Metabolic Reprogramming of Cancer by Chemicals that Target Glutaminase Isoenzymes

Author(s): José M. Matés*, José A. Campos-Sandoval, Juan de los Santos-Jiménez, Juan A. Segura, Francisco J. Alonso, Javier Márquez

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 32 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Metabolic reprogramming of tumours is a hallmark of cancer. Among the changes in the metabolic network of cancer cells, glutaminolysis is a key reaction altered in neoplasms. Glutaminase proteins control the first step in glutamine metabolism and their expression correlates with malignancy and growth rate of a great variety of cancers. The two types of glutaminase isoenzymes, GLS and GLS2, differ in their expression patterns and functional roles: GLS has oncogenic properties and GLS2 has been described as a tumour suppressor factor.

Results: We have focused on glutaminase connections with key oncogenes and tumour suppressor genes. Targeting glutaminase isoenzymes includes different strategies aimed at deactivating the rewiring of cancer metabolism. In addition, we found a long list of metabolic enzymes, transcription factors and signalling pathways dealing with glutaminase. On the other hand, a number of chemicals have been described as isoenzyme-specific inhibitors of GLS and/or GLS2 isoforms. These molecules are being characterized as synergic and therapeutic agents in many types of tumours.

Conclusion: This review states the metabolic pathways that are rewired in cancer, the roles of glutaminase isoforms in cancer, as well as the metabolic circuits regulated by glutaminases. We also show the plethora of anticancer drugs that specifically inhibit glutaminase isoenzymes for treating several sets of cancer.

Keywords: Cancer metabolism, Combinatory therapy, Glutaminase isoenzymes, Glutamine, Glutaminase inhibitors, Metabolic reprogramming.

[1]
Cheng, Z.J.; Miao, D.L.; Su, Q.Y.; Tang, X.L.; Wang, X.L.; Deng, L.B.; Shi, H.D.; Xin, H.B. THZ1 suppresses human non-small-cell lung cancer cells in vitro through interference with cancer metabolism. Acta Pharmacol. Sin., 2019, 40(6), 814-822.
[http://dx.doi.org/10.1038/s41401-018-0187-3] [PMID: 30446732]
[2]
Schulte, M.L.; Fu, A.; Zhao, P.; Li, J.; Geng, L.; Smith, S.T.; Kondo, J.; Coffey, R.J.; Johnson, M.O.; Rathmell, J.C.; Sharick, J.T.; Skala, M.C.; Smith, J.A.; Berlin, J.; Washington, M.K.; Nickels, M.L.; Manning, H.C. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med., 2018, 24(2), 194-202.
[http://dx.doi.org/10.1038/nm.4464] [PMID: 29334372]
[3]
Lee, N.; Kim, D. Cancer metabolism: fueling more than just growth. Mol. Cells, 2016, 39(12), 847-854.
[http://dx.doi.org/10.14348/molcells.2016.0310] [PMID: 28030896]
[4]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[5]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov., 2011, 10(9), 671-684.
[http://dx.doi.org/10.1038/nrd3504] [PMID: 21878982]
[7]
Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the intersections between metabolism and cancer biology. Cell, 2017, 168(4), 657-669.
[http://dx.doi.org/10.1016/j.cell.2016.12.039] [PMID: 28187287]
[8]
Rajagopalan, K.N.; DeBerardinis, R.J. Role of glutamine in cancer: therapeutic and imaging implications. J. Nucl. Med., 2011, 52(7), 1005-1008.
[http://dx.doi.org/10.2967/jnumed.110.084244] [PMID: 21680688]
[9]
Marin-Valencia, I.; Yang, C.; Mashimo, T.; Cho, S.; Baek, H.; Yang, X.L.; Rajagopalan, K.N.; Maddie, M.; Vemireddy, V.; Zhao, Z.; Cai, L.; Good, L.; Tu, B.P.; Hatanpaa, K.J.; Mickey, B.E.; Matés, J.M.; Pascual, J.M.; Maher, E.A.; Malloy, C.R.; Deberardinis, R.J.; Bachoo, R.M. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab., 2012, 15(6), 827-837.
[http://dx.doi.org/10.1016/j.cmet.2012.05.001] [PMID: 22682223]
[10]
Kim, J.; DeBerardinis, R. J. Cancer. Silencing a metabolic oncogene. Science, 2013, 340(6132), 558-559.
[http://dx.doi.org/10.1126/science.1238523] [PMID: 23641103]
[11]
Stalnecker, C.A.; Ulrich, S.M.; Li, Y.; Ramachandran, S.; McBrayer, M.K.; DeBerardinis, R.J.; Cerione, R.A.; Erickson, J.W. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 394-399.
[http://dx.doi.org/10.1073/pnas.1414056112] [PMID: 25548170]
[12]
Ledford, H. Metabolic quirks yield tumour hope. Nature, 2014, 508(7495), 158-159.
[http://dx.doi.org/10.1038/508158a] [PMID: 24717486]
[13]
Deberardinis, R.J. A mitochondrial power play in lymphoma. Cancer Cell, 2012, 22(4), 423-424.
[http://dx.doi.org/10.1016/j.ccr.2012.09.023] [PMID: 23079653]
[14]
DeBerardinis, R.J. Serine metabolism: some tumors take the road less traveled. Cell Metab., 2011, 14(3), 285-286.
[http://dx.doi.org/10.1016/j.cmet.2011.08.004] [PMID: 21907134]
[15]
Yuneva, M.O.; Fan, T.W.; Allen, T.D.; Higashi, R.M.; Ferraris, D.V.; Tsukamoto, T.; Matés, J.M.; Alonso, F.J.; Wang, C.; Seo, Y.; Chen, X.; Bishop, J.M. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab., 2012, 15(2), 157-170.
[http://dx.doi.org/10.1016/j.cmet.2011.12.015] [PMID: 22326218]
[16]
Andronesi, O.C.; Arrillaga-Romany, I.C.; Ly, K.I.; Bogner, W.; Ratai, E.M.; Reitz, K.; Iafrate, A.J.; Dietrich, J.; Gerstner, E.R.; Chi, A.S.; Rosen, B.R.; Wen, P.Y.; Cahill, D.P.; Batchelor, T.T. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat. Commun., 2018, 9(1), 1474.
[http://dx.doi.org/10.1038/s41467-018-03905-6] [PMID: 29662077]
[17]
Hensley, C.T.; Faubert, B.; Yuan, Q.; Lev-Cohain, N.; Jin, E.; Kim, J.; Jiang, L.; Ko, B.; Skelton, R.; Loudat, L.; Wodzak, M.; Klimko, C.; McMillan, E.; Butt, Y.; Ni, M.; Oliver, D.; Torrealba, J.; Malloy, C.R.; Kernstine, K.; Lenkinski, R.E.; DeBerardinis, R.J. Metabolic heterogeneity in human lung tumors. Cell, 2016, 164(4), 681-694.
[http://dx.doi.org/10.1016/j.cell.2015.12.034] [PMID: 26853473]
[18]
Michalak, K.P.; Maćkowska-Kędziora, A.; Sobolewski, B.; Woźniak, P. Key roles of glutamine pathways in reprogramming the cancer metabolism. Oxid. Med. Cell. Longev., 2015, 2015, 964321.
