Clinical and Molecular Perspectives of Monogenic Hypertension

Author(s): Peter E. Levanovich, Alexander Diaczok, Noreen F. Rossi*

Journal Name: Current Hypertension Reviews

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Advances in molecular research techniques have enabled a new frontier in discerning the mechanisms responsible for monogenic diseases. In this review, we discuss the current research on the molecular pathways governing blood pressure disorders with a Mendelian inheritance pattern, each presenting with a unique pathophysiology. Glucocorticoid Remediable Aldosteronism (GRA) and Apparent Mineralocorticoid Excess (AME) are caused by mutations in regulatory enzymes that induce increased production of mineralocorticoids or inhibit degradation of glucocorticoids, respectively. Geller syndrome is due to a point mutation in the hormone responsive element of the promotor for the mineralocorticoid receptor, rendering the receptor susceptible to activation by progesterone, leading to hypertension during pregnancy. Pseudohypoaldosteronism type II (PHA-II), also known as Gordon’s syndrome or familial hyperkalemic hypertension, is a more variable disorder typically characterized by hypertension, high plasma potassium and metabolic acidosis. Mutations in a variety of intracellular enzymes that lead to enhanced sodium reabsorption have been identified. In contrast, hypertension in Liddle’s syndrome, which results from mutations in the Epithelial sodium Channel (ENaC), is associated with low plasma potassium and metabolic alkalosis. In Liddle’s syndrome, truncation of one the ENaC protein subunits removes a binding site necessary protein for ubiquitination and degradation, thereby promoting accumulation along the apical membrane and enhanced sodium reabsorption. The myriad effects due to mutation in phosphodiesterase 3A (PDE3A) lead to severe hypertension underlying sodium-independent autosomal dominant hypertension with brachydactyly. How mutations in PDE3A result in the phenotypic features of this disorder are discussed. Understanding the pathologies of these monogenic hypertensive disorders may provide insight into the causes of the more prevalent essential hypertension and new avenues to unravel the complexities of blood pressure regulation.

Keywords: Hypertension, monogenic, aldosteronism, mineralocorticoid, liddle's syndrome, ENaC, WNK, PDE3A.

[1]
Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360(9349): 1903-13.
[http://dx.doi.org/10.1016/S0140-6736(02)11911-8] [PMID: 12493255]
[2]
Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation 2000; 101(3): 329-35.
[http://dx.doi.org/10.1161/01.CIR.101.3.329] [PMID: 10645931]
[3]
Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011-2012. NCHS Data Brief 2013; 133(133): 1-8.
[PMID: 24171916]
[4]
Mozaffarian D, Benjamin EJ, Go AS, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation 2015; 131(4): e29-e322.
[http://dx.doi.org/10.1161/CIR.0000000000000152] [PMID: 25520374]
[5]
Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 1966; 95(22): 1109-19.
[PMID: 4288576]
[6]
Salti IS, Stiefel M, Ruse JL, Laidlaw JC. Non-tumorous “primary” aldosteronism. I. Type relieved by glucocorticoid (glucocorticoid remediable aldosteronism). Can Med Assoc J 1969; 101(1): 1-10.
[PMID: 5793351]
[7]
Ganguly A, Grim CE, Weinberger MH. Anomalous postural aldosterone response in glucocorticoid-suppressible hyperaldosteronism. N Engl J Med 1981; 305(17): 991-3.
[http://dx.doi.org/10.1056/NEJM198110223051706] [PMID: 6268979]
[8]
Gordon RD. Heterogeneous hypertension. Nat Genet 1995; 11(1): 6-9.
[http://dx.doi.org/10.1038/ng0995-6] [PMID: 7550315]
[9]
Gates LJ, MacConnachie AA, Lifton RP, Haites NE, Benjamin N. Variation of phenotype in patients with glucocorticoid remediable aldosteronism. J Med Genet 1996; 33(1): 25-8.
[http://dx.doi.org/10.1136/jmg.33.1.25] [PMID: 8825044]
[10]
Stowasser M, Huggard PR, Rossetti TR, Bachmann AW, Gordon RD. Biochemical evidence of aldosterone overproduction and abnormal regulation in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 1999; 84(11): 4031-6.
