New Developments on the Hirao Reactions, Especially from “Green” Point of View

Author(s): Réka Henyecz, György Keglevich*

Journal Name: Current Organic Synthesis

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The Hirao reaction discovered ca. 35 years ago is an important P–C coupling protocol between dialkyl phosphites and aryl halides in the presence of Pd(PPh3)4 as the catalyst and a base to provide aryl phosphonates. Then, the reaction was extended to other Preagents, such as secondary phosphine oxides and H-phosphinates and to other aryl and hetaryl derivatives to afford also phosphinic esters and tertiary phosphine oxides. Instead of the Pd(PPh3)4 catalyst, Pd(OAc)2 and Ni-salts were also applied as catalyst precursors together with a number of mono- and bidentate P-ligands.

Objective: In our review, we undertook to summarize the target reaction with a special stress on the developments attained in the last 6 years, hence this paper is an update of our earlier reviews in a similar topic.

Conclusions: “Greener” syntheses aimed at utilizing phase transfer catalytic and microwave-assisted approaches, even under “P-ligand-free. or even solvent-free conditions are the up-to date versions of the classical Hirao reaction. The mechanism of the reaction is also in the focus these days.

Keywords: Hirao reaction, P-C coupling, Pd-catalyst, phosphonates, phosphinates, phosphine oxides, green synthesis.

[1]
Jablonkai, E.; Keglevich, G. P-C Bond formation by coupling reactions utilizing >P(O)H species as the reagents. Curr. Org. Chem., 2014, 11, 429-453.
[2]
Jablonkai, E.; Keglevich, G. Advances and new variations of the hirao reaction. Org. Prep. Proced. Int., 2014, 46, 281-316.
[3]
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Stereoselective synthesis of vinylphosphonate. Tetrahedron Lett., 1980, 21, 3595-3598.
[4]
Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Palladium-catalyzed new carbon-phosphorus bond formation. Bull. Chem. Soc. Jpn., 1982, 55, 909-913.
[5]
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. A novel synthesis of dialkyl arenephosphonates. Synthesis, 1981, 1981(1), 56-57.
[6]
Bulot, J.J.; Aboujaoude, E.E.; Collignon, N. Preparation d’aminophenyl-, nitrophenyl, pyridyl-, et quinolylphosphonates sous photostimulation ou assistance metallique; Acces aux acides aminophosphoniques correspondants. Phosphorus Sulfur Silicon ., 1984, 21, 197-204.
[7]
Kazankova, M.A.; Trostyanskaya, I.G.; Lutsenko, S.V.; Beletskaya, I.P. Nickel- and palladium-catalyzed cross-coupling as a route to 1- and 2-aikoxy- or dialkylaminovinylphosphonates. Tetrahedron Lett., 1999, 40, 569-572.
[8]
Machnitzki, P.; Nickel, T.; Stelzer, O.; Landgrafe, C. Consecutive Pd-catalyzed p-c coupling reactions and nucleophilic phosphanylation - X-ray structure of Ph2P-C6H4-m-PO3Na2 · 5.5 H2O ·iPrOH. Eur. J. Inorg. Chem., 1998, 1998, 1029-1034.
[9]
Kant, M.; Bischoff, S.; Siefken, R.; Gründemann, E.; Köckritz, A. Synthesis and characterization of 4- and 4,49-phosphorylated 2,29-bis(diphenylphosphanyl)-1,19-binaphthyls. Eur. J. Org. Chem., 2001, 2001, 477-481.
[10]
Zhong, P.; Xiong, Z.X.; Huang, X. A facile regio- and stereocontrolled synthesis of (E)-vinylphosphonates VIA cross coupling of (E)-vinyl iodides with dialkyl phosphites. Synth. Commun., 2000, 30, 273-278.
[11]
Kim, Y-C.; Brown, S.G.; Harden, T.K.; Boyer, J.L.; Dubyak, G.; King, B.F.; Burnstock, G.; Jacobson, K.A. Structure−activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors. J. Med. Chem., 2001, 44, 340-349.
[12]
Kobayashi, Y.; William, A.; Tokoro, Y. Sharpless asymmetric dihydroxylation of trans-propenylphosphonate by using a modified AD-mix-α and the synthesis of fosfomycin. J. Org. Chem., 2001, 66, 7903-7906.
[13]
Muthukumaran, K.; Loewe, R.S.; Ambroise, A.; Tamaru, S-I.; Li, Q.; Mathur, G.; Bocian, D.F.; Misra, V.; Lindsey, J.S. Porphyrins bearing arylphosphonic acid tethers for attachmentto oxide surfaces. J. Org. Chem., 2004, 69, 1444-1452.
[14]
Ziessel, R.F.; Charbonnière, L.J.; Mameri, S.; Camerel, F. Bridging of bipyridine units by phenylphosphine links: Linear and cyclic oligomers and some acid derivatives. J. Org. Chem., 2005, 70, 9835-9840.
[15]
Řehoř, I.; Kubiček, V.; Kotek, J.; Hermann, P.; Lukeš, I.; Száková, J.; Elst, L.V.; Muller, R.N.; Peters, J.A. 1H NMR relaxivity of aqueous suspensions of titanium dioxide nanoparticles coated with a gadolinium(III) chelate of a DOTA-monoamide with a phenylphosphonate pendant arm. J. Mater. Chem., 2009, 19, 1494-1500.
[16]
Ghalib, M.; Niaz, B.; Jones, P.G.; Heinicke, J.W. σ2-P Ligands: convenient syntheses of N-methyl-1,3-benzazaphospholes. Tetrahedron Lett., 2012, 53, 5012-5014.
[17]
Li, L.; Li, A.; Song, L.; Wang, Z-H.; Zhou, X-H.; Yang, T.; Huang, W. Synthesis, structure and properties of a tetranuclear europium(III) complex based on 9,9-dimethylfluorene-2,7-diphosphonic acid. J. Mol. Struct., 2014, 1067, 37-42.
[18]
Bennett, J.A.; Hope, E.G.; Singh, K.; Stuart, A.M. Synthesis and coordination chemistry of fluorinated phosphonic acids. J. Fluor. Chem., 2009, 130, 615-620.
[19]
Maffei, M.; Buono, G. A two step synthesis of 2-oxo-2-vinyl 1,3,2-dioxaphospholanes and -dioxaphosphorinanes. Tetrahedron, 2003, 59, 8821-8825.
[20]
Johansson, T.; Stawinski, J. Synthesis of dinucleoside pyridylphosphonates involving palladium(0)-catalysed phosphorus-carbon bond formation as a key step. Chem. Commun. , 2001, 2564-2565.
[21]
Parrish, J.; Tong, L.; Wang, M.; Chen, X.; Lansdon, E.B.; Cannizzaro, C.; Zheng, X.; Desai, M.C.; Xu, L. Synthesis and biological evaluation of phosphonate analogues of nevirapine. Bioorg. Med. Chem. Lett., 2013, 23, 1493-1497.
