Effect of Chinese Herbal Monomer Hairy Calycosin on Nonalcoholic Fatty Liver Rats and its Mechanism

Author(s): Xiang Liu, Zhi-Hong Xie, Chen-Yuan Liu, Ying Zhang*.

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 3 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Chinese herbal monomer hairy Calycosin is a flavonoid extracted from Radix astragali.

Aims and Scope: The aim of the research was to investigate the effect and mechanism of Hairy Calycosin on Non-Alcoholic Fatty Liver Dieases (NAFLD) in rats.

Materials and Methods: 60 rats were randomly divided into 6 groups, then NAFLD rat models were prepared and treated with different doses of Hairy Calycosin (0.5, 1.0, 2.0 mg/kg) or Kathyle relatively.

Results: Both 1.0 mg/kg and 2.0 mg/kg Hairy Calycosin treatment could significantly increase the serum Superoxide Dismutase (SOD) content of the model rats and reduce the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), Free Fatty Acid (FFA), IL-6, tumor necrosis factor-alpha (TNF-α) and liver homogenate malondialdehyde (MDA), while 2.0 mg/kg Hairy Calycosin can down-regulate liver tissue cytochrome p450 2E1 (CYP2E1). In the electron microscope, compared with the model control group, the mitochondrial swelling in the hepatocytes of Hairy Calycosin (1.0, 2.0 mg/kg) treatment group was significantly reduced, the ridge on the inner membrane of mitochondria increased, and the lipid droplets became much smaller.

Conclusion: Hairy Calycosin can effectively control the lipid peroxidation in liver tissues of rats with NAFLD, and reduce the levels of serum TNF-α, IL-6, MDA and FFA, effectively improve the steatosis and inflammation of liver tissue, and down-regulate the expression of CYP2E1, inhibit apoptosis of hepatocytes.

Keywords: Fatty liver, inflammation, hairy calycosin, nonalcoholic, liver disease, inflammation.