[http://dx.doi.org/10.1210/jcem.84.11.6159] [PMID: 10566645]
[11]
Stowasser M, Bachmann AW, Huggard PR, Rossetti TR, Gordon RD. Severity of hypertension in familial hyperaldosteronism type I: Relationship to gender and degree of biochemical disturbance. J Clin Endocrinol Metab 2000; 85(6): 2160-6.
[http://dx.doi.org/10.1210/jc.85.6.2160] [PMID: 10852446]
[12]
Mulatero P, di Cella SM, Williams TA, et al. Glucocorticoid remediable aldosteronism: Low morbidity and mortality in a four generation italian pedigree. J Clin Endocrinol Metab 2002; 87(7): 3187-91.
[http://dx.doi.org/10.1210/jcem.87.7.8647] [PMID: 12107222]
[13]
Nussey S, Whitehead S. Endocrinology: An integrated approach. Oxford 2001.
[PMID: 20821847]
[14]
Curnow KM, Tusie-Luna MT, Pascoe L, et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol 1991; 5(10): 1513-22.
[http://dx.doi.org/10.1210/mend-5-10-1513] [PMID: 1775135]
[15]
Bassett MH, White PC, Rainey WE. The regulation of aldosterone synthase expression. Mol Cell Endocrinol 2004; 217(1-2): 67-74.
[http://dx.doi.org/10.1016/j.mce.2003.10.011] [PMID: 15134803]
[16]
Williams GH, Dluhy RG. Aldosterone biosynthesis. Interrelationship of regulatory factors. Am J Med 1972; 53(5): 595-605.
[http://dx.doi.org/10.1016/0002-9343(72)90156-8] [PMID: 4342886]
[17]
Brown RD, Strott CA, Liddle GW. Site of stimulation of aldosterone biosynthesis by angiotensin and potassium. J Clin Invest 1972; 51(6): 1413-8.
[http://dx.doi.org/10.1172/JCI106937] [PMID: 4336939]
[18]
Hanukoglu I, Feuchtwanger R, Hanukoglu A. Mechanism of corticotropin and cAMP induction of mitochondrial cytochrome P450 system enzymes in adrenal cortex cells. J Biol Chem 1990; 265(33): 20602-8.
[PMID: 2173715]
[19]
Chua SC, Szabo P, Vitek A, Grzeschik KH, John M, White PC. Cloning of cDNA encoding steroid 11 beta hydroxylase (P450c11). Proc Natl Acad Sci USA 1987; 84(20): 7193-7.
[http://dx.doi.org/10.1073/pnas.84.20.7193] [PMID: 3499608]
[20]
White PC. Genetics of steroid 21-hydroxylase deficiency. Recent Prog Horm Res 1987; 43: 305-36.
[http://dx.doi.org/10.1016/b978-0-12-571143-2.50014-9] [PMID: 3306838]
[21]
Lifton RP, Dluhy RG. The molecular basis of a hereditary form of hypertension, glucocorticoid-remediable aldosteronism. Trends Endocrinol Metab 1993; 4(2): 57-61.
[http://dx.doi.org/10.1016/S1043-2760(05)80016-5] [PMID: 18407135]
[22]
Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992; 355(6357): 262-5.
[http://dx.doi.org/10.1038/355262a0] [PMID: 1731223]
[23]
Fisher A, Friel EC, Bernhardt R, et al. Effects of 18-hydroxylated steroids on corticosteroid production by human aldosterone synthase and 11beta-hydroxylase. J Clin Endocrinol Metab 2001; 86(9): 4326-9.
[http://dx.doi.org/10.1210/jcem.86.9.7797] [PMID: 11549669]
[24]
Montori VM, Young WF Jr. Use of plasma aldosterone concentration-to-plasma renin activity ratio as a screening test for primary aldosteronism. A systematic review of the literature. Endocrinol Metab Clin North Am 2002; 31(3): 619-32. xi. [xi.].
[http://dx.doi.org/10.1016/S0889-8529(02)00013-0] [PMID: 12227124]
[25]
Liddle GW, Island DP, Ney RL, Nicholson WE, Shimizu N. Nonpituitary neoplasms and Cushing’s syndrome. Ectopic “adrenocorticotropin” produced by nonpituitary neoplasms as a cause of Cushing’s syndrome. Arch Intern Med 1963; 111: 471-5.
