Comparison of Different Extraction Methods for the Phenolic Compounds Recovery with the Antioxidant Activity of Bougainvillea x buttiana

Author(s): Rodolfo Abarca-Vargas, Vera L. Petricevich*

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 6 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Bougainvillea x buttiana has long been used as a Mexican conventional medicinal drug to cure different sicknesses.

Objective: In this work, the consequences of ethanol combination and temperature extraction for phenolic compound recovery with the biological activity in Bougainvillea x buttiana extracts were investigated.

Materials and Methods: The phenolic recovery from Bougainvillea x buttiana was determined by comparing the effects of ethanol 0%, 50-100% (v/v) and extraction temperature (26, 45 and 64°C). The total phenolic content was investigated using spectrophotometric methods. Antioxidant activity from different Bougainvillea x buttiana extracts was evaluated by determining their potential to scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. The chemical compositions and cytotoxic effect of extracts were determined using GC-MS techniques and the crystal violet technique, respectively.

Results: Our results confirmed that all extractions with different concentrations and temperatures had significant effects over the total phenolic contents and antioxidant activity (DPPH) of the extracts. The best recuperation of the total phenol content was observed in extracts with 60% ethanol at 26°C (201.08 mgEGA/g dry extract). Extracts with 100% ethanol at 26°C showed the highest antioxidant activity (IC50 was 286.75 μg/mL). GC-MS revealed the presence of various phytochemical contents with polar and non-polar properties. The phenolic compounds were investigated as to the structure, quantity and position of the hydroxyl groups on the benzene ring.

Conclusion: The ethanolic extract of Bougainvillea x buttiana was confirmed to have high phenolic content and contain pharmacologically active compounds, with potent antioxidant effects and low cytotoxic effects.

Keywords: Bougainvillea x buttiana, cytotoxic effect, extract, solvent extraction, temperature extraction, total phenolic content.

