Molecular Docking and Dynamics Simulation Analysis of Thymoquinone and Thymol Compounds from Nigella sativa L. that Inhibits P38 Protein: Probable Remedies for Hepatocellular Carcinoma

Author(s): Heena Tabassum, Iffat Z. Ahmad*

Journal Name: Medicinal Chemistry

Volume 16 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Currently, a novel antagonist against p38 is being designed and applied to inhibit hepatocellular carcinoma. Protein–ligand interaction plays a major role in the identification of the possible mechanism for the pharmacological action. The involvement of p38 remains an important target for anticancer drug development as its activation induces apoptosis in hepatoma cells.

Objective: The aim is to identify the best candidate from the plants of N. sativa which binds with the hepatocellular carcinoma (HCC) targets by computational approach.

Materials and Methods: The reported phytoconstituents such as thymoquinone and thymol present in the plant, N. sativa were docked with the HCC target such as p38. Structures of phytoconstituents were prepared using ChemDraw Ultra 10 software and converted into its 3D PDB structure and minimized using Discovery Studio client 2.5. The target protein, p38 was retrieved from RCSB PDB. Lipinski’s rule and ADMET toxicity profiling were carried out on the phytoconstituents of the N. sativa, and the compounds were further promoted for molecular docking and MD simulation analysis.

Results: The docking results revealed promising inhibitory potential of thymoquinone against p38 with binding energy of -7.67 kcal/mole as compared to its known standard doxorubicin having binding energy of -6.68 kcal/mol respectively. Further, molecular dynamic (MD) simulations for 5ns were conducted for optimization, flexibility prediction, and determination of folded p38 stability. The p38-thymoquinone complex was found to be quite stable with RMSD value of 0.2 nm.

Conclusion: Obtained results propose thymoquinone binding energy on the selected targets. Hence, this compound bears outstanding potential against hepatocellular carcinoma and has to be taken up for experimental work against hepatocellular carcinoma.

Keywords: Antioxidant, Nigella sativa, phytoconstituents, hepatocellular carcinoma, molecular docking, simulation.