[http://dx.doi.org/10.1001/archinte.1963.03620280071011] [PMID: 13930496]
[26]
Wang C, Chan TK, Yeung RT, Coghlan JP, Scoggins BA, Stockigt JR. The effect of triamterene and sodium intake on renin, aldosterone, and erythrocyte sodium transport in Liddle’s syndrome. J Clin Endocrinol Metab 1981; 52(5): 1027-32.
[http://dx.doi.org/10.1210/jcem-52-5-1027] [PMID: 6262354]
[27]
Rodriguez JA, Biglieri EG, Schambelan M. Pseudohyperaldosteronism with renal tubular resistance to mineralocorticoid hormones. Trans Assoc Am Physicians 1981; 94: 172-82.
[PMID: 7046191]
[28]
Nakada T, Koike H, Akiya T, et al. Liddle’s syndrome, an uncommon form of hyporeninemic hypoaldosteronism: Functional and histopathological studies. J Urol 1987; 137(4): 636-40.
[http://dx.doi.org/10.1016/S0022-5347(17)44161-9] [PMID: 3550146]
[29]
Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s syndrome revisited--a disorder of sodium reabsorption in the distal tubule. N Engl J Med 1994; 330(3): 178-81.
[http://dx.doi.org/10.1056/NEJM199401203300305] [PMID: 8264740]
[30]
Baker E, Jeunemaitre X, Portal AJ, et al. Abnormalities of nasal potential difference measurement in Liddle’s syndrome. J Clin Invest 1998; 102(1): 10-4.
[http://dx.doi.org/10.1172/JCI1795] [PMID: 9649551]
[31]
Shimkets RA, Warnock DG, Bositis CM, et al. Liddle’s syndrome: Heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994; 79(3): 407-14.
[http://dx.doi.org/10.1016/0092-8674(94)90250-X] [PMID: 7954808]
[32]
Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: Genetic heterogeneity of Liddle syndrome. Nat Genet 1995; 11(1): 76-82.
[http://dx.doi.org/10.1038/ng0995-76] [PMID: 7550319]
[33]
Snyder PM, Price MP, McDonald FJ, et al. Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 1995; 83(6): 969-78.
[http://dx.doi.org/10.1016/0092-8674(95)90212-0] [PMID: 8521520]
[34]
Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev 2002; 82(3): 735-67.
[http://dx.doi.org/10.1152/physrev.00007.2002] [PMID: 12087134]
[35]
Carattino MD. Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel. Curr Opin Nephrol Hypertens 2011; 20(5): 555-60.
[http://dx.doi.org/10.1097/MNH.0b013e328348bcac] [PMID: 21709553]
[36]
Frindt G, Palmer LG. Regulation of epithelial Na+ channels by adrenal steroids: Mineralocorticoid and glucocorticoid effects. Am J Physiol Renal Physiol 2012; 302(1): F20-6.
[http://dx.doi.org/10.1152/ajprenal.00480.2011] [PMID: 22012806]
[37]
Anan T, Nagata Y, Koga H, et al. Human ubiquitin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 1998; 3(11): 751-63.
[http://dx.doi.org/10.1046/j.1365-2443.1998.00227.x] [PMID: 9990509]
[38]
Bhalla V, Soundararajan R, Pao AC, Li H, Pearce D. Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am J Physiol Renal Physiol 2006; 291(4): F714-21.
[http://dx.doi.org/10.1152/ajprenal.00061.2006] [PMID: 16720863]
[39]
Wiemuth D, Ke Y, Rohlfs M, McDonald FJ. Epithelial sodium channel (ENaC) is multi-ubiquitinated at the cell surface. Biochem J 2007; 405(1): 147-55.
[http://dx.doi.org/10.1042/BJ20060747] [PMID: 17381423]
[40]
New MI, Levine LS, Biglieri EG, Pareira J, Ulick S. Evidence for an unidentified steroid in a child with apparent mineralocorticoid hypertension. J Clin Endocrinol Metab 1977; 44(5): 924-33.
[http://dx.doi.org/10.1210/jcem-44-5-924] [PMID: 870517]
[41]
Ulick S, Levine LS, Gunczler P, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab 1979; 49(5): 757-64.
[http://dx.doi.org/10.1210/jcem-49-5-757] [PMID: 226561]
[42]
Shackleton CH, Honour JW, Dillon MJ, Chantler C, Jones RW. Hypertension in a four-year-old child: Gas chromatographic and mass spectrometric evidence for deficient hepatic metabolism of steroids. J Clin Endocrinol Metab 1980; 50(4): 786-02.