[22]
Maeda, K.; Miyagawa, T.; Furuko, A.; Onouchi, H.; Yashima, E. Dual memory of enantiomeric helices in poly(phenylacetylene)s induced by a single enantiomer through helix inversion and dual storage of the enantiomeric helicity memories. Macromolecules, 2015, 48, 4281-4293.
[23]
Schuman, M.; Lopez, X.; Karplus, M.; Gouverneur, V. Synthesis of a novel diarylphosphinic acid: A distorted ground state mimic and transition state analogue for amide hydrolysis. Tetrahedron, 2001, 57, 10299-10307.
[24]
Luke, G.P.; Shakespeare, W.C. A simple and efficent preparation of (arylphosphinyl)-methylphosphonates. Synth. Commun., 2002, 32, 2951-2957.
[25]
Cristau, H-J.; Hervé, A.; Loiseau, F.; Virieux, D. Synthesis of new arylhydroxymethylphosphinic acids and derivatives. Synthesis, 2003, 14, 2216-2220.
[26]
Walton, J.W.; Carr, R.; Evans, N.H. Funk, A.M.; Kenwright, A.M.; Parker, D.; Yufit, D.S.; Botta, M.; De Pinto, S.; Wong K.-L. Isostructural series of nine-coordinate chiral lanthanide complexes based on triazacyclononane. Inorg. Chem., 2012, 51, 8042-8056.
[27]
Németh, G.; Greff, Z.; Sipos, A.; Varga, Z.; Székely, R.; Sebestyén, M.; Jászay, Z.; Béni, Sz.; Nemes, Z.; Pirat, J-L.; Volle, J-N.; Virieux, D.; Gyuris, Á.; Kelemenics, K.; Áy, É.; Minarovits, J.; Szathmary, S.; Kéri, G.; Őrfi, L. Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors. J. Med. Chem., 2014, 57, 3939-3965.
[28]
Fourgeaud, P.; Volle, J-N.; Vors, J-P.; Békro, Y-A.; Pirat, J-A.; Virieux, D. 5-H-1,2-oxaphosphole 2-oxides, key building blocks for diversity oriented chemical libraries. Tetrahedron, 2016, 72, 7912-7925.
[29]
Rankic, D.A.; Parvez, M.; Keay, B.A. 3,3′-Substituted BINAP derivatives containing C-bound substituents: Applications in asymmetric hydrogenation reactions. Tetrahedron, 2012, 23, 754-763.
[30]
Trost, B.M.; Radinov, R. On the effect of a cation binding site in an asymmetric ligand for a catalyzed nucleophilic substitution reaction. J. Am. Chem. Soc., 1997, 119, 5962-5963.
[31]
Hall, R.G.; Riebli, P. Preparation of new phosphine oxide synthons: synthesis of an analogue of muscarinic antagonists. Synlett, 1999, 10, 1633-1635.
[32]
Lu, X.; Zhu, J. Palladium-catalyzed reaction of aryl polyflouroalkanesulfonates with O,O-dialkyl phosphonates. Synthesis, 1987, 1987, 726-727.
[33]
Holt, D.A.; Erb, J.M. Palladium-catalyzed phosphorylation of alkenyl triflates. Tetrahedron Lett., 1989, 30, 5393-5396.
[34]
Petrakis, K.S.; Nagabhushan, T.L. Palladium-catalyzed substitutions of triflates derived from tyrosine-containing peptides and simpler hydroxyarenes forming 4-(diethoxyphosphinyl)phenylalanines and diethyl arylphosphonates. J. Am. Chem. Soc., 1987, 109, 2831-2833.
[35]
Kobayashi, Y.; William, A.D. Palladium- and nickel-catalyzed coupling reactions of α-bromoalkenylphosphonates with arylboronic acids and lithium alkenylborates. Adv. Synth. Catal., 2004, 346, 1749-1757.
[36]
Norris, M.R.; Concepcion, J.J.; Glasson, C.R.K.; Fang, Z.; Lapides, A.M.; Ashford, D.L.; Templeton, J.L.; Meyer, T.J. Synthesis of phosphonic acid derivatized bipyridine ligands and their ruthenium complexes. Inorg. Chem., 2013, 52, 12492-12501.
[37]
Chauhan, S.S.; Varshney, A.; Verma, B.; Pennington, M.W. Efficient synthesis of protected L-phosphonophenylalanine (Ppa) derivatives suitable for solid phase peptide synthesis. Tetrahedron Lett., 2007, 48, 4051-4054.
[38]
Defacqz, N.; de Buerger, B.; Touillaux, R.; Cordi, A.; Marchand-Brynaert, J. Direct phosphonylation of mono- and dihalogenoanilines. Synthesis, 1999, 1999(8), 1368-1372.
[39]
Xu, Y.; Li, Z.; Xia, J.; Guo, H.; Huang, Y. Palladium-catalysed synthesis of unsymmetrical alkyl aryl-phenylphosphinates. Synthesis, 1983, 1983, 377-378.
[40]
Xu, Y.; Zhang, J. Palladium-catalysed synthesis of functionalised alkyl alkylarylphosphinates. Synthesis, 1984, 1984, 778-780.
[41]
Xu, Y.; Li, Z.; Xia, J.; Guo, H.; Huang, Y. Palladium-catalysed synthesis of alkylarylphenylphosphine oxides. Synthesis, 1984, 1984, 781-782.
[42]
Zhang, J.; Xu, Y.; Huang, G.; Guo, H. Palladium-catalyzed synthesis of chiral, nonracemic isopropyl arylmethyphosphinates. Tetrahedron Lett., 1988, 29, 1955-1958.
[43]
Xu, Y.; Wei, H.; Zhang, J.; Huang, G. An Efficent synthesis of chiral, nonracemic isopropyl alkenylmethyphosphinates via palladium route. Tetrahedron Lett., 1989, 30, 949-952.
[44]
Kalek, M.; Stawinski, J. Pd(0)-catalyzed phosphorus-carbon bond formation. Mechanistic and synthetic studies on the role of the palladium sources and anionic additives. Organometallics, 2007, 26, 5840-5847.
[45]
Amatore, C.; Jutand, A. Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed heck and cross-coupling reactions. Acc. Chem. Res., 2000, 33, 314-321.
[46]
Kalek, M.; Stawinski, J. Palladium-catalyzed C-P bond formation: Mechanistic studies on the ligand substitution and the reductive elimination. An intramolecular catalysis by the Acetate group in PdII complexes. Organometallics, 2008, 27, 5876-5888.
[47]
Deal, E.L.; Petit, C.; Montchamp, J-L. Palladium-catalyzed cross-coupling of h-phosphinate esters with chloroarenes. Org. Lett., 2011, 13, 3270-3273.
[48]
Berger, O.; Petit, C.; Deal, E.L.; Montchamp, J-L. Phosphorus-carbon bond formation: Palladium-catalyzed cross-coupling of H-phosphinates and other P(O)H-containing compounds. Adv. Synth. Catal., 2013, 355, 1361-1373.
