“Proposals for Amendments in the Diagnosis and Treatment of Encephalitis caused by Free-living Amoebae”

Author(s): Abdul Mannan Baig*

Journal Name: Infectious Disorders - Drug Targets
(Formerly Current Drug Targets - Infectious Disorders)

Volume 20 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Encephalitis caused by Free-living amoebae (FLA) has a mortality rate of around 95- 98%, a fraction that has not changed in the past decades. Pathogenic FLA include Acanthamoeba, Balamuthia mandrillaris, and Naegleria fowleri that are known to target the brain after an extra cerebral infection in the case of Acanthamoeba and Balamuthia mandrillaris, or directly the brain, as in the case of the Naegleria fowleri. The Acanthamoeba spp. and Balamuthia mandrillaris cause granulomatous amoebic encephalitis (GAE) while Naegleria fowleri, the so termed “brain eating amoeba” causes primary amoebic meningoencephalitis (PAM). The attempts to obtain a speedy diagnosis and an aggressive treatment protocol are the areas where advances can make a difference and reduce the mortality rates. At first, we highlight the reasons behind the diagnostic delays and treatment failures and provide proposals to establish a quick diagnosis in both PAM and GAE. Secondly, we emphasize the use of a transcribrial device, and a prompt, but vigilant surgical reduction of the intracranial pressure in these patients which could be life-saving. We also debate that an exudate obtained from the olfactory region by irrigation via a modified transcribrial device or by conventional methods, instead of a cerebrospinal fluid sample, could serve as a source of obtaining amoeba in PAM for a real-time polymerase chain reaction-based definitive diagnosis of PAM. Also, introduced is the rationale that has the potential to deliver the drugs to the brain in patients with PAM and the GAE localized to the frontal lobe of the brain, by bypassing the blood brain barrier. We put forward these proposals for debate and deliberation to our fellow colleagues in order to spot the potential of their application to reduce the mortality rates caused by the rare but fatal encephalitis caused by these FLA.

Keywords: Intracranial pressure, mannitol, brain-eating amoeba, ventriculoperitoneal shunt, surgical reduction, intracranial pressure, free-living amoeba, Acanthamoeba, Balamuthia, Naegleria fowleri.