[http://dx.doi.org/10.1155/2015/964321] [PMID: 26583064]
[19]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[20]
Alberghina, L.; Gaglio, D. Redox control of glutamine utilization in cancer. Cell Death Dis., 2014, 5e1561
[http://dx.doi.org/10.1038/cddis.2014.513] [PMID: 25476909]
[21]
Wise, D.R.; Thompson, C.B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci., 2010, 35(8), 427-433.
[http://dx.doi.org/10.1016/j.tibs.2010.05.003] [PMID: 20570523]
[22]
DeBerardinis, R.J.; Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 2010, 29(3), 313-324.
[http://dx.doi.org/10.1038/onc.2009.358] [PMID: 19881548]
[23]
DeBerardinis, R.J.; Mancuso, A.; Daikhin, E.; Nissim, I.; Yudkoff, M.; Wehrli, S.; Thompson, C.B. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19345-19350.
[http://dx.doi.org/10.1073/pnas.0709747104] [PMID: 18032601]
[24]
Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, 123(9), 3678-3684.
[http://dx.doi.org/10.1172/JCI69600] [PMID: 23999442]
[25]
Seltzer, M.J.; Bennett, B.D.; Joshi, A.D.; Gao, P.; Thomas, A.G.; Ferraris, D.V.; Tsukamoto, T.; Rojas, C.J.; Slusher, B.S.; Rabinowitz, J.D.; Dang, C.V.; Riggins, G.J. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res., 2010, 70(22), 8981-8987.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1666] [PMID: 21045145]
[26]
Damiani, C.; Colombo, R.; Gaglio, D.; Mastroianni, F.; Pescini, D.; Westerhoff, H.V.; Mauri, G.; Vanoni, M.; Alberghina, L. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLOS Comput. Biol., 2017, 13(9), e1005758.
[http://dx.doi.org/10.1371/journal.pcbi.1005758] [PMID: 28957320]
[27]
Ma, L.; Tao, Y.; Duran, A.; Llado, V.; Galvez, A.; Barger, J.F.; Castilla, E.A.; Chen, J.; Yajima, T.; Porollo, A.; Medvedovic, M.; Brill, L.M.; Plas, D.R.; Riedl, S.J.; Leitges, M.; Diaz-Meco, M.T.; Richardson, A.D.; Moscat, J. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell, 2013, 152(3), 599-611.
[http://dx.doi.org/10.1016/j.cell.2012.12.028] [PMID: 23374352]
[28]
Amoedo, N.D.; Obre, E.; Rossignol, R. Drug discovery strategies in the field of tumor energy metabolism: limitations by metabolic flexibility and metabolic resistance to chemotherapy. Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 674-685.
[http://dx.doi.org/10.1016/j.bbabio.2017.02.005] [PMID: 28213330]
[29]
Mullen, A.R.; Wheaton, W.W.; Jin, E.S.; Chen, P.H.; Sullivan, L.B.; Cheng, T.; Yang, Y.; Linehan, W.M.; Chandel, N.S.; DeBerardinis, R.J. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 2011, 481(7381), 385-388.
[http://dx.doi.org/10.1038/nature10642] [PMID: 22101431]
[30]
Devic, S. Warburg effect - a consequence or the cause of carcinogenesis? J. Cancer, 2016, 7(7), 817-822.
[http://dx.doi.org/10.7150/jca.14274] [PMID: 27162540]
[31]
Wilde, L.; Roche, M.; Domingo-Vidal, M.; Tanson, K.; Philp, N.; Curry, J.; Martinez-Outschoorn, U. Metabolic coupling and the reverse warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin. Oncol., 2017, 44(3), 198-203.
[http://dx.doi.org/10.1053/j.seminoncol.2017.10.004] [PMID: 29248131]
[32]
Soga, T. Cancer metabolism: key players in metabolic reprogramming. Cancer Sci., 2013, 104(3), 275-281.
[http://dx.doi.org/10.1111/cas.12085] [PMID: 23279446]
[33]
Peng, X.; Chen, Z.; Farshidfar, F.; Xu, X.; Lorenzi, P.L.; Wang, Y.; Cheng, F.; Tan, L.; Mojumdar, K.; Du, D.; Ge, Z.; Li, J.; Thomas, G.V.; Birsoy, K.; Liu, L.; Zhang, H.; Zhao, Z.; Marchand, C.; Weinstein, J.N.; Bathe, O.F.; Liang, H. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep., 2018, 23, 255-269.
[http://dx.doi.org/10.1016/j.celrep.2018.03.077] [PMID: 29617665]
[34]
Matés, J.M.; Segura, J.A.; Martín-Rufián, M.; Campos-Sandoval, J.A.; Alonso, F.J.; Márquez, J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med., 2013, 13(4), 514-534.
[http://dx.doi.org/10.2174/1566524011313040005] [PMID: 22934847]
[35]
Márquez, J.; Matés, J.M.; Alonso, F.J.; Martín-Rufián, M.; Lobo, C.; Campos-Sandoval, J.A. Canceromics studies un-ravel tumour’s glutamine addiction after metabolic repro-gramming in: Tumour cell metabolism: pathways, regulation and biology; Mazurek, S.; Shoshan, M; Verlag, S., Ed.; Vienna, 2015, pp. 257-286.
[36]
Cassago, A.; Ferreira, A.P.; Ferreira, I.M.; Fornezari, C.; Gomes, E.R.; Greene, K.S.; Pereira, H.M.; Garratt, R.C.; Dias, S.M.; Ambrosio, A.L. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc. Natl. Acad. Sci. USA, 2012, 109(4), 1092-1097.
[http://dx.doi.org/10.1073/pnas.1112495109] [PMID: 22228304]
[37]
Márquez, J.; Matés, J.M.; Campos-Sandoval, J.A. Glutaminases. In:The glutamate/GABA/glutamine cycle: amino acid neurotransmitter homeostasis. Advances in neurobiology; Sonnewald, U.; Schousboe, A., Eds.; Springer Verlag: Vienna, 2016, pp. 133-171.
[38]
Thangavelu, K.; Pan, C.Q.; Karlberg, T.; Balaji, G.; Uttamchandani, M.; Suresh, V.; Schüler, H.; Low, B.C.; Sivaraman, J. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc. Natl. Acad. Sci. USA, 2012, 109(20), 7705-7710.
[http://dx.doi.org/10.1073/pnas.1116573109] [PMID: 22538822]
[39]
Wang, J.B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.; Dias, S.M.; Dang, C.V.; Cerione, R.A. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 2010, 18(3), 207-219.
[http://dx.doi.org/10.1016/j.ccr.2010.08.009] [PMID: 20832749]
[40]
de la Rosa, V.; Campos-Sandoval, J.A.; Martín-Rufián, M.; Cardona, C.; Matés, J.M.; Segura, J.A.; Alonso, F.J.; Márquez, J. A novel glutaminase isoform in mammalian tissues. Neurochem. Int., 2009, 55(1-3), 76-84.
[http://dx.doi.org/10.1016/j.neuint.2009.02.021] [PMID: 19428810]
[41]
Martín-Rufián, M.; Tosina, M.; Campos-Sandoval, J.A.; Manzanares, E.; Lobo, C.; Segura, J.A.; Alonso, F.J.; Matés, J.M.; Márquez, J. Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One, 2012, 7(6), e38380.
[http://dx.doi.org/10.1371/journal.pone.0038380] [PMID: 22679499]
[42]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[43]
Daye, D.; Wellen, K.E. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol., 2012, 23(4), 362-369.