[49]
Bessmertnykh, A.; Douaihy, C.M.; Guilard, R. Direct synthesis of amino-substituted aromatic phosphonates via palladium-catalyzed coupling of aromatic mono- and dibromides with diethyl phosphite. Chem. Lett., 2009, 38, 738-739.
[50]
Gooßen, L.J.; Dezfuli, M.K. Practical protocol for the palladium-catalyzed synthesis of arylphosphonates from bromoarenes and diethyl phosphite. Synlett, 2005, 445-448.
[51]
Chen, X.; Kopecky, D.J.; Mihalic, J.; Jeffries, S.; Min, X.; Heath, J.; Deignan, J.; Lai, S.; Fu, Z.; Guimaraes, C.; Shen, S.; Li, S.; Johnstone, S.; Thibault, S.; Xu, H.; Cardozo, M.; Shen, W.; Walker, N.; Kayser, F.; Wang, Z. Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the eIF4E mRNA−cap interaction. J. Med. Chem., 2012, 55, 3837-3851.
[52]
Bonnaventure, I.; Charette, A.B. Probing the importance of the hemilabile site of bis(phosphine) monoxide ligands in the copper-catalyzed addition of diethylzinc to N-phosphinoylimines: Discovery of new effective chiral ligands. J. Org. Chem., 2008, 73, 6330-6340.
[53]
Contrella, N.D.; Sampson, J.R.; Jordan, R.F. Copolymerization of ethylene and methyl acrylate by cationic palladium catalysts that contain phosphine-diethyl phosphonate ancillary ligands. Organometallics, 2014, 33, 3546-3555.
[54]
Benin, V.; Durganalab, S.; Morgan, A.B. Synthesis and flame retardant testing of new boronated and phosphonated aromatic compounds. J. Mater. Chem., 2012, 22, 1180-1190.
[55]
Reisinger, B.; Kuzmanovic, N.; Lçffler, P.; Merkl, R.; Kçnig, B.; Sterner, R. Exploiting protein symmetry to design light-controllable enzyme inhibitors. Angew. Chem. Int. Ed., 2014, 53, 595-598.
[56]
Enakieva, Y.Y.; Bessmertnykh, A.G.; Gorbunova, Y.G.; Stern, C.; Rousselin, Y.; Tsivadze, A.Y.; Guilard, R. Synthesis of meso-polyphosphorylporphyrins and example of self-assembling. Org. Lett., 2009, 11, 3842-3845.
[57]
Cummings, S.P.; Savchenko, J.; Fanwick, P.E.; Kharlamova, A.; Ren, T. Diruthenium alkynyl compounds with phosphonate capping groups. Organometallics, 2013, 32, 1129-1132.
[58]
Kalek, M.; Jezowska, M.; Stawinski, J. Preparation of arylphosphonates by palladium(0)-catalyzed cross-coupling in the presence of acetate additives: Synthetic and mechanistic studies. Adv. Synth. Catal., 2009, 351, 3207-3216.
[59]
Chen, B.; Ding, J.; Wang, L.; Jinga, X.; Wanga, F. A solution-processable phosphonate functionalized deep-blue fluorescent emitter for efficient single-layer small molecule organic light-emitting diodes. Chem. Commun. , 2012, 48, 8970-8972.
[60]
Mulhern, K.R.; Orchard, A.; Watson, D.F.; Detty, M.R. Influence of surface-attachment functionality on the aggregation, persistence, and electron-transfer reactivity of chalcogenorhodamine dyes on TiO2. Langmuir, 2012, 28, 7071-7082.
[61]
Rechmann, R.; Sarfraz, A.; Götzinger, A.C.; Dirksen, E.; Müller, T.J.J.; Erbe, A. Surface functionalization of oxide-covered zinc and iron with phosphonated phenylethynyl phenothiazine. Langmuir, 2015, 31, 7306-7316.
[62]
Lilley, M.; Mambwe, B.; Jackson, R.F.W.; Muimo, R. 4-Phosphothiophen-2-yl alanine: A new 5-membered analogue of phosphotyrosine. Chem. Commun. , 2014, 50, 9343-9345.
[63]
Bazaga-García, M.; Colodrero, R.M.P.; Papadaki, M.; Garczarek, P.; Zoń, J.; Olivera-Pastor, P.; Losilla, E.R.; León-Reina, L.; Aranda, M.A.G.; Choquesillo-Lazarte, D.; Demadis, K.D.; Cabeza, A. Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity. J. Am. Chem. Soc., 2014, 136, 5731-5739.
[64]
Belabassi, Y.; Alzghari, S.; Montchamp, J-L. Revisiting the hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. J. Organomet. Chem., 2008, 693, 3171-3178.
[65]
Lemeune, A.; Mitrofanov, A.Y.; Rousselin, Y.; Stern, C.; Guilard, R.; Enakieva, Y.Y.; Gorbunova, Y.G.; Nefedov, S.E. Supramolecular architectures based on phosphonic acid diesters. Phosphorus. Sulfur, 2015, 190, 831-836.
[66]
Nandi, M.; Jin, J. RajanBabu, T.V. Synergistic effects of hemilabile coordination and counterions in homogeneous catalysis: new tunable monophosphine ligands for hydrovinylation reactions. J. Am. Chem. Soc., 1999, 121, 9899-9900.
[67]
Yan, Y-Y. RajanBabu, T.V. Highly flexible synthetic routes to functionalized phospholanes from carbohydrates. J. Org. Chem., 2000, 65, 900-906.
[68]
Hiney, R.M.; Higham, L.J.; Müller-Bunz, H.; Gilheany, D.G. Taming a functional group: Creating air-stable, chiral primary phosphanes. Angew. Chem., 2006, 118, 7406-7409.
[69]
Davies, L.H.; Stewart, B.; Harrington, R.W.; Clegg, W.; Higham, L.J. Air-stable, highly fluorescent primary phosphanes. Angew. Chem. Int. Ed., 2012, 51, 4921-4924.
[70]
Davies, L.H.; Wallis, J.F.; Harrington, R.W.; Waddell, P.G.; Higham, L.J. Air-stable fluorescent primary phosphine complexes of molybdenum and tungsten. J. Coord. Chem., 2016, 69, 2069-2080.
[71]
Nikishkin, N.I.; Huskens, J.; Assenmacher, J.; Wilden, A.; Modolob, G.; Verboom, W. Palladium-catalyzed cross-coupling of various phosphorus pronucleophiles with chloropyrazines: Synthesis of novel Am(III)-selective extractants. Org. Biomol. Chem., 2012, 10, 5443-5451.
[72]
Brewster, T.P.; Konezny, S.J.; Sheehan, S.W.; Martini, L.A.; Schmuttenmaer, C.A.; Batista, V.S.; Crabtree, R.H. Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells. Inorg. Chem., 2013, 52, 6752-6764.
[73]
Berger, O.; Montchamp, J-L. General synthesis of P-stereogenic compounds: the menthyl phosphinate approach. Org. Biomol. Chem., 2016, 14, 7552-7562.