[1]
Visvesvara, G.S. Parasite Culture: Acanthamoeba and Naegleria spp.Clinical Microbiology Procedures Handbook, 3rd ed; Garcia, L.S., Ed.; ASM Press: Washington, DC, 2010.
[2]
Baig, A.M.; Khan, N.A. A proposed cascade of vascular events leading to granulomatous amoebic encephalitis. Microb. Pathog., 2015, 88, 48-51.
[http://dx.doi.org/10.1016/j.micpath.2015.08.005] [PMID: 26276705]
[3]
Visvesvara, G.S. Pathogenic and Opportunistic Amoebae. Manual of Clinical Microbiology 9th ed; Murray, P.R.; Baron, E.J.; Jorgensen,J.H.; Landry, M.L.; Pfaller, M.A., Eds.; ASM Press: Washington, DC,. , 2007; pp. 2082-2091.
[4]
Baig, AM.; Khan, NA . 2015,Tackling infection owing to brain-eating amoeba. Acta Trop., 142, 86-88.
[http://dx.doi.org/10.1016/j.actatropica.2014.11.004]
[5]
Baig, A.M. Primary Amoebic Meningoencephalitis: Neurochemotaxis and Neurotropic Preferences of Naegleria fowleri. ACS Chem. Neurosci., 2016, 7(8), 1026-1029. Epub ahead of print
[http://dx.doi.org/10.1021/acschemneuro.6b00197] [PMID: 27447543]
[6]
Singh, P.; Kochhar, R.; Vashishta, R.K.; Khandelwal, N.; Prabhakar, S.; Mohindra, S.; Singhi, P. Amebic meningoencephalitis: spectrum of imaging findings. AJNR Am. J. Neuroradiol., 2006, 27(6), 1217-1221.
[PMID: 16775267]
[7]
Krasaelap, A.; Prechawit, S.; Chansaenroj, J.; Punyahotra, P.; Puthanakit, T.; Chomtho, K.; Shuangshoti, S.; Amornfa, J.; Poovorawan, Y. Fatal Balamuthia amebic encephalitis in a healthy child: a case report with review of survival cases. Korean J. Parasitol., 2013, 51(3), 335-341.
[http://dx.doi.org/10.3347/kjp.2013.51.3.335] [PMID: 23864745]
[8]
Granulomatous Amoebic Encephalitis: Ghost response of an immunocompromised Host., Journal of Medical Microbiology, . 2014. 0.081315-0. (EISSN:1473-5644)
[9]
Shin, H-J. Im, K.I. Pathogenic free-living amoebae in Korea. Korean J. Parasitol., 2004, 42(3), 93-119.
[http://dx.doi.org/10.3347/kjp.2004.42.3.93] [PMID: 15381859]
[10]
Visvesvara, G.S. Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr. Opin. Infect. Dis., 2010, 23(6), 590-594.
[http://dx.doi.org/10.1097/QCO.0b013e32833ed78b] [PMID: 20802332]
[11]
Baig, A.M.; Khan, N.A. Novel chemotherapeutic strategies in the management of primary amoebic meningoencephalitis due to Naegleria fowleri. CNS Neurosci. Ther., 2014, 20(3), 289-290.
[http://dx.doi.org/10.1111/cns.12225] [PMID: 24456292]
[12]
Falcone, S.; Quencer, R.M.; Post, M.J. Magnetic resonance imaging of unusual intracranial infections. Top. Magn. Reson. Imaging, 1994, 6(1), 41-52.
[http://dx.doi.org/10.1097/00002142-199400610-00007] [PMID: 8311957]
[13]
Brondfield, M.N.; Reid, M.J.; Rutishauser, R.L.; Cope, J.R.; Tang, J.; Ritter, J.M.; Matanock, A.; Ali, I.; Doernberg, S.B.; Hilts-Horeczko, A.; DeMarco, T.; Klein, L.; Babik, J.M. Disseminated Acanthamoeba infection in a heart transplant recipient treated successfully with a miltefosine-containing regimen: Case report and review of the literature. Transpl. Infect. Dis., 2017, 19(2)
[http://dx.doi.org/10.1111/tid.12661] [PMID: 28067969]
[14]
Roy, SL; Atkins, JT; Gennuso, R; Kofos, D; Sriram, RR; Dorlo, TP; Hayes, T; Qvarnstrom, Y; Kucerova, Z; Guglielmo, BJ; Visvesvara, GS Assessment of blood-brain barrier penetration of miltefosine used to treat a fatal case of granulomatous amebic encephalitis possibly caused by an unusual Balamuthia mandrillaris strain.,
[http://dx.doi.org/10.1007/s00436-015-4684-8]
[15]
Roy, S.L.; Atkins, J.T.; Gennuso, R.; Kofos, D.; Sriram, R.R.; Dorlo, T.P.; Hayes, T.; Qvarnstrom, Y.; Kucerova, Z.; Guglielmo, B.J.; Visvesvara, G.S. Assessment of blood-brain barrier penetration of miltefosine used to treat a fatal case of granulomatous amebic encephalitis possibly caused by an unusual Balamuthia mandrillaris strain. Parasitol. Res., 2015, 114(12), 4431-4439.