[http://dx.doi.org/10.1210/jcem-50-4-786] [PMID: 6988456]
[43]
Oberfield SE, Levine LS, Carey RM, Greig F, Ulick S, New MI. Metabolic and blood pressure responses to hydrocortisone in the syndrome of apparent mineralocorticoid excess. J Clin Endocrinol Metab 1983; 56(2): 332-9.
[http://dx.doi.org/10.1210/jcem-56-2-332] [PMID: 6296185]
[44]
Krozowski ZS, Funder JW. Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci USA 1983; 80(19): 6056-60.
[http://dx.doi.org/10.1073/pnas.80.19.6056] [PMID: 6310613]
[45]
Arriza JL, Weinberger C, Cerelli G, et al. Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 1987; 237(4812): 268-75.
[http://dx.doi.org/10.1126/science.3037703] [PMID: 3037703]
[46]
Atanasov AG, Ignatova ID, Nashev LG, et al. Impaired protein stability of 11beta hydroxysteroid dehydrogenase type 2: A novel mechanism of apparent mineralocorticoid excess. J Am Soc Nephrol 2007; 18(4): 1262-70.
[http://dx.doi.org/10.1681/ASN.2006111235] [PMID: 17314322]
[47]
Nunez BS, Rogerson FM, Mune T, et al. Mutants of 11beta hydroxysteroid dehydrogenase (11-HSD2) with partial activity: Improved correlations between genotype and biochemical phenotype in apparent mineralocorticoid excess. Hypertension 1999; 34(4 Pt 1): 638-42.
[http://dx.doi.org/10.1161/01.HYP.34.4.638] [PMID: 10523339]
[48]
Mune T, Rogerson FM, Nikkilä H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta hydroxysteroid dehydrogenase. Nat Genet 1995; 10(4): 394-9.
[http://dx.doi.org/10.1038/ng0895-394] [PMID: 7670488]
[49]
Seckl JR, Walker BR. Minireview: 11beta hydroxysteroid dehydrogenase type 1- a tissue-specific amplifier of glucocorticoid action. Endocrinology 2001; 142(4): 1371-6.
[http://dx.doi.org/10.1210/endo.142.4.8114] [PMID: 11250914]
[50]
Raisz LG, McNeely WF, Saxon L, Rosenbaum JD. The effects of cortisone and hydrocortisone on water diuresis and renal function in man. J Clin Invest 1957; 36(6 Part 1): 767-79.
[http://dx.doi.org/10.1172/JCI103481] [PMID: 13439015]
[51]
Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: A hypothesis. J Clin Endocrinol Metab 2009; 94(8): 2692-701.
[http://dx.doi.org/10.1210/jc.2009-0370] [PMID: 19470627]
[52]
Bailey MA, Unwin RJ, Shirley DG. In vivo inhibition of renal 11beta hydroxysteroid dehydrogenase in the rat stimulates collecting duct sodium reabsorption. Clin Sci (Lond) 2001; 101(2): 195-8.
[http://dx.doi.org/10.1042/cs1010195] [PMID: 11473496]
[53]
Gaeggeler HP, Gonzalez-Rodriguez E, Jaeger NF, et al. Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone-stimulated sodium transport in a novel renal cell line. J Am Soc Nephrol 2005; 16(4): 878-91.
[http://dx.doi.org/10.1681/ASN.2004121110] [PMID: 15743993]
[54]
Choi KB. Hypertensive hypokalemic disorders. Electrolyte Blood Press 2007; 5(1): 34-41.
[http://dx.doi.org/10.5049/EBP.2007.5.1.34] [PMID: 24459498]
[55]
Farese RV Jr, Biglieri EG, Shackleton CH, Irony I, Gomez-Fontes R. Licorice-induced hypermineralocorticoidism. N Engl J Med 1991; 325(17): 1223-7.
[http://dx.doi.org/10.1056/NEJM199110243251706] [PMID: 1922210]
[56]
Palermo M, Quinkler M, Stewart PM. Apparent mineralocorticoid excess syndrome: An overview. Arq Bras Endocrinol Metabol 2004; 48(5): 687-96.