[74]
Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K. λ5-phospha[7]helicenes: synthesis, properties, and columnar aggregation with one-way chirality. Angew. Chem. Int. Ed., 2012, 51, 695-699.
[75]
Gavara, L.; Petit, C.; Montchamp, J-L. DBU-promoted alkylation of alkyl phosphinates and H-phosphonates. Tetrahedron Lett., 2012, 53, 5000-5003.
[76]
Nakano, H.; Suzuki, Y.; Kabuto, C.; Fujita, R.; Hongo, H. Chiral phosphinooxathiane ligands for catalytic asymmetric Diels-Alder reaction. J. Org. Chem., 2002, 67, 5011-5014.
[77]
Nishimura, T.; Maeda, Y.; Hayashi, T. Chiral diene-phosphine tridentate ligands for rhodium-catalyzed asymmetric cycloisomerization of 1,6-enynes. Org. Lett., 2011, 13, 3674-3677.
[78]
Zhou, Z.; Zhang, Y.; Xia, W.; Chen, H.; Liang, H.; He, X.; Yu, S.; Cao, R.; Qiu, L. Palladium-catalyzed suzuki-miyaura coupling reactions of boronic acid derivatives with aryl chlorides. Asian J. Org. Chem., 2016, 5, 1260-1268.
[79]
Kitagaki, S.; Nakamura, K.; Kawabata, C.; Ishikawa, A.; Takenaga, N.; Yoshida, K. Planar chiral [2.2]paracyclophane-based phosphine-phenols: use in enantioselective [3 + 2] annulations of allenoates and N-tosylimines. Org. Biomol. Chem., 2018, 16, 1770-1778.
[80]
Sun, W.; Gu, H.; Lin, X. Synthesis and application of hexamethyl-1,1′-spirobiindane-based phosphine-oxazoline ligands in ni-catalyzed asymmetric arylation of cyclic aldimines. J. Org. Chem., 2018, 83, 4034-4043.
[81]
Botman, P.N.M.; Fraanje, J.; Goubitz, K.; Peschar, R.; Verhoeven, J.W.; van Maarseveen, J.H.; Hiemstra, H. Synthesis, properties and applications of bicap: a new family of carbazole-based diphosphine ligands. Adv. Synth. Catal., 2004, 346, 743-754.
[82]
Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M. modified BINAP: the how and the why. Chem. Rev., 2005, 105, 1801-1836.
[83]
Kurz, L.; Lee, G.; Morgans, D., Jr; Waldyke, M.J.; Ward, T. Stereospecific functionalization of (R)-(-)-1,1′-bi-2-naphtol triflate. Tetrahedron Lett., 1990, 31, 6321-6324.
[84]
Uozumi, Y.; Suzuki, N.; Ogiwara, A.; Hayashi, T. Preparation of optically active binaphthylmonophosphines (MOP’s) containing various functional groups. Tetrahedron, 1994, 50, 4293-4302.
[85]
Cai, D.; Payack, J.F.; Bender, D.R.; Hughes, D.L.; Verhoeven, T.R.; Reider, P.J. Synthesis of chiral 2,2′-bis(diphenylphosphino)-1,l’-binaphthyl (BINAP) via a novel nickel-catalyzed phosphine insertion. J. Org. Chem., 1994, 59, 7180-7181.
[86]
Xu, J-X.; Chen, M-Y.; Zheng, Z-J.; Cao, J. J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Platinum-catalyzed multicomponent alcoholysis/hydrosilylation and bis-hydrosilylation of alkynes with dihydrosilanes. ChemCatChem, 2017, 9, 3111-3116.
[87]
Chen, J-X.; Daeuble, J.F.; Stryker, J.M. Phosphine effects in the copper(I) hydride-catalyzed hydrogenation of ketones and regioselective 1,2-reduction of α,β-unsaturated ketones and aldehydes. hydrogenation of decalin and steroidal ketones and enones. Tetrahedron, 2000, 56, 2789-2798.
[88]
Uozumi, Y.; Tanahashi, A.; Lee, S-Y.; Hayashi, T. Synthesis of optically active 2-(diary1phosphino)-1,l’-binaphthyls, efficient chiral monodentate phosphine ligands. J. Org. Chem., 1993, 58, 1945-1948.
[89]
Cho, S.; Shibasaki, M. Synthesis and evaluation of a new chiral ligand: 2-Diphenylarsino-2′-diphenylphosphino-1,1′-binaphthyl (BINAPAs). Tetrahedron Lett., 1998, 39, 1773-1776.
[90]
Shi, M.; Li, C-Q. Catalytic, asymmetric aza-Baylis-Hillman reaction of N-sulfonated imines with 2-cyclohexen-1-one and 2-cyclopenten-1-one in the presence of a chiral phosphine Lewis base. Tetrahedron, 2005, 16, 1385-1391.
[91]
Hamada, T.; Chieffi, A.; Åhman, J.; Buchwald, S.L. An improved catalyst for the asymmetric arylation of ketone enolates. J. Am. Chem. Soc., 2002, 124, 1261-1268.
[92]
Wei, B.; Chen, C.; You, C.; Lv, H.; Zhang, X. Efficient synthesis of (S,R)-Bn-Yanphos and Rh/(S,R)-Bn-Yanphos catalyzed asymmetric hydroformylation of vinyl heteroarenes. Org. Chem. Front., 2017, 4, 288-291.
[93]
Duclos, M-C.; Singjunla, Y.; Petit, C.; Favre-Réguillon, A.; Jeanneau, E.; Popowycz, F.; Métay, E.; Lemaire, M. Synthesis and evaluation of P-chirogenic monodentate binaphthyl phosphines. Tetrahedron Lett., 2012, 53, 5984-5986.
[94]
Ding, K.; Wang, Y.; Yun, H.; Liu, J.; Wu, Y.; Terada, M.; Okubo, Y.; Mikami, K. Highly efficient and practical optical resolution of 2-amino-2′-hydroxy-1,1′-binaphthyl by molecular complexation with n-benzylcinchonidium chloride: A direct transformation to binaphthyl amino phosphine. Chemistry Eur. J, 1999, 5, 1734-1737.
[95]
Vyskočil, Š.; Smřcina, M.; Hanuš, V.; Polášek, M.; Kočovský, P. Derivatives of 2-Amino-2′-diphenylphosphino-1,1′-binaphthyl (MAP) and their application in asymmetric palladium(0)-catalyzed allylic substitution. J. Org. Chem., 1998, 63, 7738-7748.
[96]
Anstiss, C.; Karuso, P.; Richardson, M.; Liu, L. Synthesis of new BINAP-based aminophosphines and their 31P-NMR spectroscopy. Molecules, 2013, 18, 2788-2802.
[97]
Ngo, H.L.; Lin, W. Development of 4,4′-substituted-XylBINAP ligands for highly enantioselective hydrogenation of ketones. J. Org. Chem., 2005, 70, 1177-1187.