[http://dx.doi.org/10.1016/j.semcdb.2012.02.002] [PMID: 22349059]
[44]
Yang, C.; Sudderth, J.; Dang, T.; Bachoo, R.M.; McDonald, J.G.; DeBerardinis, R.J. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res., 2009, 69(20), 7986-7993.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2266] [PMID: 19826036]
[45]
Jiang, L.; Shestov, A.A.; Swain, P.; Yang, C.; Parker, S.J.; Wang, Q.A.; Terada, L.S.; Adams, N.D.; McCabe, M.T.; Pietrak, B.; Schmidt, S.; Metallo, C.M.; Dranka, B.P.; Schwartz, B.; DeBerardinis, R.J. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 2016, 532(7598), 255-258.
[http://dx.doi.org/10.1038/nature17393] [PMID: 27049945]
[46]
Peterse, E.F.P.; Niessen, B.; Addie, R.D.; de Jong, Y.; Cleven, A.H.G.; Kruisselbrink, A.B.; van den Akker, B.E.W.M.; Molenaar, R.J.; Cleton-Jansen, A.M.; Bovée, J.V.M.G. Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation. Br. J. Cancer, 2018, 118(8), 1074-1083.
[http://dx.doi.org/10.1038/s41416-018-0050-9] [PMID: 29576625]
[47]
Zhang, C.; Liu, J.; Zhao, Y.; Yue, X.; Zhu, Y.; Wang, X.; Wu, H.; Blanco, F.; Li, S.; Bhanot, G.; Haffty, B.G.; Hu, W.; Feng, Z. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. eLife, 2016, 5, e10727.
[http://dx.doi.org/10.7554/eLife.10727] [PMID: 26751560]
[48]
Romero, R.; Sayin, V.I.; Davidson, S.M.; Bauer, M.R.; Singh, S.X.; LeBoeuf, S.E.; Karakousi, T.R.; Ellis, D.C.; Bhutkar, A.; Sánchez-Rivera, F.J.; Subbaraj, L.; Martinez, B.; Bronson, R.T.; Prigge, J.R.; Schmidt, E.E.; Thomas, C.J.; Goparaju, C.; Davies, A.; Dolgalev, I.; Heguy, A.; Allaj, V.; Poirier, J.T.; Moreira, A.L.; Rudin, C.M.; Pass, H.I.; Vander Heiden, M.G.; Jacks, T.; Papagiannakopoulos, T. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med., 2017, 23(11), 1362-1368.
[http://dx.doi.org/10.1038/nm.4407] [PMID: 28967920]
[49]
Xiao, D.; Ren, P.; Su, H.; Yue, M.; Xiu, R.; Hu, Y.; Liu, H.; Qing, G. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget, 2015, 6(38), 40655-40666.
[http://dx.doi.org/10.18632/oncotarget.5821] [PMID: 26528759]
[50]
Anso, E.; Mullen, A.R.; Felsher, D.W.; Matés, J.M.; Deberardinis, R.J.; Chandel, N.S. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab., 2013, 1(1), 7.
[http://dx.doi.org/10.1186/2049-3002-1-7] [PMID: 24280108]
[51]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[52]
Wise, D.R.; DeBerardinis, R.J.; Mancuso, A.; Sayed, N.; Zhang, X.Y.; Pfeiffer, H.K.; Nissim, I.; Daikhin, E.; Yudkoff, M.; McMahon, S.B.; Thompson, C.B. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA, 2008, 105(48), 18782-18787.
[http://dx.doi.org/10.1073/pnas.0810199105] [PMID: 19033189]
[53]
Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; Kang, Y.; Fleming, J.B.; Bardeesy, N.; Asara, J.M.; Haigis, M.C.; DePinho, R.A.; Cantley, L.C.; Kimmelman, A.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496(7443), 101-105.
[http://dx.doi.org/10.1038/nature12040] [PMID: 23535601]
[54]
Elgogary, A.; Xu, Q.; Poore, B.; Alt, J.; Zimmermann, S.C.; Zhao, L.; Fu, J.; Chen, B.; Xia, S.; Liu, Y.; Neisser, M.; Nguyen, C.; Lee, R.; Park, J.K.; Reyes, J.; Hartung, T.; Rojas, C.; Rais, R.; Tsukamoto, T.; Semenza, G.L.; Hanes, J.; Slusher, B.S.; Le, A. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(36), E5328-E5336.
[http://dx.doi.org/10.1073/pnas.1611406113] [PMID: 27559084]
[55]
Lee, Y.Z.; Yang, C.W.; Chang, H.Y.; Hsu, H.Y.; Chen, I.S.; Chang, H.S.; Lee, C.H.; Lee, J.C.; Kumar, C.R.; Qiu, Y.Q.; Chao, Y.S.; Lee, S.J. Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget, 2014, 5(15), 6087-6101.
[http://dx.doi.org/10.18632/oncotarget.2173] [PMID: 25026281]
[56]
Tan, H.W.S.; Sim, A.Y.L.; Long, Y.C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun., 2017, 8(1), 338.
[http://dx.doi.org/10.1038/s41467-017-00369-y] [PMID: 28835610]
[57]
Dang, C.V.; Hamaker, M.; Sun, P.; Le, A.; Gao, P. Therapeutic targeting of cancer cell metabolism. J. Mol. Med. (Berl.), 2011, 89(3), 205-212.
[http://dx.doi.org/10.1007/s00109-011-0730-x] [PMID: 21301795]
[58]
Shukla, S.K.; Purohit, V.; Mehla, K.; Gunda, V.; Chaika, N.V.; Vernucci, E.; King, R.J.; Abrego, J.; Goode, G.D.; Dasgupta, A.; Illies, A.L.; Gebregiworgis, T.; Dai, B.; Augustine, J.J.; Murthy, D.; Attri, K.S.; Mashadova, O.; Grandgenett, P.M.; Powers, R.; Ly, Q.P.; Lazenby, A.J.; Grem, J.L.; Yu, F.; Matés, J.M.; Asara, J.M.; Kim, J.W.; Hankins, J.H.; Weekes, C.; Hollingsworth, M.A.; Serkova, N.J.; Sasson, A.R.; Fleming, J.B.; Oliveto, J.M.; Lyssiotis, C.A.; Cantley, L.C.; Berim, L.; Singh, P.K. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell, 2017, 32(1), 71-87.e7.
[http://dx.doi.org/10.1016/j.ccell.2017.06.004] [PMID: 28697344]
[59]
Herranz, D.; Ambesi-Impiombato, A.; Sudderth, J.; Sánchez-Martín, M.; Belver, L.; Tosello, V.; Xu, L.; Wendorff, A.A. Castillo. M.; Haydu, JE.; Márquez, J.; Matés, J.M.; Kung, AL.; Rayport, S.; Cordon-Cardo, C.; DeBerardinis, R.J.; Ferrando, A.A. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukaemia. Nat. Med., 2015, 21, 1182-1189.
[http://dx.doi.org/10.1038/nm.3955] [PMID: 26390244]
[60]
Zhang, X.D.; Qin, Z.H.; Wang, J. The role of p53 in cell metabolism. Acta Pharmacol. Sin., 2010, 31(9), 1208-1212.