[1]
Venook, A.P.; Papandreou, C.; Furuse, J.; de Guevara, L.L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist, 2010, 15, 5-13.
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet‐Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65, 87-108.
[3]
Boskabady, M.H.; Keyhanmanesh, R.; Saadatloo, M.A. Relaxant effects of different fractions from Nigella sativa L. on guinea pig tracheal chains and its possible mechanism(s). Indian J. Exp. Biol., 2008, 46, 805-810.
[4]
Shafiq, H.; Ahmad, A.; Masud, T.; Kaleem, M. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran. J. Basic Med. Sci., 2014, 17, 967-979.
[5]
Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res., 2000, 14, 323-328.
[6]
Randhawa, M.A.; Alghamdi, M.S. Anti-cancer activity of Nigella sativa (black seed) - a review. Am. J. Chin. Med., 2011, 39, 1075-1091.
[7]
Al-Ghamdi, M.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol., 2017, 6, 45-48.
[8]
Yildiz, F.; Coban, S.; Terzi, A.; Ates, M.; Aksoy, N.; Cakir, H.; Ocak, A.R.; Bitiren, M. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World J. Gastroenterol., 2008, 14, 5204-5209.
[9]
Coban, S.; Yildiz, F.; Terzi, A.; Behcet, A.; Nurten, B.; Muharrem, C. The effects of Nigella sativa on bile duct ligation induced liver injury in rats. Cell Biochem. Funct., 2010, 28, 83-88.
[10]
Kanter, M.; Coskun, O.; Budancamanac, M. Hepatoprotective effects of Nigella sativa L. and Urtica dioica L. on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride- treated rats. World J. Gastroenterol., 2005, 11, 6684-6688.
[11]
Abdel-Wahab, W.M. Protective effect of thymoquinone on sodium fluoride-induced hepatotoxicity and oxidative stress in rats. J. Basic Appl. Zool., 2013, 66, 263-270.
[12]
Slamenova, D.; Horvathova, E.; Sramkova, M.; Marsalkova, L. DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma, 2007, 54, 108-112.
[13]
Iyoda, K.; Sasaki, Y.; Horimoto, M.; Toyama, T.; Yakushijin, T.; Sakakibara, M.; Takehara, T.; Fujimoto, J.; Hori, M.; Wands, J.R.; Hayashi, N. Involvement of the p38 mitogen‐activated protein kinase cascade in hepatocellular carcinoma. Cancer, 2003, 97, 3017-3026.
[14]
Islam, M.H. Study of pharmacological activities of Nigella Sativa L seed extracts in different germination stages. PhD Thesis, Integral University Lucknow:. 2015.
[15]
Narayanaswamy, R.; Wai, L.K.; Ismail, I.S. Molecular docking studies of quinones against human Inducible Nitric Oxide Synthase (iNOS). J. Chem. Pharm. Res., 2017, 9, 39-44.
[16]
Alam, S.; Khan, F. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8, 183.
[17]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[18]
Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. Semiempirical free energy force field with charge based desolvation. J. Comput. Chem., 2007, 28, 1145-1152.
[19]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Chem. Theory Comput., 2008, 4, 1463-1472.
[20]
SchuÈttelkopf. A.W.; Van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D, 2004, 60, 1355-1363.
[21]
Van Gunsteren, W.F.; Billeter, S.; Eising, A.; Hünenberger, P.H.; Krüger, P.; Mark, A.E.; Scott, W.; Tironi, I.G. Biomolecular simulation: The GROMOS96 manual and user guide. 1996, 1, 1042.
[22]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[23]
Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4, 435-447.
[24]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1)014101
[25]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 1981, 52, 7182-7190.
[26]
Liu, Y.; Wang, X.; Wang, X.; Yu, R.; Liu, D.; Kang, C. De novo design of VEGFR-2 tyrosine kinase inhibitors based on a linked-fragment approach. J. Mol. Model., 2016, 22, 222.
[27]
Singh, S.; Gupta, A.K.; Verma, A. Molecular properties and bioactivity score of the Aloe vera antioxidant compounds – in order to lead finding. Res. J. Pharm. Biol. Chem. Sci., 2013, 4, 876-881.
[28]
Bonate, P.L.; Howard, D.R. Pharmacokinetics in Drug Development. Advances and Applications. Springer Science & Business Media, 2011, 3, 1-19.
[29]
Matlock, M.K.; Hughes, T.B.; Swamidass, S.J. XenoSite-Server: A web-available site of metabolism prediction tool. Bioinformatics, 2015, 31, 1136-1137.
[30]
Tsao, A.S.; Kim, E.S.; Hong, W.K. Chemoprevention of cancer. CA Cancer J. Clin., 2004, 54, 150-180.
[31]
Khan, M.K.A.; Siddiqui, M.H.; Akhtar, S.; Ahmad, K.; Baig, M.H.; Osama, K. Screening of plant-derived natural compounds as potent chemotherapeutic agents against breast cancer: An in silico approach. J. Chem. Pharmaceut. Res., 2015, 7, 519-526.
[32]
Khader, M.; Eckl, P.M. Thymoquinone: An emerging natural drug with a wide range of medical applications. Iran. J. Basic Med. Sci., 2014, 17, 950.
[33]
El-Tawil, O.; Moussa, S.Z. Antioxidant and hepatoprotective effects of thymoquinone against carbon tetrachloride-induced hepatotoxicity in isolated rat hepatocyte. J. Egypt. Soc. Toxicol., 2006, 34, 33-41.
[34]
Badary, O.A.; Taha, R.A.; Gamal el-Din, A.M.; Abdel-Wahab, M.H. Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol., 2003, 26, 87-98.
[35]
Al-Shabanah, O.A.; Badary, O.A.; Nagi, M.N. Al- Gharably N.M.; Al-Rikabi, A.C.; Al-Bekairi, A.M. Thymoquinone protects against doxorubicin- induce cardiotoxicity without compromising its antitumor activity. J. Exp. Clin. Cancer Res., 1998, 17, 193-198.
[36]
Badary, O.A.; Al-Shabanah, O.A.; Nagi, M.N.; Al-Rikabi, A.C.; Elmazar, M.M. Inhibition of benzo(a)pyrene-induced forestomach carcinogenesis in mice by thymoquinone. Eur. J. Cancer Prev., 1999, 8, 435-440.
[37]
Gedara, S.R. Terpenoid content of the leaves of Thymus algeriensis Boiss. Mans J. Pharm. Sci., 2008, 24, 133-143.
[38]
Hirobe, C.; Qiao, Z.S.; Takeya, K.; Itokawa, H. Cytotoxic principles from Majorana syriaca. Nat. Med., 1998, 52, 74-77.
[39]
Jayakumar, S.; Madankumar, A.; Asokkumar, S.; Raghunandhakumar, S.; Gokuladhas, K.; Kamaraj, S.; Divya, M.G.J.; Devaki, T. Potential preventive effect of carvacrol against diethylnitrosamineinduced hepatocellular carcinoma in rats. Mol. Cell. Biochem., 2012, 360, 51-60.
[40]
Mehta, N.; Ozick, L.A.; Gbadehan, E. Drug-induced hepatotoxicity. Basic Medical Biochemistry: A Clinical Approach; Williams and Wilkins, 2010, pp. 327-340.
[41]
Majdalawieh, A.F.; Fayyad, M.W.; Nasrallah, G.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr., 2017, 57, 3911-3928.
[42]
Koul, H.K.; Pal, M.; Koul, S. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer, 2013, 4, 342-359.
[43]
Zhang, A.; Lakshmanan, J.; Motameni, A.; Harbrecht, B.G. MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling. Mol. Cell. Biochem., 2018, 441, 89-98.
[44]
Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS One, 2013, 8, 75356.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2020
Published on: 16 April, 2020
Page: [350 - 357]
Pages: 8
DOI: 10.2174/1573406415666190416165732
Price: $65

Article Metrics

PDF: 21
HTML: 2