[98]
Han, J-W.; Hayashi, T. Enhanced catalytic activity in asymmetric hydrosilylation of 1,3-dienes with a soluble palladium catalyst. Tetrahedron, 2002, 13, 325-331.
[99]
Maillard, D.; Bayardon, J.; Kurichiparambil, J.D.; Nguefack-Fournier, C.; Sinou, D. Chiral perfluorous analogues of MOP. Synthesis and applications in catalysis. Tetrahedron, 2002, 13, 1449-1456.
[100]
Gladiali, S.; Pulacchini, S.; Fabbri, D.; Manassero, M.; Sansoni, M. 2-Diphenylphosphino-2′-diphenylphosphinyl-1,1′-binaphthalene (BINAPO), an axially chiral heterobidentate ligand for enantioselective catalysis. Tetrahedron, 1998, 9, 391-395.
[101]
Gladiali, S.; Taras, R.; Ceder, R.M.; Rocamora, M.; Muller, G.; Solans, X.; Font-Bardia, M. Asymmetric allylic alkylation catalyzed by Pd(II)-complexes with (S)-BINPO, a hemilabile axially chiral P,O-heterodonor inducer. Tetrahedron, 2004, 15, 1477-1485.
[102]
Bayardon, J.; Cavazzini, M.; Maillard, D.; Pozzi, G.; Quicib, S.; Sinou, D. Chiral fluorous phosphorus ligands based on the binaphthyl skeleton: synthesis and applications in asymmetric catalysis. Tetrahedron, 2003, 14, 2215-2224.
[103]
Yuan, W-C.; Cun, L-F.; Gong, L-Z.; Mi, A-Q.; Jiang, Y-Z. Preparation of chiral 7,7′-disubstituted BINAPs for Rh-catalyzed 1,4-addition of arylboronic acids. Tetrahedron Lett., 2005, 46, 509-512.
[104]
Alcock, N.W.; Brown, J.M.; Hulmes, D.I. Synthesis and resolution of l-(2-diphenylphosphino-l-naphthyl)isoquinoline; a P-N chelating ligand for asymmetric catalysis. Tetrahedron, 1993, 4, 743-756.
[105]
Maxwell, A.C.; Franc, C.; Pouchain, L.; Müller-Bunza, H.; Guiry, P.J. Electronically varied quinazolinaps for asymmetric catalysis. Org. Biomol. Chem., 2008, 6, 3848-3853.
[106]
Rosell, J.M.; Staniland, S.; Turner, N.J.; Clayden, J. Substituent effects on axial chirality in 1-aryl-3,4-dihydroisoquinolines: controlling the rate of bond rotation. Tetrahedron, 2016, 72, 5172-5177.
[107]
Zhang, H-H.; Wang, C-S.; Li, C.; Mei, G-J.; Li, Y.; Shi, F. Design and enantioselective construction of axially chiral naphthyl-indole skeletons. Angew. Chem. Int. Ed., 2016, 55, 1-7.
[108]
Mikami, K.; Aikawa, K.; Korenaga, T. General synthetic route to chiral flexible biphenylphosphine ligands: The use of a chiral additive enables the preparation and observation of metal complexes incorporating the enantiopure form. Org. Lett., 2001, 3, 243-245.
[109]
Tian, F.; Yao, D.; Zhang, Y.J.; Zhang, W. Phosphine-oxazoline ligands with an axial-unfixed biphenyl backbone: the effects of the substituent at oxazoline ring and P phenyl ring on Pd-catalyzed asymmetric allylic alkylation. Tetrahedron, 2009, 65, 9609-9615.
[110]
Xia, W.; Li, Y.; Zhou, Z.; Chen, H.; Liang, H.; Yu, S.; He, X.; Zhang, Y.; Pang, J.; Zhou, Z.; Qiu, L. Synthesis of chiral-bridged atropisomeric monophosphine ligands with tunable dihedral angles and their applications in asymmetric suzuki-miyaura coupling reactions. Adv. Synth. Catal., 2017, 359, 1656-1662.
[111]
Liang, Y.; Wang, Z.; Ding, K. Generation of self-supported noyori-type catalysts using achiral bridged-biphep for heterogeneous asymmetric hydrogenation of ketones. Adv. Synth. Catal., 2006, 348, 1533-1538.
[112]
Wang, S.; Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L. Highly efficient synthesis of a class of novel chiral-bridged atropisomeric monophosphine ligands via simple desymmetrization and their applications in asymmetric suzuki-miyaura coupling reaction. Org. Lett., 2012, 14, 1966-1969.
[113]
Morohashi, N.; Akahira, Y.; Tanaka, S.; Nishiyama, K.; Kajiwara, T.; Hattori, T. Synthesis of a sulfur-bridged diphosphine ligand and its unique complexation properties toward palladium(II) ion. Chem. Lett., 2008, 37, 418-419.
[114]
Leung, F.K-C.; Ishiwari, F.; Shoji, Y.; Nishikawa, T.; Takeda, R.; Nagata, Y.; Suginome, M.; Uozumi, Y.; Yamada, Y.M.A. Fukushima. T. Synthesis and catalytic applications of a triptycene-based monophosphine ligand for palladium-mediated organic transformations. ACS Omega, 2017, 2, 1930-1937.
[115]
Wang, Y.; Li, X.; Ding, K. Synthesis of a new type of chiral amino phosphine ligands for asymmetric catalysis. Tetrahedron, 2002, 13, 1291-1297.
[116]
Ito, K.; Kashiwagi, R.; Iwasaki, K.; Katsuki, T. Asymmetric allylic alkylation using a palladium complex of chiral 2-(phosphinoaryl)pyridine ligands. Synlett, 1999, 1563-1566.
[117]
Zhang, T-Z.; Dai, L-X.; Hou, X-L. Synthesis of planar chiral [2.2]paracyclophane monophosphine ligands and their application in the umpolung allylation of aldehydes. Tetrahedron, 2007, 18, 251-259.
[118]
Kitagaki, S.; Ohta, Y.; Tomonaga, S.; Takahashi, R.; Mukai, C. Synthesis of planar chiral pseudo-ortho-substituted aryl[2.2]paracyclophanes by stepwise successive palladium-catalyzed coupling reactions. Tetrahedron, 2011, 22, 986-991.
[119]
Takenaga, N.; Adachi, S.; Furusawa, A.; Nakamura, K.; Suzuki, N.; Ohta, Y.; Komizu, M.; Mukai, C.; Kitagaki, S. Planar chiral [2.2]paracyclophane-based phosphine-phenol catalysts: Application to the aza-Morita-Baylis-Hillman reaction of N-sulfonated imines with various vinyl ketones. Tetrahedron, 2016, 72, 6892-6897.
[120]
Xie, J-H.; Wang, L-X.; Fu, Y.; Zhu, S-F.; Fang, B-M.; Duan, H-F.; Zhou, Q-L. Synthesis of spiro diphosphine ligands and their application in asymmetric hydrogenation of ketones. J. Am. Chem. Soc., 2003, 125, 4404-4405.