[http://dx.doi.org/10.1007/s00436-015-4684-8] [PMID: 26329128]
[16]
Baig, A.M.; Iqbal, J.; Khan, N.A. In vitro efficacy of clinically available drugs against the growth and viability of Acanthamoeba castellanii keratitis isolate T4. Antimicrob. Agents Chemother., 2013, 05/2013
[http://dx.doi.org/10.1128/AAC.00299-13] [PMID: 23669391]
[17]
Polat, Z.A.; Walochnik, J.; Obwaller, A.; Vural, A.; Dursun, A.; Arici, M.K. Miltefosine and polyhexamethylene biguanide: a new drug combination for the treatment of Acanthamoeba keratitis. Clin. Exp. Ophthalmol.,, 2014, 42(2), 151-158. [doi].
[http://dx.doi.org/10.1111/ceo.12120] [PMID: 23601234]
[18]
Kulsoom, H.; Baig, A.M.; Siddiqui, R.; Khan, N.A. Combined drug therapy in the management of granulomatous amoebic encephalitis due to Acanthamoeba spp., and Balamuthia mandrillaris. Exp. Parasitol., 2014, 145(Suppl.), S115-S120.
[http://dx.doi.org/10.1016/j.exppara.2014.03.025] [PMID: 24726699]
[19]
Stevens, A.R.; O’Dell, W.D. In vitro and in vivo activity of 5-fluorocytosine on Acanthamoeba. Antimicrob. Agents Chemother., 1974, 6(3), 282-289.
[http://dx.doi.org/10.1128/AAC.6.3.282] [PMID: 15830474]
[20]
Linam, W.M.; Ahmed, M.; Cope, J.R.; Chu, C.; Visvesvara, G.S.; da Silva, A.J.; Qvarnstrom, Y.; Green, J. Successful treatment of an adolescent with Naegleria fowleri primary amebic meningoencephalitis. Pediatrics, 2015, 135(3), e744-e748.
[http://dx.doi.org/10.1542/peds.2014-2292] [PMID: 25667249]
[21]
Dunn, A.L.; Reed, T.; Stewart, C.; Levy, R.A. Naegleria fowleri That Induces Primary Amoebic Meningoencephalitis: Rapid Diagnosis and Rare Case of Survival in a 12-Year-Old Caucasian Girl. Lab. Med., 2016, 47(2), 149-154.
[http://dx.doi.org/10.1093/labmed/lmw008] [PMID: 26984830]
[22]
Brunton, L.L.; Chabner, B.A.; Knollman, B.C. Goodman and Gilman’s The pharmacological basis of therapeutics, 12th ed; McGraw-Hill: New York, NY, 2011.
[23]
Baig, A.M. Torn from the headlines: role of public awareness and bench-to-bedside research in prevention and treatment of Acanthamoeba keratitis. Nature-. Eye (Lond.), 2018. Epub ahead of print
[http://dx.doi.org/10.1038/s41433-018-0306-x] [PMID: 30552420]
[24]
Baig, AM Drug targeting in Acanthamoeba keratitis: rational of using drugs that are already approved for ocular use in non-keratitis indications. Nature-Eye (Lond).,, 2018.Oct 24.
[http://dx.doi.org/10.1038/s41433-018-0245-6]
[25]
Baig, AM.; Zohaib, R.; Nuzair, W.; Saiqa, K. Mehdia, N Evidence of human-like Ca2+ Channels and Effects of Ca 2+ Channel blockers in Acanthamoeba castellanii. Chem. Biol. Drug Des., 2018.
[http://dx.doi.org/10.1111/cbdd.13421]
[26]
Baig, AM.; Zohaib, R.; Mannan, M. Antibiotic Effects of Loperamide: Homology of human targets of Loperamide with targets in Acanthamoeba spp. Recent Patents on Anti-Infect. Drug Disc., 2017, 12(1)
[http://dx.doi.org/10.2174/1574891X12666170425170544]
[27]
Baig, AM.; Ahmad, H.R. Evidence of a M1-muscarinic GPCR homolog in unicellular eukaryotes: featuring Acanthamoeba spp bioinformatics 3D-modelling and experimentations. J. Recept. Signal Transduct. Res., 2017, 37(3), 267-275.
[http://dx.doi.org/10.1080/10799893.2016.1217884] [PMID: 27601178]
[28]
Baig, A.M.; Waliani, N.; Karim, S. Drug Target Discovery Methods In Targeting Neurotropic Parasitic Amoebae. ACS Chem. Neurosci., 2018, 9(2), 162-164.
[http://dx.doi.org/10.1021/acschemneuro.7b00492] [PMID: 29286622]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Page: [115 - 121]
Pages: 7
DOI: 10.2174/1871526519666190405170601
Price: $65

Article Metrics

PDF: 14
HTML: 2