[http://dx.doi.org/10.1590/S0004-27302004000500015] [PMID: 15761540]
[57]
WHO Recommendations for Prevention and Treatment of Pre Eclampsia and Eclampsia. Geneva: WHO Guidelines Approved by the Guidelines Review Committee 2011.
[58]
Baker ME. Adrenal and sex steroid receptor evolution: environmental implications. J Mol Endocrinol 2001; 26(2): 119-25.
[http://dx.doi.org/10.1677/jme.0.0260119] [PMID: 11241163]
[59]
Rogerson FM, Yao YZ, Elsass RE, Dimopoulos N, Smith BJ, Fuller PJ. A critical region in the mineralocorticoid receptor for aldosterone binding and activation by cortisol: Evidence for a common mechanism governing ligand binding specificity in steroid hormone receptors. Mol Endocrinol 2007; 21(4): 817-28.
[http://dx.doi.org/10.1210/me.2006-0246] [PMID: 17284665]
[60]
Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: Structure and function. Curr Opin Cell Biol 1998; 10(3): 384-91.
[http://dx.doi.org/10.1016/S0955-0674(98)80015-X] [PMID: 9640540]
[61]
Arriza JL, Simerly RB, Swanson LW, Evans RM. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1988; 1(9): 887-900.
[http://dx.doi.org/10.1016/0896-6273(88)90136-5] [PMID: 2856104]
[62]
Hellal-Levy C, Couette B, Fagart J, Souque A, Gomez-Sanchez C, Rafestin-Oblin M. Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors. FEBS Lett 1999; 464(1-2): 9-13.
[http://dx.doi.org/10.1016/S0014-5793(99)01667-1] [PMID: 10611474]
[63]
Rafestin-Oblin ME, Souque A, Bocchi B, Pinon G, Fagart J, Vandewalle A. The severe form of hypertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. Endocrinology 2003; 144(2): 528-33.
[http://dx.doi.org/10.1210/en.2002-220708] [PMID: 12538613]
[64]
Disse-Nicodème S, Achard JM, Desitter I, et al. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am J Hum Genet 2000; 67(2): 302-10.
[http://dx.doi.org/10.1086/303020] [PMID: 10869238]
[65]
Mansfield TA, Simon DB, Farfel Z, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet 1997; 16(2): 202-5.
[http://dx.doi.org/10.1038/ng0697-202] [PMID: 9171836]
[66]
Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 2012; 482(7383): 98-102.
[http://dx.doi.org/10.1038/nature10814] [PMID: 22266938]
[67]
Louis-Dit-Picard H, Barc J, Trujillano D, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron Nat Genet 2012; 44(4): 456-60.
[http://dx.doi.org/10.1038/ng.2218] [PMID: 22406640]
[68]
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579(2): 95-132.
[http://dx.doi.org/10.1016/j.gene.2015.12.061] [PMID: 26772908]
[69]
Zennaro MC, Fernandes-Rosa F. 30 Years of the mineralocorticoid receptor: Mineralocorticoid receptor mutations. J Endocrinol 2017; 234(1): T93-T106.
[http://dx.doi.org/10.1530/JOE-17-0089] [PMID: 28348114]
[70]
Gordon RD, Geddes RA, Pawsey CG, O’Halloran MW. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 1970; 19(4): 287-94.
[http://dx.doi.org/10.1111/imj.1970.19.4.287] [PMID: 5490655]
[71]
Brautbar N, Levi J, Rosler A, et al. Familial hyperkalemia, hypertension, and hyporeninemia with normal aldosterone levels. A tubular defect in potassium handling. Arch Intern Med 1978; 138(4): 607-10.
[http://dx.doi.org/10.1001/archinte.1978.03630280069022] [PMID: 637641]
[72]
Roy C. Familial pseudohypoaldosteronism (apropos of 5 cases). Arch Fr Pediatr 1977; 34(1): 37-54.
[PMID: 851368]
[73]
Limal JM, Rappaport R, Dechaux M, Morin C. Familial dominant pseudohypoaldosteronism. Lancet 1978; 1(8054): 51.
[http://dx.doi.org/10.1016/S0140-6736(78)90404-X] [PMID: 74536]
[74]
Lee MR, Morgan DB. Familial hyperkalaemia responsive to benzothiadiazine diuretic. Lancet 1980; 1(8173): 879.