[121]
Xie, J-H.; Duan, H-F.; Fan, B-M.; Cheng, X.; Wang, L-X.; Zhou, Q-L. Application of SDP ligands for Pd-catalyzed allylic alkylation. Adv. Synth. Catal., 2004, 346, 625-632.
[122]
Li, S.; Zhu, S-F.; Zhang, C-M.; Song, S.; Zhou, Q-L. Iridium-catalyzed enantioselective hydrogenation of α,β-unsaturated carboxylic acids. J. Am. Chem. Soc., 2008, 130, 8584-8585.
[123]
Carmichael, D.; Ricard, L.; Seeboth, N. Planar-to-Axial Chirality Relay in Phospharuthenocenes. A rotationally hindered 2-(2′-diphenylphosphinonaphth-1′-yl)phospharuthenocene. Organometallics, 2007, 26, 2964-2970.
[124]
Teplý, F.; Stará, I.G.; Starý, I.; Kollárovič, A.; Šaman, D.; Vyskočil, Š.; Fiedler, P. Synthesis of 3-hexahelicenol and its transformation to 3-hexahelicenylamines, diphenylphosphine, methyl carboxylate, and dimethylthiocarbamate. J. Org. Chem., 2003, 68, 5193-5197.
[125]
Zhao, D.; Ding, K. A new type of C2-symmetric bisphospine ligands with a cyclobutane backbone: practical synthesis and application. Org. Lett., 2003, 5, 1349-1351.
[126]
Wen, J-F.; Hong, W.; Yuan, K.; Mak, T.C.W.; Wong, H.N.C. Synthesis, resolution, and applications of 1,16-dihydroxytetraphenylene as a novel building block in molecular recognition and assembly. J. Org. Chem., 2003, 68, 8918-8931.
[127]
Peng, H-Y.; Lam, C-K.; Mak, T.C.W.; Cai, Z.; Ma, W-T.; Li, Y-X.; Wong, H.N.C. Chiral rodlike platinum complexes, double helical chains, and potential asymmetric hydrogenation ligand based on “linear” building blocks: 1,8,9,16-tetrahydroxytetraphenylene and 1,8,9,16-tetrakis(diphenylphosphino)tetraphenylene. J. Am. Chem. Soc., 2005, 127, 9603-9611.
[128]
Bloomfield, A.J.; Herzon, S.B. Room temperature, palladium-mediated p-arylation of secondary phosphine oxides. Org. Lett., 2012, 14, 4370-4373.
[129]
Zhang, H.; Hu, R-B.; Zhang, X-Y.; Li, S-X.; Yang, S-D. Palladium-catalyzed R2(O)P directed C(sp2)-H acetoxylation. Chem. Commun. , 2014, 50, 4686-4689.
[130]
Matsumura, K.; Shimizu, H.; Saito, T.; Kumobayashi, H. Synthesis and application of chiral phospholane ligands bearing a sterically and electrically adjustable moiety. Adv. Synth. Catal., 2003, 345, 180-184.
[131]
Wang, C.; Yang, G.; Zhuang, J.; Zhang, W. From tropos to atropos: 5,5′-bridged 2,2′-bis(diphenylphosphino)biphenyls as chiral ligands for highly enantioselective palladium-catalyzed hydrogenation of α-phthalimide ketones. Tetrahedron Lett., 2010, 51, 2044-2047.
[132]
Zhou, Y.; Zhang, X.; Liang, H.; Cao, Z.; Zhao, X.; He, Y.; Wang, S.; Pang, J.; Zhou, Z.; Ke, Z.; Qiu, L. Enantioselective synthesis of axially chiral biaryl monophosphine oxides via direct asymmetric suzuki coupling and dft investigations of the enantioselectivity. ACS Catal., 2014, 4, 1390-1397.
[133]
Feng, J.; Li, B.; He, Y.; Gu, Z. Enantioselective synthesis of atropisomeric vinyl arene compounds by palladium catalysis: A carbene strategy. Angew. Chem. Int. Ed., 2016, 55, 2186-2190.
[134]
Li, B.; Zhang, M.; Huanga, X.; Gu, Z. Synthesis of 2,3-dihydro-1h-phosphindole-1-oxides via the t-buli-mediated rearrangement of vinylbromide and phosphine oxide. Org. Chem. Front., 2017, 4, 1854-1857.
[135]
Zhou, Z.; Liang, H.; Xia, W.; Chen, H.; Zhang, Y.; He, X.; Yu, S.; Cao, R.; Qiu, L. Synthesis of a class of binaphthyl monophosphine ligands with a naphthofuran skeleton and their applications in Suzuki-Miyaura coupling reactions. New J. Chem., 2018, 42, 5967-5971.
[136]
Storch, G.; Siebert, M.; Rominger, F.; Trapp, O. 5,5′-Diamino-BIPHEP ligands bearing small selector units for non-covalent binding of chiral analytes in solution. Chem. Commun. , 2015, 51, 15665-15668.
[137]
Fu, W.C.; So, C.M.; Kwong, F.Y. Palladium-catalyzed phosphorylation of aryl mesylates and tosylates. Org. Lett., 2015, 17, 5906-5909.
[138]
Luo, Y.; Wu, J. Synthesis of arylphosphonates via palladium-catalyzed coupling reactions of aryl imidazolylsulfonates with h-phosphonate diesters. Organometallics, 2009, 28, 6823-6826.
[139]
Fu, T.; Qiao, H.; Peng, Z.; Hu, G.; Wu, X.; Gao, Y.; Zhao, Y. Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides. Org. Biomol. Chem., 2014, 12, 2895-2902.
[140]
Miao, T.; Wang, L. Palladium-catalyzed desulfitative cross-coupling reaction of sodium arylsulfinates with H-phosphonate diesters. Adv. Synth. Catal., 2014, 356, 967-971.
[141]
Zhao, Y-L.; Wu, G-J.; Li, Y.; Gao, L-X.; Han, F-S. [NiCl2(dppp)]-Catalyzed cross-coupling of aryl halides with dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphine. Chemistry Eur. J, 2012, 18, 9622-9627.
[142]
Zhang, H-Y.; Sun, M.; Ma, Y-N.; Tian, Q-P.; Yang, S-D. Nickel-catalyzed C-P cross-coupling of diphenylphosphine oxide with aryl chlorides. Org. Biomol. Chem., 2012, 10, 9627-9633.
[143]
Hu, G.; Chen, W.; Fu, T.; Peng, Z.; Qiao, H.; Gao, Y.; Zhao, Y. Nickel-catalyzed C-P cross-coupling of arylboronic acids with P(O)H compounds. Org. Lett., 2013, 15, 5362-5365.
[144]
Shen, C.; Yang, G.; Zhang, W. Nickel-catalyzed C-P coupling of aryl mesylates and tosylates with H(O)PR1R2. Org. Biomol. Chem., 2012, 10, 3500-3505.
[145]
Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Ni(II)/Zn catalyzed reductive coupling of aryl halides with diphenylphosphine oxide in water. Org. Lett., 2011, 13, 3478-3481.
