hindered 1,2-Dihydroxybenzene Derivatives: Reduction of Cytochrome C and Antimicrobial Activity. Cytochromes B and C: Biochemical Properties., Biological Functions and Electrochemical Analysis. 2014, 121-172.
[202]
Loginova, N.V.; Koval’chuk, T.V.; Gres, A.T.; Osipovich, N.P.; Polozov, G.I.; Halauko, Y.S.; Faletrov, Y.V.; Harbatsevich, H.I.; Hlushko, A.V.; Azarko, I.I.; Bokshits, Yu.V. Redox-active metal complexes of sterically hindered phenolic ligands: anti-bacterial activity and reduction of cytochrome c. Part IV. Silver(I) complexes with hydrazone and thiosemicarbazone derivatives of 4,6-di-tert-butyl-2,3-dihydroxybenz- aldehyde. Polyhedron, 2015, 88, 125-137.
[http://dx.doi.org/10.1016/j.poly.2014.12.014]
[203]
Karthikeyan, M.S.; Prasad, D.J.; Poojary, B.; Subrahmanya Bhat, K.; Holla, B.S.; Kumari, N.S. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorg. Med. Chem., 2006, 14(22), 7482-7489.
[http://dx.doi.org/10.1016/j.bmc.2006.07.015] [PMID: 16879972]
[204]
Loginova, N.V.; Harbatsevich, H.I.; Koval’chuk, T.V.; Osipovich, N.P.; Halauko, Y.S.; Faletrov, Y.V.; Gres, A.T. Redox-active metal complexes with cycloaminomethyl derivatives of diphenols: antibacterial and sod-like activity, reduction of cytochrome c. Antibacterials: Synthesis., Properties and Biological Activities. 2017, 143-180.
[205]
Harbatsevich, H.I.; Loginova, N.V.; Nabebina, K.A.; Stakhevicn, S.I.; Slabko, I.N.; Osipovich, N.P.; Ksendzova, G.A.; Azarko, I.I. Bioactive Ni(II) complexes with catechol derivatives.. 2017. (1), 58-64.
[206]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[207]
Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 1997, 22(5), 749-760.
[http://dx.doi.org/10.1016/S0891-5849(96)00351-6] [PMID: 9119242]
[208]
Dinis, T.C.P.; Maderia, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 1994, 315(1), 161-169.
[http://dx.doi.org/10.1006/abbi.1994.1485] [PMID: 7979394]
[209]
Adjimani, J.P.; Asare, P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Rep., 2015, 2, 721-728.
[http://dx.doi.org/10.1016/j.toxrep.2015.04.005] [PMID: 28962407]
[210]
Oyaizu, M. Studies on products of browning reaction. antioxidative activities of products of browning reaction prepared from glucosamine. Japan. J. Nutr. Diet., 1986, 44(6), 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[211]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[212]
Kadish, K.; Smith, K.M.; Guilard, R. Biochemistry and Binding: Activation of Small Molecules; The Porphyrin Handbook 1st ed, 2000. 4.
[213]
Rappoport, Z. The Chemistry of Phenols, 2003.2.
[http://dx.doi.org/10.1002/0470857277]
[214]
Lipscomb, W.N.; Sträter, N. Recent advances in zinc enzymology. Chem. Rev., 1996, 96(7), 2375-2434.
[http://dx.doi.org/10.1021/cr950042j] [PMID: 11848831]
[215]
Harbatsevich, H.I.; Loginova, N.V.; Nabebina, K.A.; Stakhevich, S.I.; Slabko, I.N.; Osipovich, N.P.; Ksendzova, G.A.; Azarko, I.I. Nickel(II) complexes with ‘non-innocent’ ligands - cycloaminomethyl derivatives of 1,2-dihydroxybenzene: SOD-like and antimicrobial activity. RAD Journal, 2017, 2(2), 129-133.
[http://dx.doi.org/10.21175/RadJ.2017.02.027]
[216]
Malachowski, M.R.; Tomlinson, L.J.; Davidson, M.G.; Hall, M.J. Impact of geometric changes on the oxidation of catechol by copper(II) complexes. J. Coord. Chem., 1992, 25(2), 171-174.
[http://dx.doi.org/10.1080/00958979209409749]
[217]
Macyk, J.; Van Eldik, R. Kinetics of the reduction of cytochrome c by [FeII(edta)(H2O)]2: Outer-sphere vs. inner-sphere electron transfer mechanisms. Dalton Trans., 2003, (13), 2704-2709.
[http://dx.doi.org/10.1039/B301424J]
[218]
Yandell, J. Kinetics of oxidation of reduced cytochrome c by aquacopper(II) and chlorocopper(II) complexes in the presence of oxygen. Aust. J. Chem., 1981, 34(1), 99.
[http://dx.doi.org/10.1071/CH9810099]
[219]
Huycke, M.M.; Moore, D.; Joyce, W.; Wise, P.; Shepard, L.; Kotake, Y.; Gilmore, M.S. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol. Microbiol., 2001, 42(3), 729-740.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02638.x] [PMID: 11722738]
[220]
Lokesh, B.R.; Cunningham, M.L. Further studies on the formation of oxygen potassium superoxide in aqueous medium for investigations. Toxicol. Lett., 1986, 34, 75-84.
[http://dx.doi.org/10.1016/0378-4274(86)90147-5] [PMID: 3024362]
[221]
Beauchamp, C.; Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 1971, 44(1), 276-287.
[http://dx.doi.org/10.1016/0003-2697(71)90370-8] [PMID: 4943714]
[222]
Sun, M.; Zigman, S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal. Biochem., 1978, 90(1), 81-89.
[http://dx.doi.org/10.1016/0003-2697(78)90010-6] [PMID: 727489]
[223]
Puget, K.; Michelson, A.M. Iron containing superoxide dismutases from luminous bacteria. Biochimie, 1974, 56(9), 1255-1267.