[http://dx.doi.org/10.1016/S0140-6736(80)91378-1] [PMID: 6103235]
[75]
Licht JH, Amundson D, Hsueh WA, Lombardo JV. Familiar hyperkalaemic acidosis. Q J Med 1985; 54(214): 161-76.
[PMID: 3885297]
[76]
Schambelan M, Sebastian A, Rector FC Jr. Mineralocorticoid resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int 1981; 19(5): 716-27.
[http://dx.doi.org/10.1038/ki.1981.72] [PMID: 7026872]
[77]
Pasman JW, Gabreëls FJ, Semmekrot B, Renier WO, Monnens LA. Hyperkalemic periodic paralysis in Gordon’s syndrome: A possible defect in atrial natriuretic peptide function. Ann Neurol 1989; 26(3): 392-5.
[http://dx.doi.org/10.1002/ana.410260314] [PMID: 2529811]
[78]
Take C, Ikeda K, Kurasawa T, Kurokawa K. Increased chloride reabsorption as an inherited renal tubular defect in familial type II pseudohypoaldosteronism. N Engl J Med 1991; 324(7): 472-6.
[http://dx.doi.org/10.1056/NEJM199102143240707] [PMID: 1988833]
[79]
Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 2000; 275(22): 16795-801.
[http://dx.doi.org/10.1074/jbc.275.22.16795] [PMID: 10828064]
[80]
Wang Z, Yang CL, Ellison DH. Comparison of WNK4 and WNK1 kinase and inhibiting activities. Biochem Biophys Res Commun 2004; 317(3): 939-44.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.132] [PMID: 15081430]
[81]
Faure S, Delaloy C, Leprivey V, et al. WNK kinases, distal tubular ion handling and hypertension. Nephrol Dial Transplant 2003; 18(12): 2463-7.
[http://dx.doi.org/10.1093/ndt/gfg426] [PMID: 14605263]
[82]
Hebert SC, Gamba G. Molecular cloning and characterization of the renal diuretic-sensitive electroneutral sodium-(potassium)-chloride cotransporters. Clin Investig 1994; 72(9): 692-4.
[http://dx.doi.org/10.1007/BF00212991] [PMID: 7849450]
[83]
Moriguchi T, Urushiyama S, Hisamoto N, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 2005; 280(52): 42685-93.
[http://dx.doi.org/10.1074/jbc.M510042200] [PMID: 16263722]
[84]
Yang CL, Zhu X, Wang Z, Subramanya AR, Ellison DH. Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J Clin Invest 2005; 115(5): 1379-87.
[http://dx.doi.org/10.1172/JCI22452] [PMID: 15841204]
[85]
Lazrak A, Liu Z, Huang CL. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. Proc Natl Acad Sci USA 2006; 103(5): 1615-20.
[http://dx.doi.org/10.1073/pnas.0510609103] [PMID: 16428287]
[86]
Hadchouel J, Ellison DH, Gamba G. Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu Rev Physiol 2016; 78: 367-89.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105431] [PMID: 26863326]
[87]
Segref A, Hoppe T. Think locally: control of ubiquitin-dependent protein degradation in neurons. EMBO Rep 2009; 10(1): 44-50.
[http://dx.doi.org/10.1038/embor.2008.229] [PMID: 19079132]
[88]
Kahle KT, Wilson FH, Lalioti M, Toka H, Qin H, Lifton RP. WNK kinases: Molecular regulators of integrated epithelial ion transport. Curr Opin Nephrol Hypertens 2004; 13(5): 557-62.
[http://dx.doi.org/10.1097/00041552-200409000-00012] [PMID: 15300163]
[89]
Tatum R, Zhang Y, Lu Q, Kim K, Jeansonne BG, Chen YH. WNK4 phosphorylates ser(206) of claudin-7 and promotes paracellular Cl(-) permeability. FEBS Lett 2007; 581(20): 3887-91.
[http://dx.doi.org/10.1016/j.febslet.2007.07.014] [PMID: 17651736]
[90]
Yu AS. Claudins and the kidney. J Am Soc Nephrol 2015; 26(1): 11-9.
[http://dx.doi.org/10.1681/ASN.2014030284] [PMID: 24948743]
[91]
Yamauchi K, Rai T, Kobayashi K, et al. Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci USA 2004; 101(13): 4690-4.