[http://dx.doi.org/10.1038/aps.2010.151] [PMID: 20729871]
[61]
Hur, M.W.; Yoon, J.H.; Kim, M.Y.; Ko, H.; Jeon, B.N. Kr-POK (ZBTB7c) regulates cancer cell proliferation through glutamine metabolism. Biochim. Biophys. Acta. Gene Regul. Mech., 2017, 1860(8), 829-838.
[http://dx.doi.org/10.1016/j.bbagrm.2017.05.005] [PMID: 28571744]
[62]
Zhao, J.; Zhou, R.; Hui, K.; Yang, Y.; Zhang, Q.; Ci, Y.; Shi, L.; Xu, C.; Huang, F.; Hu, Y. Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget, 2017, 8(12), 18832-18847.
[http://dx.doi.org/10.18632/oncotarget.13600] [PMID: 27902968]
[63]
Sullivan, L.B.; Chandel, N.S. Mitochondrial reactive oxygen species and cancer. Cancer Metab., 2014, 2, 17.
[http://dx.doi.org/10.1186/2049-3002-2-17] [PMID: 25671107]
[64]
Suzuki, S.; Tanaka, T.; Poyurovsky, M.V.; Nagano, H.; Mayama, T.; Ohkubo, S.; Lokshin, M.; Hosokawa, H.; Nakayama, T.; Suzuki, Y.; Sugano, S.; Sato, E.; Nagao, T.; Yokote, K.; Tatsuno, I.; Prives, C. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7461-7466.
[http://dx.doi.org/10.1073/pnas.1002459107] [PMID: 20351271]
[65]
Rathore, M.G.; Saumet, A.; Rossi, J.F.; de Bettignies, C.; Tempé, D.; Lecellier, C.H.; Villalba, M. The NF-κB member p65 controls glutamine metabolism through miR-23a. Int. J. Biochem. Cell Biol., 2012, 44(9), 1448-1456.
[http://dx.doi.org/10.1016/j.biocel.2012.05.011] [PMID: 22634383]
[66]
Liu, Z.; Wang, J.; Li, Y.; Fan, J.; Chen, L.; Xu, R. MicroRNA-153 regulates glutamine metabolism in glioblastoma through targeting glutaminase. Tumour Biol., 2017, 39(2), 1010428317691429.
[http://dx.doi.org/10.1177/1010428317691429] [PMID: 28218035]
[67]
Xia, H.L.; Lv, Y.; Xu, C.W.; Fu, M.C.; Zhang, T.; Yan, X.M.; Dai, S.; Xiong, Q.W.; Zhou, Y.; Wang, J.; Cao, X. MiR-513c suppresses neuroblastoma cell migration, invasion, and proliferation through direct targeting glutaminase (GLS). Cancer Biomark., 2017, 20(4), 589-596.
[http://dx.doi.org/10.3233/CBM-170577] [PMID: 28800318]
[68]
Chang, X.; Zhu, W.; Zhang, H.; Lian, S. Sensitization of melanoma cells to temozolomide by overexpression of microRNA 203 through direct targeting of glutaminase-mediated glutamine metabolism. Clin. Exp. Dermatol., 2017, 42(6), 614-621.
[http://dx.doi.org/10.1111/ced.13119] [PMID: 28597996]
[69]
Song, Z.; Wei, B.; Lu, C.; Li, P.; Chen, L. Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncol. Lett., 2017, 14(3), 3117-3123.
[http://dx.doi.org/10.3892/ol.2017.6538] [PMID: 28928849]
[70]
Alix-Panabières, C.; Cayrefourcq, L.; Mazard, T.; Maudelonde, T.; Assenat, E.; Assou, S. Molecular portrait of me-tastasis-competent circulating tumor cells in colon cancer reveals the crucial role of genes regulating energy metabolism and DNA repair. Clin. Chem., 2017, 63(3), 700-713.
[http://dx.doi.org/10.1373/clinchem.2016.263582] [PMID: 28007957]
[71]
Hudson, C.D.; Savadelis, A.; Nagaraj, A.B.; Joseph, P.; Avril, S.; DiFeo, A.; Avril, N. Altered glutamine metabolism in platinum resistant ovarian cancer. Oncotarget, 2016, 7(27), 41637-41649.
[http://dx.doi.org/10.18632/oncotarget.9317] [PMID: 27191653]
[72]
Li, H.J.; Li, X.; Pang, H.; Pan, J.J.; Xie, X.J.; Chen, W. Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn. J. Clin. Oncol., 2015, 45(11), 1055-1063.
[http://dx.doi.org/10.1093/jjco/hyv132] [PMID: 26373319]
[73]
Lee, Y.M.; Lee, G.; Oh, T.I.; Kim, B.M.; Shim, D.W.; Lee, K.H.; Kim, Y.J.; Lim, B.O.; Lim, J.H. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int. J. Oncol., 2016, 48(1), 399-408.
[http://dx.doi.org/10.3892/ijo.2015.3243] [PMID: 26573871]
[74]
Fu, A.; Yu, Z.; Song, Y.; Zhang, E. Silencing of glutaminase 1 resensitizes Taxol-resistant breast cancer cells to Taxol. Mol. Med. Rep., 2015, 11(6), 4727-4733.
[http://dx.doi.org/10.3892/mmr.2015.3261] [PMID: 25625774]
[75]
Pérez-Gómez, C.; Campos-Sandoval, J.A.; Alonso, F.J.; Segura, J.A.; Manzanares, E.; Ruiz-Sánchez, P.; González, M.E.; Márquez, J.; Matés, J.M. Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem. J., 2005, 386(Pt 3), 535-542.
[http://dx.doi.org/10.1042/BJ20040996] [PMID: 15496140]
[76]
Pasquali, C.C.; Islam, Z.; Adamoski, D.; Ferreira, I.M.; Righeto, R.D.; Bettini, J.; Portugal, R.V.; Yue, W.W.; Gonzalez, A.; Dias, S.M.G.; Ambrosio, A.L.B. The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. J. Biol. Chem., 2017, 292(27), 11572-11585.
[http://dx.doi.org/10.1074/jbc.M117.787291] [PMID: 28526749]
[77]
Campos-Sandoval, J.A.; López de la Oliva, A.R.; Lobo, C.; Segura, J.A.; Matés, J.M.; Alonso, F.J.; Márquez, J. Expression of functional human glutaminase in baculovirus system: affinity purification, kinetic and molecular characterization. Int. J. Biochem. Cell Biol., 2007, 39(4), 765-773.
[http://dx.doi.org/10.1016/j.biocel.2006.12.002] [PMID: 17267261]
[78]
Velletri, T.; Romeo, F.; Tucci, P.; Peschiaroli, A.; Annicchiarico-Petruzzelli, M.; Niklison-Chirou, M.V.; Amelio, I.; Knight, R.A.; Mak, T.W.; Melino, G.; Agostini, M. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle, 2013, 12(22), 3564-3573.
[http://dx.doi.org/10.4161/cc.26771] [PMID: 24121663]
[79]
Amelio, I.; Markert, E.K.; Rufini, A.; Antonov, A.V.; Sayan, B.S.; Tucci, P.; Agostini, M.; Mineo, T.C.; Levine, A.J.; Melino, G. p73 regulates serine biosynthesis in cancer. Oncogene, 2014, 33(42), 5039-5046.
[http://dx.doi.org/10.1038/onc.2013.456] [PMID: 24186203]
[80]
Nemajerova, A.; Amelio, I.; Gebel, J.; Dötsch, V.; Melino, G.; Moll, U.M. Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death Differ., 2018, 25(1), 144-153.