[http://dx.doi.org/10.1016/S0300-9084(74)80019-2] [PMID: 4451675]
[224]
Heikkila, R.E.; Cabbat, F. A sensitive assay for superoxide dismutase based on the autoxidation of 6-hydroxy-dopamine. Anal. Biochem., 1976, 75(2), 356-362.
[http://dx.doi.org/10.1016/0003-2697(76)90089-0] [PMID: 984400]
[225]
Fried, R. Enzymatic and non-enzymatic assay of superoxide dismutase. Biochimie, 1975, 57(5), 657-660.
[http://dx.doi.org/10.1016/S0300-9084(75)80147-7] [PMID: 171001]
[226]
Hyland, K.; Voisin, E.; Banoun, H.; Auclair, C. Superoxide dismutase assay using alkaline dimethylsulfoxide as superoxide anion-generating system. Anal. Biochem., 1983, 135(2), 280-287.
[http://dx.doi.org/10.1016/0003-2697(83)90684-X] [PMID: 6318599]
[227]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[228]
McCord, J.M.; Fridovich, I. The reduction of cytochrome c by milk xanthine oxidase. J. Biol. Chem., 1968, 243(21), 5753-5760.
[PMID: 4972775]
[229]
Salin, M.L.; McCord, J.M. Superoxide dismutases in polymorphonuclear leukocytes. J. Clin. Invest., 1974, 54(4), 1005-1009.
[http://dx.doi.org/10.1172/JCI107816] [PMID: 4430711]
[230]
Loginova, N.V.; Harbatsevich, H.I.; Koval’chuk, T.V.; Osipovich, N.P.; Halauko, Y.S.; Faletrov, Y.V.; Ksendzova, G.A.; Stakhevich, S.I.; Azarko, I.I. Antimicrobial and SOD-like activities of novel zinc(II) complexes with redox-active sterically hindered diphenols. Curr. Bioact. Compd., 2018, 14(4), 397-411.
[http://dx.doi.org/10.2174/1573407213666170614110911]
[231]
Ried, W. Formazane und Tetrazoliumsalze, ihre Synthesen und ihre Bedeutung als Reduktionsindikatoren und Vitalfarbstoffe. Angew. Chem., 1952, 64(14), 391-396.
[http://dx.doi.org/10.1002/ange.19520641403]
[232]
Speisky, H.; Gómez, M.; Carrasco-Pozo, C.; Pastene, E.; Lopez-Alarcón, C.; Olea-Azar, C. Cu(I)-glutathione complex: a potential source of superoxide radicals generation. Bioorg. Med. Chem., 2008, 16(13), 6568-6574.
[http://dx.doi.org/10.1016/j.bmc.2008.05.026] [PMID: 18515117]
[233]
Csire, G.; Demjén, J.; Timári, S.; Várnagy, K. Electrochemical and SOD activity studies of copper(II) complexes of bis (imidazol-2-yl) derivatives. Polyhedron, 2013, 61, 202-212.
[http://dx.doi.org/10.1016/j.poly.2013.05.053]
[234]
Shearer, J. Insight into the structure and mechanism of nickel-containing super- oxide dismutase derived from peptide-based mimics. Acc. Chem. Res., 2014, 47(8), 2332-2341.
[http://dx.doi.org/10.1021/ar500060s] [PMID: 24825124]
[235]
Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov., 2010, 5(3), 235-248.
[http://dx.doi.org/10.1517/17460441003605098] [PMID: 22823020]
[236]
Kimura, E.; Sakonaka, A.; Nakamoto, M. Superoxide dismutase activity of macrocyclic polyamine complexes. Biochim. Biophys. Acta, 1981, 678(2), 172-179.
[http://dx.doi.org/10.1016/0304-4165(81)90203-8] [PMID: 6895604]
[237]
González-Alvarez, M.; Alzuet, G.; Borrás, J.; del Castillo Agudo, L.; García-Granda, S.; Montejo-Bernardo, J.M. Comparison of protective effects against reactive oxygen species of mononuclear and dinuclear Cu(II) complexes with N-substituted benzothiazolesulfonamides. Inorg. Chem., 2005, 44(25), 9424-9433.
[http://dx.doi.org/10.1021/ic050110c] [PMID: 16323929]
[238]
Berberova, N.T.; Smolyaninov, I.V.; Okhlobystin, A.O.; Letichevskaya, N.N.; Shinkar, E.V. Structural features and electrochemical characteristics of transition metal complexes (Pt, Pd, Ni, Co) with non-innocent ligands. Mendeleev Chem. J., 2005, 59(5), 67-74.http://www.chem.msu.ru/rus/journals/jvho/2005-5/67.pdf
[239]
Wheeler, D.E.; Rodriguez, J.H.; McCusker, J.K. Density functional theory analysis of electronic structure variations across the orthoquinone/semiquinone/catechol redox series. J. Phys. Chem. A, 1999, 103(31), 6282-6282.
[http://dx.doi.org/10.1021/jp9920390]
[240]
Scholz, F. Electroanalytical Methods; Guide to Experiments and Applications, 2nd ed. , 2002.
[241]
Mann, C.K.; Barnes, K.K. Electrochemical Reactions in Nonaqueous Solvents, 1st ed; , 1970.
[242]
Korshunov, S.; Imlay, J.A. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol., 2006, 188(17), 6326-6334.
[http://dx.doi.org/10.1128/JB.00554-06] [PMID: 16923900]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 31
Year: 2020
Published on: 10 September, 2020
Page: [5213 - 5249]
Pages: 37
DOI: 10.2174/0929867326666190417143533
Price: $65

Article Metrics

PDF: 26
HTML: 2