[http://dx.doi.org/10.1073/pnas.0306924101] [PMID: 15070779]
[92]
Takahashi D, Mori T, Nomura N, et al. WNK4 is the major WNK positively regulating NCC in the mouse kidney. Biosci Rep 2014; 34(3) e00107
[http://dx.doi.org/10.1042/BSR20140047] [PMID: 24655003]
[93]
Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 2016; 89(1): 127-34.
[http://dx.doi.org/10.1038/ki.2015.289] [PMID: 26422504]
[94]
Furukawa M, He YJ, Borchers C, Xiong Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 2003; 5(11): 1001-7.
[http://dx.doi.org/10.1038/ncb1056] [PMID: 14528312]
[95]
Geyer R, Wee S, Anderson S, Yates J, Wolf DA. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 2003; 12(3): 783-90.
[http://dx.doi.org/10.1016/S1097-2765(03)00341-1] [PMID: 14527422]
[96]
Xu L, Wei Y, Reboul J, et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 2003; 425(6955): 316-21.
[http://dx.doi.org/10.1038/nature01985] [PMID: 13679922]
[97]
Zimmerman ES, Schulman BA, Zheng N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 2010; 20(6): 714-21.
[http://dx.doi.org/10.1016/j.sbi.2010.08.010] [PMID: 20880695]
[98]
Murthy M, Kurz T, O’Shaughnessy KM. WNK signalling pathways in blood pressure regulation. Cell Mol Life Sci 2017; 74(7): 1261-80.
[http://dx.doi.org/10.1007/s00018-016-2402-z] [PMID: 27815594]
[99]
Wilson FH, Kahle KT, Sabath E, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003; 100(2): 680-4.
[http://dx.doi.org/10.1073/pnas.242735399] [PMID: 12515852]
[100]
Golbang AP, Murthy M, Hamad A, et al. A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene. Hypertension 2005; 46(2): 295-300.
[http://dx.doi.org/10.1161/01.HYP.0000174326.96918.d6] [PMID: 15998707]
[101]
Gamba G. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol Renal Physiol 2005; 288(2): F245-52.
[http://dx.doi.org/10.1152/ajprenal.00311.2004] [PMID: 15637347]
[102]
Bilginturan N, Zileli S, Karacadag S, Pirnar T. Hereditary brachydactyly associated with hypertension. J Med Genet 1973; 10(3): 253-9.
[http://dx.doi.org/10.1136/jmg.10.3.253] [PMID: 4774535]
[103]
Hattenbach LO, Toka HR, Toka O, Schuster H, Luft FC. Absence of hypertensive retinopathy in a Turkish kindred with autosomal dominant hypertension and brachydactyly. Br J Ophthalmol 1998; 82(12): 1363-5.
[http://dx.doi.org/10.1136/bjo.82.12.1363] [PMID: 9930264]
[104]
Chitayat D, Grix A, Balfe JW, et al. Brachydactyly-short stature hypertension (Bilginturan) syndrome: Report on two families. Am J Med Genet 1997; 73(3): 279-85.
[http://dx.doi.org/10.1002/(SICI)1096-8628(19971219)73:3<279:AID-AJMG10>3.0.CO;2-G] [PMID: 9415685]
[105]
Toka HR, Bähring S, Chitayat D, et al. Families with autosomal dominant brachydactyly type E, short stature, and severe hypertension. Ann Intern Med 1998; 129(3): 204-8.
[http://dx.doi.org/10.7326/0003-4819-129-3-199808010-00008] [PMID: 9696728]
[106]
Schuster H, Wienker TE, Bähring S, et al. Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12. Nat Genet 1996; 13(1): 98-100.
[http://dx.doi.org/10.1038/ng0596-98] [PMID: 8673114]
[107]
Luft FC, Toka O, Toka HR, Jordan J, Bahring S. Mendelian hypertension with brachydactyly as a molecular genetic lesson in regulatory physiology. Am J Physiol Regul Integr Comp Physiol 2003; 285(4): R709-14.
[http://dx.doi.org/10.1152/ajpregu.00174.2003] [PMID: 12959913]
[108]
Naraghi R, Schuster H, Toka HR, et al. Neurovascular compression at the ventrolateral medulla in autosomal dominant hypertension and brachydactyly. Stroke 1997; 28(9): 1749-54.