[http://dx.doi.org/10.1038/cdd.2017.178] [PMID: 29077094]
[81]
Lobo, C.; Ruiz-Bellido, M.A.; Aledo, J.C.; Márquez, J.; Núñez De Castro, I.; Alonso, F.J. Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells. Biochem. J., 2000, 348(Pt 2), 257-261.
[http://dx.doi.org/10.1042/bj3480257] [PMID: 10816417]
[82]
Segura, J.A.; Ruiz-Bellido, M.A.; Arenas, M.; Lobo, C.; Márquez, J.; Alonso, F.J. Ehrlich ascites tumor cells expressing anti-sense glutaminase mRNA lose their capacity to evade the mouse immune system. Int. J. Cancer, 2001, 91(3), 379-384.
[http://dx.doi.org/10.1002/1097-0215(200002)9999:9999<:AID-IJC1046>3.3.CO;2-C] [PMID: 11169963]
[83]
Szeliga, M.; Obara-Michlewska, M.; Matyja, E.; Łazarczyk, M.; Lobo, C.; Hilgier, W.; Alonso, F.J.; Márquez, J.; Albrecht, J. Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells. Glia, 2009, 57(9), 1014-1023.
[http://dx.doi.org/10.1002/glia.20825] [PMID: 19062176]
[84]
Martín-Rufián, M.; Nascimento-Gomes, R.; Higuero, A.; Crisma, A.R.; Campos-Sandoval, J.A.; Gómez-García, M.C.; Cardona, C.; Cheng, T.; Lobo, C.; Segura, J.A.; Alonso, F.J.; Szeliga, M.; Albrecht, J.; Curi, R.; Márquez, J.; Colquhoun, A.; Deberardinis, R.J.; Matés, J.M. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. J. Mol. Med. (Berl.), 2014, 92(3), 277-290.
[http://dx.doi.org/10.1007/s00109-013-1105-2] [PMID: 24276018]
[85]
Cheng, T.; Sudderth, J.; Yang, C.; Mullen, A.R.; Jin, E.S.; Matés, J.M.; DeBerardinis, R.J. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl. Acad. Sci. USA, 2011, 108(21), 8674-8679.
[http://dx.doi.org/10.1073/pnas.1016627108] [PMID: 21555572]
[86]
Xiang, L.; Xie, G.; Liu, C.; Zhou, J.; Chen, J.; Yu, S.; Li, J.; Pang, X.; Shi, H.; Liang, H. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim. Biophys. Acta, 2013, 1833(12), 2996-3005.
[http://dx.doi.org/10.1016/j.bbamcr.2013.08.003] [PMID: 23954443]
[87]
Hu, W.; Zhang, C.; Wu, R.; Sun, Y.; Levine, A.; Feng, Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7455-7460.
[http://dx.doi.org/10.1073/pnas.1001006107] [PMID: 20378837]
[88]
Giacobbe, A.; Bongiorno-Borbone, L.; Bernassola, F.; Terrinoni, A.; Markert, E.K.; Levine, A.J.; Feng, Z.; Agostini, M.; Zolla, L.; Agrò, A.F.; Notterman, D.A.; Melino, G.; Peschiaroli, A. p63 regulates glutaminase 2 expression. Cell Cycle, 2013, 12(9), 1395-1405.
[http://dx.doi.org/10.4161/cc.24478] [PMID: 23574722]
[89]
Gómez-Fabre, P.M.; Aledo, J.C.; Del Castillo-Olivares, A.; Alonso, F.J.; Núñez De Castro, I.; Campos, J.A.; Márquez, J. Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem. J., 2000, 345(Pt 2), 365-375.
[http://dx.doi.org/10.1042/bj3450365] [PMID: 10620514]
[90]
Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359.
[http://dx.doi.org/10.1038/ncb3124] [PMID: 25774832]
[91]
Teng, Y.; Cai, Y.; Pi, W.; Gao, L.; Shay, C. Augmentation of the anticancer activity of CYT997 in human prostate cancer by inhibiting Src activity. J. Hematol. Oncol., 2017, 10(1), 118.
[http://dx.doi.org/10.1186/s13045-017-0485-0] [PMID: 28606127]
[92]
Biancur, D.E.; Paulo, J.A.; Małachowska, B.; Quiles Del Rey, M.; Sousa, C.M.; Wang, X.; Sohn, A.S.W.; Chu, G.C.; Gygi, S.P.; Harper, J.W.; Fendler, W.; Mancias, J.D.; Kimmelman, A.C. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun., 2017, 8, 15965.
[http://dx.doi.org/10.1038/ncomms15965] [PMID: 28671190]
[93]
Gaude, E.; Schmidt, C.; Gammage, P.A.; Dugourd, A.; Blacker, T.; Chew, S.P.; Saez-Rodriguez, J.; O’Neill, J.S.; Szabadkai, G.; Minczuk, M.; Frezza, C. NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. Mol. Cell, 2018, 69(4), 581-593.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.01.034] [PMID: 29452638]
[94]
Olalla, L.; Gutiérrez, A.; Campos, J.A.; Khan, Z.U.; Alonso, F.J.; Segura, J.A.; Márquez, J.; Aledo, J.C. Nuclear localization of L-type glutaminase in mammalian brain. J. Biol. Chem., 2002, 277(41), 38939-38944.
[http://dx.doi.org/10.1074/jbc.C200373200] [PMID: 12163477]
[95]
Cardona, C.; Sánchez-Mejías, E.; Dávila, J.C.; Martín-Rufián, M.; Campos-Sandoval, J.A.; Vitorica, J.; Alonso, F.J.; Matés, J.M.; Segura, J.A.; Norenberg, M.D.; Rama Rao, K.V.; Jayakumar, A.R.; Gutiérrez, A.; Márquez, J. Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia, 2015, 63(3), 365-382.
[http://dx.doi.org/10.1002/glia.22758] [PMID: 25297978]
[96]
Olalla, L.; Aledo, J.C.; Bannenberg, G.; Márquez, J. The C-terminus of human glutaminase L mediates association with PDZ domain-containing proteins. FEBS Lett., 2001, 488(3), 116-122.
[http://dx.doi.org/10.1016/S0014-5793(00)02373-5] [PMID: 11163757]
[97]
Márquez, J.; de la Oliva, A.R.; Matés, J.M.; Segura, J.A.; Alonso, F.J. Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem. Int., 2006, 48(6-7), 465-471.
[http://dx.doi.org/10.1016/j.neuint.2005.10.015] [PMID: 16516349]
[98]
Biltz, R.M.; Letteri, J.M.; Pellegrino, E.D.; Palekar, A.; Pinkus, L.M. Glutamine metabolism in bone. Miner. Electrolyte Metab., 1983, 9(3), 125-131.
[PMID: 6135980]
[99]
Ahluwalia, G.S.; Grem, J.L.; Hao, Z.; Cooney, D.A. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther., 1990, 46(2), 243-271.
[http://dx.doi.org/10.1016/0163-7258(90)90094-I] [PMID: 2108451]
[100]
Katt, W.P.; Lukey, M.J.; Cerione, R.A. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med. Chem., 2017, 9(2), 223-243.