[1]
Kucera, O.; Cervinkova, Z. Experimental models of non-alcoholic fatty liver disease in rats. World J. Gastroenterol., 2014, 20(26), 8364-8376.
[2]
Tomic, D.; Kemp, W.W.; Roberts, S.K. Nonalcoholic fatty liver disease: current concepts, epidemiology and management strategies. Eur. J. Gastroenterol. Hepatol., 2018, 30(10), 1103-1115.
[3]
Ma, R.; Yuan, F.; Wang, S.; Liu, Y.; Fan, T.; Wang, F. Calycosin alleviates cerulein-induced acute pancreatitis by inhibiting the inflammatory response and oxidative stress via the p38 MAPK and NF-kappaB signal pathways in mice. Biomed. Pharmacother., 2018, 105, 599-605.
[4]
Su, X.; Huang, Q.; Chen, J.; Wang, M.; Pan, H.; Wang, R.; Zhou, H.; Zhou, Z.; Liu, J.; Yang, F.; Li, T.; Liu, L. Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts. Pharmacol. Res., 2016, 113(Pt A), 695-704.
[5]
Tian, J.; Wang, Y.; Zhang, X.; Ren, Q.; Li, R.; Huang, Y.; Lu, H.; Chen, J. Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 Signaling. J. Exp. Clin. Cancer Res., 2017, 36(1), 153.
[6]
Zhao, X.; Li, X.; Ren, Q.; Tian, J.; Chen, J. Calycosin induces apoptosis in colorectal cancer cells, through modulating the ERbeta/MiR-95 and IGF-1R, PI3K/Akt signaling pathways. Gene, 2016, 591(1), 123-128.
[7]
Liu, B.; Zhang, J.; Liu, W.; Liu, N.; Fu, X.; Kwan, H.; Liu, S.; Liu, B.; Zhang, S.; Yu, Z.; Liu, S. Calycosin inhibits oxidative stress-induced cardiomyocyte apoptosis via activating estrogen receptor-alpha/beta. Bioorg. Med. Chem. Lett., 2016, 26(1), 181-185.
[8]
Yang, D.H.; Ren, X.L.; Xu, F.; Ma, X.Q.; Liu, G.X.; Li, C.H.; Li, C.; Cai, S.Q. Absorptive constituents and their metabolites in drug-containing urine samples from Wuzhishan miniature pigs orally administered with Buyang Huanwu decoction. J. Nat. Med., 2014, 68(1), 11-21.
[9]
Guo, T.; Liu, Z.L.; Zhao, Q.; Zhao, Z.M.; Liu, C.H. A combination of astragaloside I, levistilide A and calycosin exerts anti-liver fibrosis effects in vitro and in vivo. Acta Pharmacol. Sin., 2018, 39(9), 1483-1492.
[10]
Guo, Q.; Rimbach, G.; Moini, H.; Weber, S.; Packer, L. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxicology, 2002, 179(1-2), 171-180.
[11]
Panchal, S.K.; Poudyal, H.; Iyer, A.; Nazer, R.; Alam, M.A.; Diwan, V.; Kauter, K.; Sernia, C.; Campbell, F.; Ward, L.; Gobe, G.; Fenning, A.; Brown, L. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J. Cardiovasc. Pharmacol., 2011, 57(5), 611-624.
[12]
Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. AmericanGastroenterological Association;American Association for the Study of Liver Diseases; American College of Gastroenterologyh. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology, 2012, 142(7), 1592-1609.
[13]
Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther., 2011, 34(3), 274-285.
[14]
Wong, C.A.; Araneta, M.R.; Barrett-Connor, E.; Alcaraz, J.; Castaneda, D.; Macera, C. Probable NAFLD, by ALT levels, and diabetes among Filipino-American women. Diabetes Res. Clin. Pract., 2008, 79(1), 133-140.
[15]
Gambino, R.; Bugianesi, E.; Rosso, C.; Mezzabotta, L.; Pinach, S.; Alemanno, N.; Saba, F.; Cassader, M. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. Int. J. Mol. Sci., 2016, 17(4), 479.
[16]
Han, L.; Yang, Q.H.; Zhang, Y.P.; Yan, H.Z.; Zhu, X.F.; Gong, X.W.; Jin, L.; Wang, P.P.; Liu, Y.Z.; Liang, Y.J. Intervention of berberine on lipid deposition in liver cells of non-alcoholic fatty liver disease rats induced by high fat diet. Zhongguo Zhong Xi Yi Jie He Za Zhi., 2015, 35(3), 314-319.
[17]
Samy, W.; Hassanian, M.A. Paraoxonase-1 activity, malondialdehyde and glutathione peroxidase in non-alcoholic fatty liver disease and the effect of atorvastatin. Arab J. Gastroenterol., 2011, 12(2), 80-85.
[18]
Huang, Y.S.; Chang, C.H.; Lin, T.L.; Perng, C.L. Genetic variations of superoxide dismutase 2 and cytochrome P450 2E1 in non-alcoholic steatohepatitis. Liver Int., 2014, 34(6), 931-936.
[19]
Ceccarelli, S.; Panera, N.; Mina, M.; Gnani, D.; De Stefanis, C.; Crudele, A.; Rychlicki, C.; Petrini, S.; Bruscalupi, G.; Agostinelli, L.; Stronati, L.; Cucchiara, S.; Musso, G.; Furlanello, C.; Svegliati-Baroni, G.; Nobili, V.; Alisi, A. LPS-induced TNF-alpha factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget, 2015, 6(39), 41434-41452.
[20]
Xin, G.; Qin, S.; Wang, S.; Wang, X.; Zhang, Y.; Wang, J. Sex hormone affects the severity of non-alcoholic steatohepatitis through the MyD88-dependent IL-6 signaling pathway. Exp. Biol. Med. (Maywood), 2015, 240(10), 1279-1286.
[21]
Zeng, T.; Zhang, C.L.; Zhao, N.; Guan, M.J.; Xiao, M.; Yang, R.; Zhao, X.L.; Yu, L.H.; Zhu, Z.P.; Xie, K.Q. Impairment of Akt activity by CYP2E1 mediated oxidative stress is involved in chronic ethanol-induced fatty liver. Redox Biol., 2018, 14, 295-304.
[22]
Seth, R.K.; Das, S.; Dattaroy, D.; Chandrashekaran, V.; Alhasson, F.; Michelotti, G.; Nagarkatti, M.; Nagarkatti, P.; Diehl, A.M.; Bell, P.D.; Liedtke, W.; Chatterjee, S. TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radic. Biol. Med., 2017, 102, 260-273.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 3
Year: 2019
Page: [194 - 200]
Pages: 7
DOI: 10.2174/1386207322666190411112814
Price: $65

Article Metrics

PDF: 17
HTML: 4