[146]
Novikova, Z.S.; Demik, N.N.; Agarkov, A.Yu.; Beletskaya, I.P. Palladium-catalyzed arylation of diethyl hydrogen phosphite. Russ. J. Org. Chem., 1995, 31, 129.
[147]
Kabachnik, M.M.; Solntseva, M.D.; Izmer, V.V.; Novikova, Z.S.; Beletskaya, I.P. Palladium-catalyzed phase-transfer arylation of dialkyl phosphonates. Russ. J. Org. Chem., 1998, 34, 93-97.
[148]
Beletskaya, I.P.; Neganova, E.G.; Veits, Yu.A. Arylation of 6H-dibenzo[c,e][1,2λ5]oxaphosphinine 6-oxide. Russ. J. Org. Chem., 2004, 40, 1782-1786.
[149]
Beletskaya, I.P.; Karlstedt, N.B.; Nifant’ev, E.E.; Khodarev, D.V.; Kukhareva, T.S.; Nikolaev, A.V.; Ross, A.J. Palladium-catalyzed P-arylation of hydrophosphoryl derivatives of protected monosaccharides. Russ. J. Org. Chem., 2006, 42, 1780-1785.
[150]
Keglevich, G. Milestones in Microwave Chemistry; Springer: Switzerland, 2016.
[151]
Villemin, D.; Jaffrès, P-A.; Siméon, F. Phosphorus Sulfur Silicon ., 1997, 130, 59.
[152]
Kalek, M.; Stawinski, J. Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphinate. Tetrahedron, 2009, 65, 10406-10412.
[153]
Andaloussi, M.; Lindh, J.; Sävmarker, J.; Sjöberg, P.J.R.; Larhed, M. Microwave-promoted palladium(II)-catalyzed C-P bond formation by using arylboronic acids or aryltrifluoroborates. Chemistry Eur. J, 2009, 15, 13069-13074.
[154]
Rummelt, S.M.; Ranocchiari, M.; van Bokhoven, J.A. Synthesis of water-soluble phosphine oxides by Pd/C-catalyzed P-C coupling in water. Org. Lett., 2012, 14, 2188-2190.
[155]
Bagi, P.; Ujj, V.; Czugler, M.; Fogassy, E.; Keglevich, G. Resolution of P-stereogenic P-heterocycles via the formation of diastereomeric molecular and coordination complexes (a review). Dalton Trans., 2016, 45, 1823-1842.
[156]
Dutartre, M.; Bayardon, J.; Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev., 2016, 45, 5771-5794.
[157]
Chen, T.; Han, L-B. Optically active H-phosphinates and their stereospecific transformations into optically active P-stereogenic organophosphoryl compounds. Synlett, 2015, 26, 1153-1163.
[158]
Kolodiazhnyi, O.I. Recent advances in asymmetric synthesis of P-stereogenic phosphorus compounds. Top. Curr. Chem., 2015, 360, 161-236.
[159]
Chrzanowski, J.; Krasowska, D.; Urbaniak, M.; Sieroń, L.; Pokora-Sobczak, P.; Demchuk, O.M.; Drabowicz, J. Synthesis of enantioenriched aryl‐tert‐butylphenylphosphine oxides via cross-coupling reactions of tert‐butylphenylphosphine oxide with aryl halides. Eur. J. Org. Chem., 2018, 33, 4614-4627.
[160]
Han, Z.S.; Wu, H.; Xu, Y.; Zhang, Y.; Qu, B.; Li, Z.; Caldwell, D.R.; Fandrick, K.R.; Zhang, L.; Roschangar, F.; Song, J.J.; Senanayake, C.H. General and stereoselective method for the synthesis of sterically congested and structurally diverse p-stereogenic secondary phosphine oxides. Org. Lett., 2017, 19, 1796-1799.
[161]
Stankevič, M.; Pisklak, J.; Włodarczyk, K. Aryl group - a leaving group in arylphosphine oxides. Tetrahedron, 2016, 72, 810-824.
[162]
Liu, C.; Szostak, M. Decarbonylative phosphorylation of amides by palladium and nickel catalysis: The hirao cross-coupling of amide derivatives. Angew. Chem. Int. Ed., 2017, 56, 12718-12722.
[163]
Zhang, Y.; He, H.; Wanga, Q.; Cai, Q. Asymmetric synthesis of chiral P-stereogenic triaryl phosphine oxides via Pd-catalyzed kinetic arylation of diaryl phosphine oxides. Tetrahedron Lett., 2016, 57, 5308-5311.
[164]
Geng, Z.; Zhang, Y.; Zheng, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Pd-catalyzed C-P Coupling of Heteroaryl Boronic Acid with H-Phosphonate Diester. Tetrahedron Lett., 2016, 57, 3063-3066.
[165]
Luo, H.; Liu, H.; Chen, X.; Wang, K.; Luo, X.; Wang, K. Ar-P bond construction by the Pd-catalyzed oxidative cross-coupling of arylsilanes with H-phosphonates via C-Si bond cleavage. Chem. Commun. , 2017, 53, 956-958.
[166]
Sobhani, S.; Vahidi, Z.; Zeraatkar, Z.; Khodadadi, S. A Pd complex of a NNN pincer ligand supported on γ-Fe2O3@SiO2 as the first magnetically recoverable heterogeneous catalyst for C-P bond forming reactions. RSC Advances, 2015, 5, 36552-36559.
[167]
Sobhani, S.; Vahidi, Z. P-arylation of aryl halides by an environmentally compatible method. Can. J. Chem., 2017, 95, 1280-1284.
[168]
Sobhani, S.; Zeraatkar, Z. A new magnetically recoverable heterogeneous palladium catalyst for phosphonation reactions in aqueous micellar solution. Appl. Organomet. Chem., 2016, 30, 12-19.
[169]
Yang, J.; Xiao, J.; Chen, T.; Han, L-B. Nickel-catalyzed phosphorylation of aryl triflates with P(O)-H compounds. J. Organomet. Chem., 2016, 820, 120-124.
[170]
Yang, J.; Xiao, J.; Chen, T.; Han, L-B. Nickel-Catalyzed Phosphorylation of Phenol Derivatives via C-O/P-H Cross Coupling. J. Org. Chem., 2016, 81, 3911-3916.
[171]
Yang, J.; Chen, T.; Han, L-B. C-P Bond-forming reactions via C-O/P-H cross coupling catalyzed by nickel. J. Am. Chem. Soc., 2015, 137, 1782-1785.
[172]
Liao, L-L.; Gui, Y-Y.; Zhang, X-B.; Shen, G.; Liu, H-D.; Zhou, W-J.; Li, J.; Yu, D-G. Phosphorylation of alkenyl and aryl C−O bonds via photoredox/nickel dual catalysis. Org. Lett., 2017, 19, 3735-3738.
[173]
Zhang, J-S.; Chen, T.; Yanga, J.; Han, L-B. Nickel-catalyzed P-C bond formation via P-H/C-CN cross couplings. Chem. Commun. , 2015, 51, 7540-7542.