[http://dx.doi.org/10.4155/fmc-2016-0190] [PMID: 28111979]
[101]
Katt, W.P.; Ramachandran, S.; Erickson, J.W.; Cerione, R.A. Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation. Mol. Cancer Ther., 2012, 11(6), 1269-1278.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0942] [PMID: 22496480]
[102]
Wilson, K.F.; Erickson, J.W.; Antonyak, M.A.; Cerione, R.A. Rho GTPases and their roles in cancer metabolism. Trends Mol. Med., 2013, 19(2), 74-82.
[http://dx.doi.org/10.1016/j.molmed.2012.10.011] [PMID: 23219172]
[103]
Simpson, N.E.; Tryndyak, V.P.; Pogribna, M.; Beland, F.A.; Pogribny, I.P. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype. Epigenetics, 2012, 7(12), 1413-1420.
[http://dx.doi.org/10.4161/epi.22713] [PMID: 23117580]
[104]
Huang, W.; Choi, W.; Chen, Y.; Zhang, Q.; Deng, H.; He, W.; Shi, Y. A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res., 2013, 23(5), 724-727.
[http://dx.doi.org/10.1038/cr.2013.15] [PMID: 23357849]
[105]
Robinson, M.M.; McBryant, S.J.; Tsukamoto, T.; Rojas, C.; Ferraris, D.V.; Hamilton, S.K.; Hansen, J.C.; Curthoys, N.P. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J., 2007, 406(3), 407-414.
[http://dx.doi.org/10.1042/BJ20070039] [PMID: 17581113]
[106]
Jacque, N.; Ronchetti, A.M.; Larrue, C.; Meunier, G.; Birsen, R.; Willems, L.; Saland, E.; Decroocq, J.; Maciel, T.T.; Lambert, M.; Poulain, L.; Hospital, M.A.; Sujobert, P.; Joseph, L.; Chapuis, N.; Lacombe, C.; Moura, I.C.; Demo, S.; Sarry, J.E.; Recher, C.; Mayeux, P.; Tamburini, J.; Bouscary, D. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood, 2015, 126(11), 1346-1356.
[http://dx.doi.org/10.1182/blood-2015-01-621870] [PMID: 26186940]
[107]
Matre, P.; Velez, J.; Jacamo, R.; Qi, Y.; Su, X.; Cai, T.; Chan, S.M.; Lodi, A.; Sweeney, S.R.; Ma, H.; Davis, R.E.; Baran, N.; Haferlach, T.; Su, X.; Flores, E.R.; Gonzalez, D.; Konoplev, S.; Samudio, I.; DiNardo, C.; Majeti, R.; Schimmer, A.D.; Li, W.; Wang, T.; Tiziani, S.; Konopleva, M. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget, 2016, 7(48), 79722-79735.
[http://dx.doi.org/10.18632/oncotarget.12944] [PMID: 27806325]
[108]
Gross, M.I.; Demo, S.D.; Dennison, J.B.; Chen, L.; Chernov-Rogan, T.; Goyal, B.; Janes, J.R.; Laidig, G.J.; Lewis, E.R.; Li, J.; Mackinnon, A.L.; Parlati, F.; Rodriguez, M.L.; Shwonek, P.J.; Sjogren, E.B.; Stanton, T.F.; Wang, T.; Yang, J.; Zhao, F.; Bennett, M.K. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther., 2014, 13(4), 890-901.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0870] [PMID: 24523301]
[109]
Huang, Q.; Stalnecker, C.; Zhang, C.; McDermott, L.A.; Iyer, P.; O’Neill, J.; Reimer, S.; Cerione, R.A.; Katt, W.P. Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. J. Biol. Chem., 2018, 293(10), 3535-3545.
[http://dx.doi.org/10.1074/jbc.M117.810101] [PMID: 29317493]
[110]
Yeh, T.K.; Kuo, C.C.; Lee, Y.Z.; Ke, Y.Y.; Chu, K.F.; Hsu, H.Y.; Chang, H.Y.; Liu, Y.W.; Song, J.S.; Yang, C.W.; Lin, L.M.; Sun, M.; Wu, S.H.; Kuo, P.C.; Shih, C.; Chen, C.T.; Tsou, L.K.; Lee, S.J. Design, synthesis, and evaluation of thiazolidine-2,4-dione derivatives as a novel class of glutaminase inhibitors. J. Med. Chem., 2017, 60(13), 5599-5612.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00282] [PMID: 28609101]
[111]
Lukey, M.J.; Greene, K.S.; Erickson, J.W.; Wilson, K.F.; Cerione, R.A. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. Nat. Commun., 2016, 7, 11321.
[http://dx.doi.org/10.1038/ncomms11321] [PMID: 27089238]
[112]
Zimmermann, S.C.; Duvall, B.; Tsukamoto, T. Recent progress in the discovery of allosteric inhibitors of kidney-type glutaminase. J. Med. Chem., 2019, 62(1), 46-59.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00327] [PMID: 29969024]
[113]
Wu, C.; Zheng, M.; Gao, S.; Luan, S.; Cheng, L.; Wang, L.; Li, J.; Chen, L.; Li, H. A natural inhibitor of kidney-type glutaminase: a withanolide from Physalis pubescens with potent anti-tumor activity. Oncotarget, 2017, 8(69), 113516-113530.
[http://dx.doi.org/10.18632/oncotarget.23058] [PMID: 29371926]
[114]
Xu, X.; Meng, Y.; Li, L.; Xu, P.; Wang, J.; Li, Z.; Bian, J. Overview of the development of glutaminase inhibitors: achievements and future directions. J. Med. Chem., 2019, 62(3), 1096-1115.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00961] [PMID: 30148361]
[115]
Elhammali, A.; Ippolito, J.E.; Collins, L.; Crowley, J.; Marasa, J.; Piwnica-Worms, D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov., 2014, 4(7), 828-839.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0572] [PMID: 24740997]
[116]
Yu, C.C.; Wu, P.J.; Hsu, J.L.; Ho, Y.F.; Hsu, L.C.; Chang, Y.J.; Chang, H.S.; Chen, I.S.; Guh, J.H. Ardisianone, a natural benzoquinone, efficiently induces apoptosis in human hormone-refractory prostate cancers through mitochondrial damage stress and survivin downregulation. Prostate, 2013, 73(2), 133-145.
[http://dx.doi.org/10.1002/pros.22548] [PMID: 22674285]
[117]
Liu, J.; Zhang, C.; Lin, M.; Zhu, W.; Liang, Y.; Hong, X.; Zhao, Y.; Young, K.H.; Hu, W.; Feng, Z. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget, 2014, 5(9), 2635-2647.
[http://dx.doi.org/10.18632/oncotarget.1862] [PMID: 24797434]
[118]
Majewska, E.; Márquez, J.; Albrecht, J.; Szeliga, M. Transfection with GLS2 Glutaminase (GAB) sensitizes human glioblastoma cell lines to oxidative stress by a common mechanism involving suppression of the PI3K/AKT pathway. Cancers (Basel), 2019, 11(1), E115.
[http://dx.doi.org/10.3390/cancers11010115] [PMID: 30669455]
[119]
Szeliga, M.; Bogacińska-Karaś, M.; Kuźmicz, K.; Rola, R.; Albrecht, J. Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status. Mol. Carcinog., 2016, 55(9), 1309-1316.
[http://dx.doi.org/10.1002/mc.22372] [PMID: 26258493]
[120]
Zhang, J.; Wang, C.; Chen, M.; Cao, J.; Zhong, Y.; Chen, L.; Shen, H.M.; Xia, D. Epigenetic silencing of glutaminase 2 in human liver and colon cancers. BMC Cancer, 2013, 13, 601.
