Towards the Design of Cost-efficient Generic Register Using Quantum-dot Cellular Automata

Author(s): Chiradeep Mukherjee*, Saradindu Panda, Asish K. Mukhopadhyay, Bansibadan Maji

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 4 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The advancement of VLSI in the application of emerging nanotechnology explores quantum-dot cellular automata (QCA) which has got wide acceptance owing to its ultra-high operating speed, extremely low power dissipation with a considerable reduction in feature size. The QCA architectures are emerging as a potential alternative to the conventional complementary metal oxide semiconductor (CMOS) technology.

Experimental: Since the register unit has a crucial role in digital data transfer between the electronic devices, such study leading to the design of cost-efficient and highly reliable QCA register is expected to be a prudent area of research. A thorough survey on the existing literature shows that the generic models of Serial-in Serial Out (SISO), Serial-in-Parallel-Out (SIPO), Parallel-In- Serial-Out (PISO) and Parallel-in-Parallel-Out (PIPO) registers are inadequate in terms of design parameters like effective area, delay, O-Cost, Costα, etc.

Results: This work introduces a layered T gate for the design of the D flip flop (LTD unit), which can be broadly used in SISO, SIPO, PISO, and PIPO register designs. For detection and reporting of high susceptible errors and defects at the nanoscale, the reliability and defect tolerant analysis of LTD unit are also carried out in this work. The QCA design metrics for the general register layouts using LTD unit is modeled.

Conclusion: Moreover, the cost metrics for the proposed LTD layouts are thoroughly studied to check the functional complexity, fabrication difficulty and irreversible power dissipation of QCA register layouts.

Keywords: QCA-based logic architectures, register, layered T gate, reliability, defect tolerance, cost analysis, logic optimization for QCA circuits.