[174]
Isshiki, R.; Muto, K.; Yamaguchi, J. Decarbonylative C−P bond formation using aromatic esters and organophosphorus compounds. Org. Lett., 2018, 20, 1150-1153.
[175]
Sengmany, S.; Ollivier, A.; Gall, E.L.; Léonel, E. A mild electroassisted synthesis of (hetero)arylphosphonates. Org. Biomol. Chem., 2018, 16, 4495-4500.
[176]
Zhang, H.; Zhang, X-Y.; Dong, D-Q.; Wang, Z-L. Copper-catalyzed cross-coupling reactions for C-P bonds formation. RSC Advances, 2015, 5, 52824-52831.
[177]
Gelman, D.; Jiang, L.; Buchwald, S.L. Copper-catalyzed C-P bond construction via direct coupling of secondary phosphines and phosphites with aryl and vinyl halides. Org. Lett., 2003, 5, 2315-2318.
[178]
Huang, C.; Tang, X.; Fu, H.; Jiang, Y. Zhao. Y. Proline/pipecolinic acid-promoted copper-catalyzed P-arylation. J. Org. Chem., 2006, 71, 5020-5022.
[179]
Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. A Versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: Pyrrolidine-2-phosphonic acid phenyl monoester. Chemistry Eur. J, 2006, 12, 3636-3646.
[180]
Jiang, D.S.; Jiang, Q.; Fu, H.; Jiang, Y.Y.; Zhao, Y.F. Efficient copper-catalyzed coupling of 2-haloacetanilides with phosphine oxides and phosphites under mild conditions. Synthesis, 2008, 21, 3473-3477.
[181]
Karlstedt, N.B.; Beletskaya, I.P. Copper-catalyzed cross-coupling of diethyl phosphonate with aryl iodides. Russ. J. Org. Chem., 2011, 47, 1011-1014.
[182]
Stankevič, M.; Włodarczyk, A. Efficient copper(I)-catalyzed coupling of secondary phosphine oxides with aryl halides. Tetrahedron, 2013, 69, 73-81.
[183]
Wan, H.; Zhao, Y.; Wang, Q.; Zhang, Y.; Li, Y. The Cu-catalyzed C-P coupling of phosphonate esters with arylboronic acids. Russ. J. Gen. Chem., 2016, 86, 150-153.
[184]
Beaud, R.; Phipps, R.J.; Gaunt, M.J. Enantioselective Cu-catalyzed arylation of secondary phosphine oxides with diaryliodonium salts toward the synthesis of P-chiral phosphines. J. Am. Chem. Soc., 2016, 138, 13183-13186.
[185]
He, Y.; Wuab, H.; Toste, F.D. A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis. Chem. Sci. , 2015, 6, 1194-1198.
[186]
Peng, H.; Cai, R.; Xu, C.; Chen, H.; Shi, X. Nucleophile promoted gold redox catalysis with diazonium salts: C-Br, C-S and C-P bond formation through catalytic Sandmeyer coupling. Chem. Sci. , 2016, 7, 6190-6196.
[187]
Jablonkai, E.; Keglevich, G. P-ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P-C coupling reaction of >P(O)H species and bromoarenes. Tetrahedron Lett., 2013, 54, 4185-4188.
[188]
Keglevich, G.; Jablonkai, E.; Balázs, L.B.A. “green” variation of the Hirao reaction: the P-C coupling of diethyl phosphite, alkyl phenyl-H-phosphinates and secondary phosphine oxides with bromoarenes using a P-ligand-free Pd(OAc)2 catalyst under microwave and solvent-free conditions. RSC Advances, 2014, 4, 22808-22816.
[189]
Keglevich, G.; Henyecz, R.; Mucsi, Z.; Kiss, N.Z. The palladium acetate-catalyzed microwave-assisted hirao reaction without an added phosphorus ligand as a “green” protocol: A quantum chemical study on the mechanism. Adv. Synth. Catal., 2017, 359, 4322-4331.
[190]
Henyecz, R.; Mucsi, Z.; Keglevich, G. Palladium-catalyzed microwave-assisted Hirao reaction utilizing the excess of the diarylphosphine oxide reagent as the P-ligand; a study on the activity and formation of the “PdP2” catalyst. Pure Appl. Chem., 2019, 91, 121-134.
[191]
Amaya, T.; Abe, Y.; Inada, Y.; Hirao, T. Synthesis of self-doped conducting polyaniline bearing phosphonic acid. Tetrahedron Lett., 2014, 55, 3976-3978.
[192]
Jójárt, R.; Pécsy, S.; Keglevich, G.; Szécsi, M.; Rigó, R.; Özvegy-Laczka, C.; Kecskeméti, G.; Mernyák, E. Pd-Catalyzed microwave-assisted synthesis of phosphonated 13α-estrones as potential OATP2B1, 17β-HSD1 and/or STS inhibitors. Beilstein J. Org. Chem., 2018, 14, 2838-2845.
[193]
Li, J.; Bi, X.; Wang, H.; Xiao, J. Palladium-catalyzed desulfitative C-P coupling of arylsulfinate metal salts and H-phosphonates. RSC Advances, 2014, 4, 19214-19217.
[194]
Jablonkai, E.; Balázs, L.B.; Keglevich, G. A P-ligand-free nickel-catalyzed variation of the hirao reaction under microwave conditions. Curr. Org. Chem., 2015, 19, 197-202.
[195]
Yang, J.; Xiao, J.; Chen, T.; Yin, S-F.; Han, L-B. Efficient nickel-catalyzed phosphinylation of C-S bonds forming C-P bonds. Chem. Commun. , 2016, 52, 12233-12236.
[196]
Łastawiecka, E.; Flis, A.; Stankevič, M. Greluk, M.; Słowik, G.; Gac, W. P-Arylation of secondary phosphine oxides catalyzed by nickel-supported nanoparticles. Org. Chem. Front., 2018, 5, 2079-2085.
[197]
Xiong, B.; Li, M.; Liu, Y.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S-F.; Han, L-B. Stereoselective Synthesis of Phosphoryl-Substituted Phenols. Adv. Synth. Catal., 2014, 356, 781-794.
[198]
Ogawa, T.; Usuki, N.; Ono, N. A new synthesis of ð-electron conjugated phosphonates and phosphonic bis(diethylamides) and their SHG activities. J. Chem. Soc., Perkin Trans. 1, 1998, 2953-2958.
[199]
Ghosh, T.; Maity, P.; Kundu, D.; Ranu, B.C. Cobalt catalyzed, copper assisted C(sp2)-P cross coupling. New J. Chem., 2016, 40, 9556-9564.
[200]
Jablonkai, E.; Keglevich, G. Catalyst-free P-C coupling reactions of halobenzoic acids and secondary phosphine oxides under microwave irradiation in water. Tetrahedron Lett., 2015, 56, 1638-1640.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [523 - 545]
Pages: 23
DOI: 10.2174/1570179416666190415110834

Article Metrics

PDF: 50
HTML: 15
PRC: 1