[http://dx.doi.org/10.1186/1471-2407-13-601] [PMID: 24330717]
[121]
Kuo, T.C.; Chen, C.K.; Hua, K.T.; Yu, P.; Lee, W.J.; Chen, M.W.; Jeng, Y.M.; Chien, M.H.; Kuo, K.T.; Hsiao, M.; Kuo, M.L. Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells. Cancer Lett., 2016, 383(2), 282-294.
[http://dx.doi.org/10.1016/j.canlet.2016.10.012] [PMID: 27725225]
[122]
Nabi, S.; Kessler, E.R.; Bernard, B.; Flaig, T.W.; Lam, E.T. Renal cell carcinoma: a review of biology and pathophysiology. F1000 Res., 2018, 7, 307.
[http://dx.doi.org/10.12688/f1000research.13179.1] [PMID: 29568504]
[123]
Masamha, C.P.; LaFontaine, P. Molecular targeting of glutaminase sensitizes ovarian cancer cells to chemotherapy. J. Cell. Biochem., 2018, 119(7), 6136-6145.
[http://dx.doi.org/10.1002/jcb.26814] [PMID: 29633308]
[124]
Katt, W.P.; Cerione, R.A. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov. Today, 2014, 19(4), 450-457.
[http://dx.doi.org/10.1016/j.drudis.2013.10.008] [PMID: 24140288]
[125]
Yu, D.; Shi, X.; Meng, G.; Chen, J.; Yan, C.; Jiang, Y.; Wei, J.; Ding, Y. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget, 2015, 6(10), 7619-7631.
[http://dx.doi.org/10.18632/oncotarget.3196] [PMID: 25844758]
[126]
Jin, L.; Alesi, G.N.; Kang, S. Glutaminolysis as a target for cancer therapy. Oncogene, 2016, 35(28), 3619-3625.
[http://dx.doi.org/10.1038/onc.2015.447] [PMID: 26592449]
[127]
Matés, J.M.; Segura, J.A.; Campos-Sandoval, J.A.; Lobo, C.; Alonso, L.; Alonso, F.J.; Márquez, J. Glutamine homeostasis and mitochondrial dynamics. Int. J. Biochem. Cell Biol., 2009, 41(10), 2051-2061.
[http://dx.doi.org/10.1016/j.biocel.2009.03.003] [PMID: 19703661]
[128]
Han, T.; Zhan, W.; Gan, M.; Liu, F.; Yu, B.; Chin, Y.E.; Wang, J.B. Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Res., 2018, 28(6), 655-669.
[http://dx.doi.org/10.1038/s41422-018-0021-y] [PMID: 29515166]
[129]
Abraham, S.A.; Hopcroft, L.E.; Carrick, E.; Drotar, M.E.; Dunn, K.; Williamson, A.J.; Korfi, K.; Baquero, P.; Park, L.E.; Scott, M.T.; Pellicano, F.; Pierce, A.; Copland, M.; Nourse, C.; Grimmond, S.M.; Vetrie, D.; Whetton, A.D.; Holyoake, T.L. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature, 2016, 534(7607), 341-346.
[http://dx.doi.org/10.1038/nature18288] [PMID: 27281222]
[130]
Schulze, A.; Harris, A.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012, 491(7424), 364-373.
[http://dx.doi.org/10.1038/nature11706] [PMID: 23151579]
[131]
DeBerardinis, R.J.; Thompson, C.B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell, 2012, 148(6), 1132-1144.
[http://dx.doi.org/10.1016/j.cell.2012.02.032] [PMID: 22424225]
[132]
Singh, B.; Sarli, V.N.; Washburn, L.J.; Raythatha, M.R.; Lucci, A. A usable model of “decathlon winner” cancer cells in triple-negative breast cancer: survival of resistant cancer cells in quiescence. Oncotarget, 2018, 9(13), 11071-11082.
[http://dx.doi.org/10.18632/oncotarget.24322] [PMID: 29541397]
[133]
Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1), 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[134]
Raj, L.; Ide, T.; Gurkar, A.U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N.J.; Golub, T.R.; Carr, S.A.; Shamji, A.F.; Stern, A.M.; Mandinova, A.; Schreiber, S.L.; Lee, S.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011, 475(7355), 231-234.
[http://dx.doi.org/10.1038/nature10167] [PMID: 21753854]
[135]
Marin, J.J.G.; Briz, O.; Herraez, E.; Lozano, E.; Asensio, M.; Di Giacomo, S.; Romero, M.R.; Osorio-Padilla, L.M.; Santos-Llamas, A.I.; Serrano, M.A.; Armengol, C.; Efferth, T.; Macias, R.I.R. Molecular bases of the poor response of liver cancer to chemotherapy. Clin. Res. Hepatol. Gastroenterol., 2018, 42(3), 182-192.
[http://dx.doi.org/10.1016/j.clinre.2017.12.006] [PMID: 29544679]
[136]
Chakrabarti, G.; Moore, Z.R.; Luo, X.; Ilcheva, M.; Ali, A.; Padanad, M.; Zhou, Y.; Xie, Y.; Burma, S.; Scaglioni, P.P.; Cantley, L.C.; DeBerardinis, R.J.; Kimmelman, A.C.; Lyssiotis, C.A.; Boothman, D.A. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab., 2015, 3, 12.
[http://dx.doi.org/10.1186/s40170-015-0137-1] [PMID: 26462257]
[137]
Hu, M.; Liu, L.; Yao, W. Activation of p53 by costunolide blocks glutaminolysis and inhibits proliferation in human colorectal cancer cells. Gene, 2018, 678, 261-269.
[http://dx.doi.org/10.1016/j.gene.2018.08.048] [PMID: 30103008]
[138]
Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.5615] [PMID: 28454342]
[139]
Ma, D.; Gilbert, T.; Pignanelli, C.; Tarade, D.; Noel, M.; Mansour, F.; Gupta, M.; Ma, S.; Ropat, J.; Curran, C.; Vshyvenko, S.; Hudlicky, T.; Pandey, S. Exploiting mitochondrial and oxidative vulnerabilities with a synthetic analog of pancratistatin in combination with piperlongumine for cancer therapy. FASEB J., 2018, 32(1), 417-430.
[http://dx.doi.org/10.1096/fj.201700275R] [PMID: 28928246]
[140]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35(Suppl.), S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001] [PMID: 25936818]
[141]
Akins, N.S.; Nielson, T.C.; Le, H.V. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr. Top. Med. Chem., 2018, 18(6), 494-504.
[http://dx.doi.org/10.2174/1568026618666180523111351] [PMID: 29788892]
[142]
Wang, Q.; Beaumont, K.A.; Otte, N.J.; Font, J.; Bailey, C.G.; van Geldermalsen, M.; Sharp, D.M.; Tiffen, J.C.; Ryan, R.M.; Jormakka, M.; Haass, N.K.; Rasko, J.E.; Holst, J. Targeting glutamine transport to suppress melanoma cell growth. Int. J. Cancer, 2014, 135(5), 1060-1071.
[http://dx.doi.org/10.1002/ijc.28749] [PMID: 24531984]
[143]
Dornier, E.; Rabas, N.; Mitchell, L.; Novo, D.; Dhayade, S.; Marco, S.; Mackay, G.; Sumpton, D.; Pallares, M.; Nixon, C.; Blyth, K.; Macpherson, I.R.; Rainero, E.; Norman, J.C. Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat. Commun., 2017, 8(1), 2255.