[1]
Horowitz, M.; Alon, E.; Patil, D.; Naffziger, S.; Kumar, R.; Bernstein, K. Scaling, power, and the future of CMOS. Proceeding of the IEEE International Electron Devices Meeting, Washington, DC, USADecember 5,. 2005.
[2]
Haron, N.Z.; Hamdioui, S. Why is CMOS scaling coming to an END? Proceedings of the 3rd International Design and Test Workshop, Monastir, TunisiaDecember 20-22, 2008
[3]
Lent, C.S.; Tougaw, P.D.; Porod, W. Quantum cellular automata: The physics of computing with arrays of quantum dot molecules. Proceedings of Workshop on Physics and Computation, PhysComp’94, Dallas, TX, USANovember 17-20, 1994
[4]
Amlani, I.; Orlov, A.; Toth, G.; Bernstein, G.H.; Lent, C.S.; Snider, G.L. Digital logic gate using quantum-dot cellular automata. Science, 1999, 284(5412), 289-291.
[5]
Toth, G.; Lent, C. Quantum computing with quantum-dot cellular automata. Phys. Rev. A, 2001, 63, 1-9.
[6]
Lent, C.; Isaksen, B.; Lieberman, M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc., 2003, 125(4), 1056-1063.
[7]
Cowburn, R.; Welland, M. Room temperature magnetic quantum cellular automata. Science, 2000, 287(5457), 1466-1468.
[8]
Afrooz, S.; Navimipour, N.J. Memory designing using quantum-dot cellular automata: Systematic literature review, classification and current trends. J. Circuits Syst. Comput., 2017, 26(12)1730004
[9]
Liu, W.; Lu, L.; O’Neill, M. Swartzlander, E.E. A first step toward cost functions for quantum-dot cellular automata designs. IEEE Transac. Nanotechnology, 2014, 13(3), 476-487.
[10]
Sen, B.; Nag, A.; De, A.; Sikdar, B.K. Multilayer design of QCA multiplexer. Proceedings of the Annual IEEE India Conference (INDICON)Mumbai, India December 13-15, 2013
[11]
Lim, L.A.; Ghazali, A.; Yan, S.C.T.; Fat, C.C. Sequential circuit design using Quantum-dot Cellular Automata (QCA). IEEE International Conference on Circuits and Systems (ICCAS), Kuala Lumpur, MalaysiaOctober 3-4, 2012
[12]
Ahmad, F.; Mustafa, M.; Wani, N.A.; Mir, F.A. A novel idea of pseudo-code generator in quantum-dot cellular automata (QCA). Int. J. Simulat. Multidisciplin. Des. Optimizat., 2014, 5(A04), 1-8.
[13]
Mustafa, M.; Beigh, M.R. Novel linear feedback shift register design in quantum-dot cellular automata. Indian J. Pure Appl. Phy., 2014, 52, 203-209.
[14]
Reshi, J.I.; Banday, M.T.; Khanday, F.A. Sequential circuit design using quantum dot cellular automata (QCA). International Conference on Advances in Computers, Communication and Electronic Engineering, Srinagar, IndiaOctober 3-4, 2015
[15]
Purkayastha, T.; De, D.; Chattopadhyay, T. Universal shift register implementation using quantum dot cellular automata. Ain Shams Eng. J., 2016, 9(2), 291-310.
[16]
Krishnaswamy, S.; Markov, I.L.; Hayes, J.P. Design, analysis and test of logic circuits under uncertaintyLect. Notes Electrical Eng; (Springer), 2013. 115, 978-90-481-9643-2.
[17]
Dysart, T.J. It’s all about the signal routing: understanding the reliability of qca circuits and systems, Ph. D. dissertation, University of Notre Dame, 2009, Available at: https://curate.nd.edu/downloads/zk51vd69g47 (Accessed on 13th April 2018)
[18]
Sen, B.; Nath, R.K.; Mukherjee, R.; Sahu, Y.; Sikdar, B.K. Towards designing reliable universal qca logic in the presence of cell deposition defect. Proceedings of the 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), Kolkata, IndiaJanuary 4-8, 2016
[19]
Janez, M.; Pecar, P.; Miraz, M. Layout design of manufacturable quantum-dot cellular automata. Microelectronics J., 2012, 43(7), 501-513.
[20]
Angizi, S.; Moaiyeri, M.H.; Farrokhi, S.; Navi, K.; Bagherzadeh, N. Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst., 2015, 39(7), 512-520.
[21]
Mukherjee, C.; Panda, S.; Mukhopadhyay, A.K.; Maji, B. Synthesis of standard functions and generic Ex-OR module using layered T gate. Int. J. High Perform. Syst. Architect., 2017, 7(2), 70-86.
[22]
Mukherjee, C.; Panda, S.; Mukhopadhyay, A.K.; Maji, B. QCA gray code converter circuits using LTEx methodology. Int. J. Theor. Phys., 2018, 57, 2068-2092.
[23]
Dai, J.; Wang, L.; Jain, F. A quantitative approach for analysis of defect tolerance in QCA. 8th IEEE Conference on Nanotechnology, Arlington, TX, USAAugust 18-21, 2008
[24]
Krishnaswamy, S.; Markov, I.L.; Hayes, J.P. Design, analysis and test of logic circuits under uncertainty; Springer: Netherlands, 2013.
[25]
Tocci, R.J. Digital systems principles and applications, 10th ed; Pearson: New Delhi, India, 2009.
[26]
Neimer, M.T. Designing digital systems in quantum cellular automata., Doctoral Thesis, University of Notre Dame, January 2004, Available at: https://www3.nd.edu/~lent/pdf/nd/Designing_Digital_Systems_in_Quantum_Cellular_Automata.pdf
[27]
Vetteth, A.; Walus, K.; Dimitrov, V.S.; Jullien, G.A. Quantum-dot Cellular Automata of Flip-Flops ATIPS Laboratory 2500 University Drive, N.W., Calgary, Alberta, CanadaT2N 1N4. 2003.
[28]
Shamsabadi, A.S.; Ghahfarokhi, B.S.; Zamanifar, K.; Movahedinia, N. Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Systems Archit., 2008, 55, 180-187.
[29]
Yang, X.; Cai, L.; Zhao, X. Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. IET Electron. Lett., 2010, 46(12), 180-187.
[30]
Jagarlamudi, H.S.; Saha, M.; Jagarlamudi, P.K. Quantum dot cellular automata based effective design of combinational and sequential logical structures. Int. J. Nuclear Quant. Eng, 2011, 5(12), 529-533.
[31]
Xiao, L.; Chen, X.; Ying, S. Design of dual-edge triggered flipflops based on quantum-dot cellular automata J. Zhejiang Univ. Sci. C (Computers & Electronics), 2012, 13(5), 385-392.
[32]
Lim, L.A.; Ghazali, A.; Yan, S.C.T.; Fat, C.C. Sequential Circuit Design using Quantum-Dot Cellular Automata (QCA). IEEE International Conference on Circuits and Systems (ICCAS), Kuala Lumpur, MalaysiaOctober 3-4, 2012
[33]
Sarkar, T. Design of D flip-flip using nano-technology based quantum cellular automata. Int. J. Soft Comput. Eng., 2013, 3(4), 56-60.
[34]
Zokaa, S.; Gholami, M. Two novel flip flop with level triggered reset in quantum dot cellular automata. Int. J. Eng. (IJE), 2018, 31(3), 415-421.
[35]
Chakrabarty, R.; Mahato, D.K.; Banerjee, A.; Choudhuri, S.; Dey, M.; Mandal, N.K. A novel design of flip-flop circuits using quantum dot cellular automata (QCA). Proceedings of the IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NVJanuary 8-10, 2018
[36]
Silva, D.S.; Sardinha, L.H.B.; Vieira, M.A.M.; Vieira, L.F.M.; Vilela Neto, O.P. Robust serial nanocommunication with QCA. IEEE Trans. NanoTechnol., 2015, 14(3), 464-472.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 4
Year: 2020
Published on: 26 August, 2020
Page: [534 - 547]
Pages: 14
DOI: 10.2174/2210681209666190412142207
Price: $25

Article Metrics

PDF: 14
HTML: 1