A Review on Heat Transfer Enhancement Using Magnetic Nanofluids

Author(s): Taliv Hussain*, Mohammad Talha Javed, Raquib Imam Ansari

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Magnetic nanofluids are defined as fluids exhibiting magnetic properties. These fluids are generated by suspending nanoparticles of magnetic nature in any base fluids. Magnetic nanofluids have been a topic of interest for researchers because of their highly useful and manipulatable properties. With the use of these fluids, heat transfer and flow characteristics can be controlled by applying external magnetic fields. This paper reviews recent investigations in the field of magnetic nanofluids with the purpose of assessing the effects of various parameters on their heat transfer and flow characteristics. The objective of this review is to study the research done in this field and understand the level at which this technology stands with all its opportunities and challenges. The review has been classified into experimental and numerical simulation work. Investigations in the presence and absence of magnetic field have been discussed under experimental work. Investigations in the domain of numerical simulation of magnetic nanofluids have been classified into single phase and multiphase analysis. Some novel applications of magnetic nanofluids have also been discussed. It has been concluded that research in the field of magnetic nanofluids is still in the preliminary stages and further experimental and simulation work needs to be done. The physical process needs to be understood with a deeper perspective to create better models for simulation. In spite of the challenges, research in this field of study has given exciting results and it holds vast potential applications.

Keywords: Magnetic nanofluids, heat transfer, nanoparticles, magnetic field, thermo-fluid systems, metals.

