Silicon Quantum Dots: Promising Theranostic Probes for the Future

Author(s): Vishnu Sankar Sivasankarapillai, Jobin Jose, Muhammad Salman Shanavas, Akash Marathakam, Md. Sahab Uddin, Bijo Mathew*

Journal Name: Current Drug Targets

Volume 20 , Issue 12 , 2019


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Nanotechnology has emerged as one of the leading research areas involving nanoscale manipulation of atoms and molecules. During the past decade, the growth of nanotechnology has been one of the most important developments that have taken place in the biomedical field. The new generation nanomaterials like Quantum dots are gaining much importance. Also, there is a growing interest in the development of nano-theranostics platforms in medical diagnostics, biomedical imaging, drug delivery, etc. Quantum dots are also known as nanoscale semiconductor crystals, with unique electronic and optical properties. Recently, silicon quantum dots are being studied extensively due to their less-toxic, inert nature and ease of surface modification. The silicon quantum dots (2-10nm) are comparatively stable, having optical properties of silicon nanocrystals. This review focuses on silicon quantum dots and their various biomedical applications like drug delivery regenerative medicine and tissue engineering. Also, the processes involved in their modification for various biomedical applications along with future aspects are discussed.

Keywords: Quantum dots, silicon, nanotechnology, anticancer, less-toxic, nanocrystals.