[http://dx.doi.org/10.1038/s41467-017-02101-2] [PMID: 29269878]
[144]
Luan, W.; Zhou, Z.; Zhu, Y.; Xia, Y.; Wang, J.; Xu, B. miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase. Biochem. Biophys. Res. Commun., 2018, 495(1), 46-52.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.152] [PMID: 29097210]
[145]
Xu, P.; Oosterveer, M.H.; Stein, S.; Demagny, H.; Ryu, D.; Moullan, N.; Wang, X.; Can, E.; Zamboni, N.; Comment, A.; Auwerx, J.; Schoonjans, K. LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes Dev., 2016, 30(11), 1255-1260.
[http://dx.doi.org/10.1101/gad.277483.116] [PMID: 27298334]
[146]
Tardito, S.; Oudin, A.; Ahmed, S.U.; Fack, F.; Keunen, O.; Zheng, L.; Miletic, H.; Sakariassen, P.Ø.; Weinstock, A.; Wagner, A.; Lindsay, S.L.; Hock, A.K.; Barnett, S.C.; Ruppin, E.; Mørkve, S.H.; Lund-Johansen, M.; Chalmers, A.J.; Bjerkvig, R.; Niclou, S.P.; Gottlieb, E. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol., 2015, 17(12), 1556-1568.
[http://dx.doi.org/10.1038/ncb3272] [PMID: 26595383]
[147]
Zhu, M.; Fang, J.; Zhang, J.; Zhang, Z.; Xie, J.; Yu, Y.; Ruan, J.J.; Chen, Z.; Hou, W.; Yang, G.; Su, W.; Ruan, B.H. Biomolecular interaction assays identified dual inhibitors of glutaminase and glutamate dehydrogenase that disrupt mitochondrial function and prevent growth of cancer cells. Anal. Chem., 2017, 89(3), 1689-1696.
[http://dx.doi.org/10.1021/acs.analchem.6b03849] [PMID: 28208301]
[148]
Kitayama, K.; Yashiro, M.; Morisaki, T.; Miki, Y.; Okuno, T.; Kinoshita, H.; Fukuoka, T.; Kasashima, H.; Masuda, G.; Hasegawa, T.; Sakurai, K.; Kubo, N.; Hirakawa, K.; Ohira, M. Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer. Cancer Sci., 2017, 108(12), 2462-2469.
[http://dx.doi.org/10.1111/cas.13421] [PMID: 29032577]
[149]
Lu, W.Q.; Hu, Y.Y.; Lin, X.P.; Fan, W. Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget, 2017, 8(27), 44171-44185.
[http://dx.doi.org/10.18632/oncotarget.17396] [PMID: 28498807]
[150]
Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; Cheng, H.; Pollard, J.; Winter, C.; Richon, V.; Garcia-Escheverria, C.; Adrian, F.; Wiederschain, D.; Srinivasan, L. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One, 2017, 12(9), e0185092.
[http://dx.doi.org/10.1371/journal.pone.0185092] [PMID: 28950000]
[151]
Momcilovic, M.; Bailey, S.T.; Lee, J.T.; Fishbein, M.C.; Braas, D.; Go, J.; Graeber, T.G.; Parlati, F.; Demo, S.; Li, R.; Walser, T.C.; Gricowski, M.; Shuman, R.; Ibarra, J.; Fridman, D.; Phelps, M.E.; Badran, K.; St John, M.; Bernthal, N.M.; Federman, N.; Yanagawa, J.; Dubinett, S.M.; Sadeghi, S.; Christofk, H.R.; Shackelford, D.B. The GSK3 signaling axis regulates adaptive glutamine metabolism in lung squamous cell carcinoma. Cancer Cell, 2018, 33(5), 905-921.e5.
[http://dx.doi.org/10.1016/j.ccell.2018.04.002] [PMID: 29763624]
[152]
Tanaka, K.; Sasayama, T.; Irino, Y.; Takata, K.; Nagashima, H.; Satoh, N.; Kyotani, K.; Mizowaki, T.; Imahori, T.; Ejima, Y.; Masui, K.; Gini, B.; Yang, H.; Hosoda, K.; Sasaki, R.; Mischel, P.S.; Kohmura, E. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Invest., 2015, 125(4), 1591-1602.
[http://dx.doi.org/10.1172/JCI78239] [PMID: 25798620]
[153]
Han, T.; Guo, M.; Zhang, T.; Gan, M.; Xie, C.; Wang, J.B. A novel glutaminase inhibitor-968 inhibits the migration and proliferation of non-small cell lung cancer cells by targeting EGFR/ERK signaling pathway. Oncotarget, 2017, 8(17), 28063-28073.
[http://dx.doi.org/10.18632/oncotarget.14188] [PMID: 28039459]
[154]
Wang, D.; Meng, G.; Zheng, M.; Zhang, Y.; Chen, A.; Wu, J.; Wei, J. The Glutaminase-1 inhibitor 968 enhances dihydroartemisinin-mediated antitumor efficacy in hepatocellular carcinoma cells. PLoS One, 2016, 11(11), e0166423.
[http://dx.doi.org/10.1371/journal.pone.0166423] [PMID: 27835669]
[155]
Matés, J.M.; Campos-Sandoval, J.A.; Márquez, J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 158-164.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.007] [PMID: 30053497]
[156]
Song, M.; Kim, S.H.; Im, C.Y.; Hwang, H.J. Recent development of small molecule glutaminase inhibitors. Curr. Top. Med. Chem., 2018, 18(6), 432-443.
[http://dx.doi.org/10.2174/1568026618666180525100830] [PMID: 29793408]
[157]
Yu, Y.; Yu, X.; Fan, C.; Wang, H.; Wang, R.; Feng, C.; Guan, H. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J. Mol. Med. (Berl.), 2018, 96(8), 777-790.
[http://dx.doi.org/10.1007/s00109-018-1659-0] [PMID: 29942976]
[158]
Wu, C.; Chen, L.; Jin, S.; Li, H. Glutaminase inhibitors: a patent review. Expert Opin. Ther. Pat., 2018, 28(11), 823-835.
[http://dx.doi.org/10.1080/13543776.2018.1530759] [PMID: 30273516]
[159]
Li, L.; Meng, Y.; Li, Z.; Dai, W.; Xu, X.; Bi, X.; Bian, J. Discovery and development of small molecule modulators targeting glutamine metabolism. Eur. J. Med. Chem., 2019, 163, 215-242.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.066] [PMID: 30522056]
[160]
Kaushik, A.K.; DeBerardinis, R.J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 2-14.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.009] [PMID: 29702206]
[161]
Jiang, Z.; Zhang, C.; Gan, L.; Jia, Y.; Xiong, Y.; Chen, Y.; Wang, Z.; Wang, L.; Luo, H.; Li, J.; Zhu, R.; Ji, X.; Yu, Q.; Wang, L. iTRAQ-based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer. Proteomics Clin. Appl., 2018, 28, e1800038.
[http://dx.doi.org/10.1002/prca.201800038] [PMID: 30485682]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 32
Year: 2020
Published on: 25 September, 2020
Page: [5317 - 5339]
Pages: 23
DOI: 10.2174/0929867326666190416165004
Price: $65

Article Metrics

PDF: 41
HTML: 3