[http://dx.doi.org/10.1161/01.STR.28.9.1749] [PMID: 9303020]
[109]
Gong M, Zhang H, Schulz H, et al. Genome-wide linkage reveals a locus for human essential (primary) hypertension on chromosome 12p. Hum Mol Genet 2003; 12(11): 1273-7.
[http://dx.doi.org/10.1093/hmg/ddg135] [PMID: 12761042]
[110]
Maurice DH, Palmer D, Tilley DG, et al. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 2003; 64(3): 533-46.
[http://dx.doi.org/10.1124/mol.64.3.533] [PMID: 12920188]
[111]
Begum N, Hockman S, Manganiello VC. Phosphodiesterase 3A (PDE3A) deletion suppresses proliferation of cultured murine vascular smooth muscle cells (VSMCs) via inhibition of mitogen-activated protein kinase (MAPK) signaling and alterations in critical cell cycle regulatory proteins. J Biol Chem 2011; 286(29): 26238-49.
[http://dx.doi.org/10.1074/jbc.M110.214155] [PMID: 21632535]
[112]
Wakabayashi S, Tsutsumimoto T, Kawasaki S, Kinoshita T, Horiuchi H, Takaoka K. Involvement of phosphodiesterase isozymes in osteoblastic differentiation. J Bone Miner Res 2002; 17(2): 249-56.
[http://dx.doi.org/10.1359/jbmr.2002.17.2.249] [PMID: 11811555]
[113]
Maass PG, Rump A, Schulz H, et al. A misplaced lncRNA causes brachydactyly in humans. J Clin Invest 2012; 122(11): 3990-4002.
[http://dx.doi.org/10.1172/JCI65508] [PMID: 23093776]
[114]
Song GJ, Fiaschi-Taesch N, Bisello A. Endogenous parathyroid hormone-related protein regulates the expression of PTH type 1 receptor and proliferation of vascular smooth muscle cells. Mol Endocrinol 2009; 23(10): 1681-90.
[http://dx.doi.org/10.1210/me.2009-0098] [PMID: 19574446]
[115]
Potts JT, Gardella TJ. Progress, paradox, and potential: Parathyroid hormone research over five decades. Ann N Y Acad Sci 2007; 1117: 196-208.
[http://dx.doi.org/10.1196/annals.1402.088] [PMID: 18056044]
[116]
Bähring S, Kann M, Neuenfeld Y, et al. Inversion region for hypertension and brachydactyly on chromosome 12p features multiple splicing and noncoding RNA. Hypertension 2008; 51(2): 426-31.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.101774] [PMID: 18086950]
[117]
Wechsler J, Choi YH, Krall J, Ahmad F, Manganiello VC, Movsesian MA. Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem 2002; 277(41): 38072-8.
[http://dx.doi.org/10.1074/jbc.M203647200] [PMID: 12154085]
[118]
Zhao H, Guan Q, Smith CJ, Quilley J. Increased phosphodiesterase 3A/4B expression after angioplasty and the effect on VASP phosphorylation. Eur J Pharmacol 2008; 590(1-3): 29-35.
[http://dx.doi.org/10.1016/j.ejphar.2008.05.016] [PMID: 18571642]
[119]
Maass PG, Aydin A, Luft FC, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet 2015; 47(6): 647-53.
[http://dx.doi.org/10.1038/ng.3302] [PMID: 25961942]
[120]
Schuster H, Toka O, Toka HR, et al. A cross-over medication trial for patients with autosomal-dominant hypertension with brachydactyly. Kidney Int 1998; 53(1): 167-72.
[http://dx.doi.org/10.1046/j.1523-1755.1998.00732.x] [PMID: 9453014]
[121]
Toka O, Maass PG, Aydin A, et al. Childhood hypertension in autosomal-dominant hypertension with brachydactyly. Hypertension 2010; 56(5): 988-94.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.156620] [PMID: 20837885]
[122]
Toka O, Tank J, Schächterle C, et al. Clinical effects of phosphodiesterase 3A mutations in inherited hypertension with brachydactyly. Hypertension 2015; 66(4): 800-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06000] [PMID: 26283042]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Published on: 03 September, 2020
Page: [91 - 107]
Pages: 17
DOI: 10.2174/1573402115666190409115330

Article Metrics

PDF: 45
HTML: 2