Choi, S.U.S.; Eastman, J.A. ASME international mechanical engineering congress and exposition.; San Francisco, CA. , 1995, pp. 12-17.
Bahiraei, M.; Hosseinalipour, S.M. Particle migration in nanofluids considering thermophoresis and its effect on convective heat transfer. Thermochim. Acta, 2013, 574, 47-54.
Yahya, S.M.; Anwer, S.F.; Sanghi, S. Variable expansivity: A key changing parameter in modeling of thermal conductivity of nanofluid. Nanosci. Nanotechnol. Lett., 2014, 6(10), 942-946.
Ansari, S.; Hussain, T.; Yahya, S.M.; Chaturvedi, P.; Sardar, N. Experimental investigation of viscosity of nanofluids containing oxide nanoparticles at varying shear rate. J. Nanofluids, 2018, 7(6), 1075-1080.
Ansari, S.; Yahya, S.M.; Umair, M.; Naim, M.S.; Bhardwaj, P.; Chaturvedi, P.; Khan, F.; Hussain, T. Experimental investigation of viscosity for Al2O3, CuO and TiO2 nanoparticles in deionised water at a fixed shear rate. Adv. Sci. Eng. Med., 2018, 10(3), 293-297.
Chaturvedi, P.; Yahya, S.M.; Hussain, T. Materials Science and Engineering. IOP Publishing, 2018, 377(1) 012154
Yahya, S.M.; Hussain, T.; Chaturvedi, P. The mirror: Mother of all symmetries in crystals. Adv. Sci. Eng. Med., 2018, 10(3), 298-303.
Wang, J.; Zeng, X.C. In: In: Nanoscale magnetic materials and applications; Springer, Boston, MA. , 2009; pp. 35-65.
Odenbach, S. Recent progress in magnetic fluid research. J. Phys., 2004, 16(32), R1135.
Ganguly, R.; Puri, I.K. Field-assisted self-assembly of superparamagnetic nanoparticles for biomedical, MEMS and BioMEMS applications. Adv. Appl. Mech., 2007, 41, 293-335.
Odenbach, S.; Thurm, S. In: In: Ferrofluids; Springer, Berlin, Heidelberg. 185-201., 2002.; pp.
Shliomis, M.I. In: In: Ferrofluids; Springer, Berlin, Heidelberg. 85-111., 2002; pp.
Kuzubov, A.O.; Ivanova, O.I. Magnetic liquids for heat exchange. J. Phys. III, 1994, 4(1), 1-6.
Aminfar, H.; Mohammadpourfard, M.; Kahnamouei, Y.N.J. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model. Magnet. Magnet. Mater, 2011, 323(15), 1963-1972.
Aminfar, H.; Mohammadpourfard, M.; Mohseni, F.J. Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus. Magnet. Magnet. Mater, 2012, 324(5), 830-842.
Aminfar, H.; Mohammadpourfard, M.; Zonouzi, S.A. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J. Magnet. Magnet. Mater., 2013, 327, 31-42.
Odenbach, S. Ed. Colloidal magnetic fluids: Basics, development and application of ferrofluids; Springer. 763., 2009, p.
Webb, R.L. Principle of enhanced heat transfer; John Wiley & Sons, New York. , 1994, pp. 332-340.
Kuzubov, A.O.; Ivanova, O.I. Magnetic liquids for heat exchange. J. Phys. III, 1994, 4(1), 1-6.
Vekas, L.; Bica, D.; Avdeev, M.V. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. China Particuol, 2007, 5(1-2), 43-49.
Kolesnichenko, V.L. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst. Magnet. Nanopart, 2009, 1, 1837.
Lo, C.H.; Tsung, T.T.; Chen, L.C. Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS). JSME Int. J. Ser. B Fluids Thermal. Eng., 2005, 48(4), 750-755.
Charles, S.W. In: In: Ferrofluids; Springer, Berlin, Heidelberg. , 2002; pp. 3-18.
Fu, H.L.; Gao, L. Theory for anisotropic thermal conductivity of magnetic nanofluids. Phys. Lett. A, 2011, 375(41), 3588-3592.
Fang, X.; Xuan, Y.; Li, Q. Anisotropic thermal conductivity of magnetic fluids. Prog. Nat. Sci., 2009, 19(2), 205-211.
Nkurikiyimfura, I.; Wang, Y.; Pan, Z. Effect of chain-like magnetite nanoparticle aggregates on thermal conductivity of magnetic nanofluid in magnetic field. Exper. Thermal. Fluid Sci., 2013, 44, 607-612.
Finlayson, B.A. Convective instability of ferromagnetic fluids. J. Fluid Mech., 1970, 40(4), 753-767.
Shahsavar, A.; Bahiraei, M. Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol., 2017, 318, 441-450.
Afrand, M.; Toghraie, D.; Sina, N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int. Commun. Heat Mass Transfer., 2016, 75, 262-269.
Harandi, S.S.; Karimipour, A.; Afrand, M.; Akbari, M.; D’Orazio, A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int. Commun. Heat Mass Transfer., 2016, 76, 171-177.
Sonawane, S.S.; Juwar, V. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl. Thermal. Eng., 2016, 109, 121-129.
Esfe, H.M.; Saedodin, S.; Sedighi, M. Predicting thermophysical properties and flow characteristics of nanofluids using intelligent methods: focusing on ANN methods. J. Curr. Res. Sci, 2013, 1(6), 605.