[1]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease., 2007.
[2]
Harbone, J.B. Phytochemical methods; Chapman and Hall, Ltd: London, 1973, pp. 49-188.
[3]
Halliwell, B. Antioxidants in human health and disease., 1996.
[4]
Frydoonfar, H.R.; McGrath, D.R.; Spigelman, A.D. The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid Naringenin. Colorectal Dis., 2003, 5(2), 149-152.
[http://dx.doi.org/10.1046/j.1463-1318.2003.00444.x ] [PMID: 12780904]
[5]
Hakimuddin, F.; Paliyath, G.; Meckling, K. Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res. Treat., 2004, 85(1), 65-79.
[http://dx.doi.org/10.1023/B:BREA.0000021048.52430.c0] [PMID: 15039598]
[6]
Srinath Reddy, K.; Katan, M.B. Diet, nutrition and the prevention of hypertension and cardiovascular diseases., 2004.
[7]
García-Calderón, M.; Pons-Ferrer, T.; Mrázova, A.; Pal’ove-Balang, P.; Vilková, M.; Pérez-Delgado, C.M.; Vega, J.M.; Eliášová, A.; Repčák, M.; Márquez, A.J.; Betti, M. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front. Plant Sci., 2015, 6, 760.
[http://dx.doi.org/10.3389/fpls.2015.00760 ] [PMID: 26442073]
[8]
Liu, J.; Liu, Y.; Wang, Y.; Zhang, Z.H.; Zu, Y.G.; Efferth, T.; Tang, Z.H. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis. Front. Physiol., 2016, 7, 217.
[http://dx.doi.org/10.3389/fphys.2016.00217 ] [PMID: 27375495]
[9]
Mirali, M.; Purves, R.W.; Vandenberg, A. 2017.
[10]
Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol., 2006, 106(3), 290-302.
[http://dx.doi.org/10.1016/j.jep.2006.04.003 ] [PMID: 16698208]
[11]
Aziz, R.A.; Sarmidi, M.R.; Kumaresan, S.; Taher, Z.M.; Foo, D.C.Y. Phytochemical Processing: The Next Emerging Field in Chemical Engineering-Aspects and Opportunities. J. Kejuruteraan Kimia Malaysia, 2003, 3, 45-60.
[12]
Abarca-Vargas, R.; Pena Malacara, C.F.; Petricevich, V.L. 2016.
[13]
Umamaheswari, A.; Shreevidya, R. Aparna, Nun. In vitro Antibacterial Activity of Bougainvillea spectabilis Leaves Extracts. Adv. Biol. Res. (Faisalabad), 2008, 2(1-2), 1-5.
[14]
Alvarez Perez Gil, A.L.; Barbosa Navarro, L.; Patipo Vera, M.; Petricevich, V.L. Anti-inflammatory and antinociceptive activities of the ethanolic extract of Bougainvillea xbuttiana. J. Ethnopharmacol., 2012, 144(3), 712-719.
[http://dx.doi.org/10.1016/j.jep.2012.10.018 ] [PMID: 23104071]
[15]
Arteaga Figueroa, L.; Barbosa Navarro, L.; Patino Vera, M.; Petricevich, V.L. Antioxidant activity, total phenolic and flavonoid contents, and cytotoxicity evaluation of Bougainvillea xbuttiana. Int. J. Pharm. Pharm. Sci., 2014, 6(5), 498-502.
[16]
Abarca-Vargas, R.; Villanueva Guerrero, R.; Petricevich, V.L. Evaluation of anti-artrhitic potential of partitioned extracts of Bougainvillea x buttiana (Var. Rose). Holttum and Stdanl. Int. J. Pharm. Pharm. Sci., 2018, 10(3), 1-7.
[17]
Hayouni, E.A.; Abedrabba, M.; Bouix, M.; Hamdi, M. 2007.
[18]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent., 1999.
[19]
Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem., 2004, 85(2), 231-237.
[http://dx.doi.org/10.1016/j.foodchem.2003.05.007]
[20]
Arteaga Figueroa, L.; Abarca-Vargas, R.; García Alanis, C.; Petricevich, V.L. Comparison between peritoneal macrophage activation by Bougainvillea x buttiana extract and LPS and/or interleukins. BioMed Res. Int., 2017, •••20174602952
[http://dx.doi.org/10.1155/2017/4602952 ] [PMID: 29279849]
[21]
Cacace, J.E.; Mazza, G. 2003.
[22]
Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velic, D. Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng., 2007, 81, 236-242.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.10.027]
[23]
Fatima, H.; Khan, K.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I.U. Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: An in vitro biological and phytochemical investigation. BMC Complement. Altern. Med., 2015, 15(1), 376.
[http://dx.doi.org/10.1186/s12906-015-0891-1 ] [PMID: 26481652]
[24]
Ishida, T.; Rossky, P.J. Solvent effects on solute electronic structure and properties: Theoretical study of a betaine dye molecule in polar solvents. J. Phys. Chem. A, 2001, 105(3), 558-565.
[http://dx.doi.org/10.1021/jp0041104]
[25]
Blumenthal, M. Interaction between herbs and conventional drugs. Introductory considerations. Herbalgram, 2000, 49, 52-63.
[26]
Stanojević, L.; Stanković, M.; Nikolić, V.; Nikolić, L.; Ristić, D.; Čanadanovic-Brunet, J.; Tumbas, V. Antioxidant activity and total phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensors (Basel), 2009, 9(7), 5702-5714.
[http://dx.doi.org/10.3390/s90705702 ] [PMID: 22346723]
[27]
Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; Gonzalez-Paramas, A.M. Extraction and isolation of phenolic compounds; Natural Products Isolation, 2012, pp. 427-464.
[28]
Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng., 2007, 81(1), 200-208.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021]
[29]
Ju, Z.Y.; Howard, L.R. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food Chem., 2003, 51(18), 5207-5213.
[http://dx.doi.org/10.1021/jf0302106 ] [PMID: 12926860]
[30]
Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 2006, 41(5), 1523-1542.
[http://dx.doi.org/10.1016/j.jpba.2006.04.002 ] [PMID: 16753277]
[31]
Tan, Y.Z.; Yang, B.; Parvez, K.; Narita, A.; Osella, S.; Beljonne, D.; Feng, X.; Müllen, K. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons., 2013.
[32]
Leja, M.; Mareczek, G.; Wyzgolik, G.; Klepacz-Baniak, J.; Czekońska, K. Antioxidative properties of bee pollen in selected plant species., 2007.
[33]
Begum, A.N.; Terao, J. Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability. J. Nutr. Biochem., 2002, 13(5), 265-272.
[http://dx.doi.org/10.1016/S0955-2863(01)00219-4 ] [PMID: 12015156]
[34]
Park, Y.H.; Chiou, G.C. Structure-activity relationship (SAR) between some natural flavonoids and ocular blood flow in the rabbit. J. Ocul. Pharmacol. Ther., 2004, 20(1), 35-42.
[http://dx.doi.org/10.1089/108076804772745446 ] [PMID: 15006157]
[35]
Chow, J.M.; Shen, S.C.; Huan, S.K.; Lin, H.Y.; Chen, Y.C. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem. Pharmacol., 2005, 69(12), 1839-1851.
[http://dx.doi.org/10.1016/j.bcp.2005.03.017 ] [PMID: 15876423]
[36]
Budryn, G.; Nebesny, G.E. Structure and antioxidant properties of coffee bean polyphenols. Bromatol. Chem. Toksykol., 2005, 3, 203-209.
[37]
Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15(10), 7313-7352.
[http://dx.doi.org/10.3390/molecules15107313 ] [PMID: 20966876]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2020
Page: [778 - 787]
Pages: 10
DOI: 10.2174/1573411015666190409110207

Article Metrics

PDF: 29
HTML: 2