Sundar, L.S.; Singh, M.K.; Sousa, A.C. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transfer., 2013, 44, 7-14.
Wang, B.; Wang, B.; Wei, P.; Wang, X.; Lou, W. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids. Dalton Transac., 2012, 41(3), 896-899.
Abareshi, M.; Goharshadi, E.K.; Zebarjad, S.M.; Fadafan, H.K.; Youssefi, A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J. Magnet. Magnet. Mater., 2010, 322(24), 3895-3901.
Hong, K.S.; Hong, T.K.; Yang, H.S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl. Phys. Lett., 2006, 88(3) 031901
Amani, M.; Amani, P.; Kasaean, A.; Mahian, O.; Wongwises, S. Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J. Mol. Liquids., 2017, 230, 121-128.
Karimi, A.; Afghahi, S.S.S.; Shariatmadar, H.; Ashjaee, M. Experimental investigation on thermal conductivity of MFe2O4 (M= Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochim. Acta, 2014, 598, 59-67.
Krichler, M.; Odenbach, S. Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement. J. Magnet. Magnet. Mater., 2013, 326, 85-90.
Parekh, K.; Lee, H.S. Experimental investigation of thermal conductivity of magnetic nanofluids. AIP Conf. Proc., 2012, 1447(1), 385-386.
Shima, P.D.; Philip, J. Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J. Phys. Chem. C, 2011, 115(41), 20097-20104.
Parekh, K.; Lee, H.S. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J. Appl. Phys., 2010, 107(9) 09A310
Li, Q.; Xuan, Y.; Wang, J. Experimental investigations on transport properties of magnetic fluids. Exper. Thermal. Fluid Sci., 2005, 30(2), 109-116.
Chiu, Y.P.; Chen, Y.F.; Yang, S.Y.; Chen, J.C.; Horng, H.E.; Yang, H.C.; Hong, C.Y. Specific heat of magnetic fluids under a modulated magnetic field. J. Appl. Phys., 2003, 93(4), 2079-2081.
Hayat, T.; Khan, M.I.; Waqas, M.; Alsaedi, A.; Farooq, M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput. Methods Appl. Mech. Eng., 2017, 315, 1011-1024.
Sheikholeslami, M.; Rashidi, M.M.; Hayat, T.; Ganji, D.D. Free convection of magnetic nanofluid considering MFD viscosity effect. J. Mol. Liquids., 2016, 218, 393-399.
Mousavi, M. Advances in Computational Algorithms and Data Analysis; Springer, Dordrecht. , 2009, pp. 495-507.
Sheikholeslami, M.; Gorji-Bandpay, M.; Ganji, D.D. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int. Commun. Heat Mass Transfer., 2012, 39(7), 978-986.
Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer., 2003, 46(19), 3639-3653.
Sheikholeslami, M.; Rokni, H.B. Nanofluid two phase model analysis in existence of induced magnetic field. Int. J. Heat Mass Transfer., 2017, 107, 288-299.
Sheikholeslami, M.; Ganji, D.D.; Rashidi, M.M. Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J. Magnet. Magnet. Mater., 2016, 416, 164-173.
Sheikholeslami, M.; Rashidi, M.M.; Ganji, D.D. Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J. Mol. Liquids., 2015, 212, 117-126.
Sheikholeslami, M.; Ganji, D.D.; Javed, M.Y.; Ellahi, R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magnet. Magnet. Mater., 2015, 374, 36-43.
Sheikholeslami, M.; Abelman, S. Two-phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Transac. Nanotechnol., 2015, 14(3), 561-569.
Sheikholeslami, M.; Abelman, S.; Ganji, D.D. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int. J. Heat Mass Transfer., 2014, 79, 212-222.
Lian, W.; Xuan, Y.; Li, Q. Design method of automatic energy transport devices based on the thermomagnetic effect of magnetic fluids. Int. J. Heat Mass Transfer., 2009, 52(23-24), 5451-5458.
Zablotsky, D.; Mezulis, A.; Blums, E. Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment. Int. J. Heat Mass Transfer., 2009, 52(23-24), 5302-5308.
Philip, J.; Shima, P.D.; Raj, B. Nanofluid with tunable thermal properties. Appl. Phys. Lett., 2008, 92(4) 043108
Ming, Z.; Zhongliang, L.; Guoyuan, M.; Shuiyuan, C. The experimental study on flat plate heat pipe of magnetic working fluid. Exper. Thermal. Fluid Sci., 2009, 33(7), 1100-1105.
Lee, Y.W.; Chang, T.L. Novel perturbations between magnetic nanofluid and the thermal fluidic system at heat dissipation. Microelectron. Eng., 2013, 111, 58-63.
Sharifi, I.; Shokrollahi, H.; Amiri, S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magnet. Magnet. Mater., 2012, 324(6), 903-915.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [266 - 278]
Pages: 13
DOI: 10.2174/2210681209666190412142721
Price: $25

Article Metrics

PDF: 13