[1]
Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, et al. (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997; 101(46): 9463-75.
[http://dx.doi.org/10.1021/jp971091y]
[2]
Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 2006; 128(24): 7756-7.
[http://dx.doi.org/10.1021/ja062677d] [PMID: 16771487]
[3]
Zahin N, Anwar R, Tewari D, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environmental Science and Pollution Research 2019 May; 111-8.
[http://dx.doi.org/10.1007/s11356-019-05211-0]
[4]
Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002; 13(1): 40-6.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[5]
Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 2004; 93(7)077402
[http://dx.doi.org/10.1103/PhysRevLett.93.077402] [PMID: 15324277]
[6]
Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002; 13(1): 40-6.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[7]
Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem 2002; 74(19): 5132-8.
[http://dx.doi.org/10.1021/ac0258251] [PMID: 12380840]
[8]
Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 2001; 123(17): 4103-4.
[http://dx.doi.org/10.1021/ja0058334] [PMID: 11457171]
[9]
Yoffe AD. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 2001; 50(1): 1-208.
[http://dx.doi.org/10.1080/00018730010006608]
[10]
Costa-Fernández JM, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing. Trends Analyt Chem 2006; 25(3): 207-18.
[http://dx.doi.org/10.1016/j.trac.2005.07.008]
[11]
Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 2002; 74(4): 841-7.
[http://dx.doi.org/10.1021/ac010662m] [PMID: 11866065]
[12]
Li L, Daou TJ, Texier I, Kim Chi TT, Liem NQ, Reiss P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 2009; 21(12): 2422-9.
[http://dx.doi.org/10.1021/cm900103b]
[13]
Willard DM, Carillo LL, Jung J, Van Orden A. CdSe− ZnS quantum dots as resonance energy transfer donors in a model protein− protein binding assay. Nano Lett 2001; 1(9): 469-74.
[http://dx.doi.org/10.1021/nl015565n]
[14]
Zhang F, Zhong H, Chen C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 2015; 9(4): 4533-42.
[http://dx.doi.org/10.1021/acsnano.5b01154] [PMID: 25824283]
[15]
Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1): 41-6.
[http://dx.doi.org/10.1038/nbt764] [PMID: 12459735]
[16]
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008; 5(9): 763-75.
[http://dx.doi.org/10.1038/nmeth.1248] [PMID: 18756197]
[17]
Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[18]
Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307(5709): 538-44.
[http://dx.doi.org/10.1126/science.1104274] [PMID: 15681376]
[19]
Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002; 13(1): 40-6.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[20]
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6): 435-46.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[21]
Valizadeh A, Mikaeili H, Samiei M, et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012; 7(1): 480.
[http://dx.doi.org/10.1186/1556-276X-7-480] [PMID: 22929008]
[22]
Li J, Zhu JJ. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst (Lond) 2013; 138(9): 2506-15.
[http://dx.doi.org/10.1039/c3an36705c] [PMID: 23518695]
[23]
Selvan ST, Tan TT, Ying JY. Robust, non‐cytotoxic, silica‐coated CdSe quantum dots with efficient photoluminescence. Adv Mater 2005; 17(13): 1620-5.
[http://dx.doi.org/10.1002/adma.200401960]
[24]
Tsoi KM, Dai Q, Alman BA, Chan WC. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 2013; 46(3): 662-71.
[http://dx.doi.org/10.1021/ar300040z] [PMID: 22853558]
[25]
Yong KT, Law WC, Hu R, et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 2013; 42(3): 1236-50.
[http://dx.doi.org/10.1039/C2CS35392J] [PMID: 23175134]
[26]
Larson DR, Zipfel WR, Williams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300(5624): 1434-6.
[http://dx.doi.org/10.1126/science.1083780] [PMID: 12775841]
[27]
Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. On the cyto-toxicity caused by quantum dots. Microbiol Immunol 2004; 48(9): 669-75.
[http://dx.doi.org/10.1111/j.1348-0421.2004.tb03478.x] [PMID: 15383704]
[28]
Chen N, He Y, Su Y, et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012; 33(5): 1238-44.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.070] [PMID: 22078811]
[29]
Chan WH, Shiao NH, Lu PZ. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 2006; 167(3): 191-200.
[http://dx.doi.org/10.1016/j.toxlet.2006.09.007] [PMID: 17049762]
[30]
Lovrić J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005; 12(11): 1227-34.
[http://dx.doi.org/10.1016/j.chembiol.2005.09.008] [PMID: 16298302]
[31]
Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007; 23(4): 1974-80.
[http://dx.doi.org/10.1021/la060093j] [PMID: 17279683]
[32]
Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ. Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir 2004; 20(25): 11264-9.
[http://dx.doi.org/10.1021/la048105t] [PMID: 15568884]
[33]
Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008; 60(11): 1278-88.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[34]
Cheng X, Lowe SB, Reece PJ, Gooding JJ. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem Soc Rev 2014; 43(8): 2680-700.
[http://dx.doi.org/10.1039/C3CS60353A] [PMID: 24395024]
[35]
Alima D, Estrin Y, Rich DH, Bar I. The structural and optical properties of supercontinuum emitting Si nanocrystals prepared by laser ablation in water. J Appl Phys 2012; 112(11)114312
[http://dx.doi.org/10.1063/1.4768210]
[36]
Ghosh B, Shirahata N. Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mater 2014; 15(1)014207
[http://dx.doi.org/10.1088/1468-6996/15/1/014207] [PMID: 27877634]
[37]
Tiwari S, Rana F, Chan K, Shi L, Hanafi H. Single charge and confinement effects in nano‐crystal memories. Appl Phys Lett 1996; 69(9): 1232-4.
[http://dx.doi.org/10.1063/1.117421]
[38]
Chaturvedi A, Joshi MP, Rani E, Ingale A, Srivastava AK, Kukreja LM. On red-shift of UV photoluminescence with decreasing size of silicon nanoparticles embedded in SiO2 matrix grown by pulsed laser deposition. J Lumin 2014; 154: 178-84.
[http://dx.doi.org/10.1016/j.jlumin.2014.04.032]
[39]
Askari S, Macias-Montero M, Velusamy T, Maguire P, Svrcek V, Mariotti D. Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas. J Phys D Appl Phys 2015; 48(31)314002
[http://dx.doi.org/10.1088/0022-3727/48/31/314002]
[40]
Shcherbyna L, Torchynska T. Si quantum dot structures and their applications. Physica E 2013; 51: 65-70.
[http://dx.doi.org/10.1016/j.physe.2012.09.026]
[41]
Huan C, Shu-Qing S. Silicon nanoparticles: Preparation, properties, and applications. Chin Phys B 2014; 23(8)088102
[http://dx.doi.org/10.1088/1674-1056/23/8/088102]
[42]
Vayssieres L, Sathe C, Butorin SM, Shuh DK, Nordgren J, Guo J. One‐dimensional quantum‐confinement effect in α‐Fe2O3 ultrafine nanorod arrays. Adv Mater 2005; 17(19): 2320-3.
[http://dx.doi.org/10.1002/adma.200500992]
[43]
Heulings HI, Huang X, Li J, Yuen T, Lin CL. Mn-substituted inorganic-organic hybrid materials based on ZnSe: Nanostructures that may lead to magnetic semiconductors with a strong quantum confinement effect. Nano Lett 2001; 1(10): 521-6.
[http://dx.doi.org/10.1021/nl015556e]
[44]
Tian Y, Sakr MR, Kinder JM, et al. One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett 2012; 12(12): 6492-7.
[http://dx.doi.org/10.1021/nl304194c] [PMID: 23167670]
[45]
Jun YW, Choi CS, Cheon J. Size and shape controlled ZnTe nanocrystals with quantum confinement effect. Chem Commun 2001; (1): 101-2.
[http://dx.doi.org/10.1039/b008376n]
[46]
Wei-Qi H, Xin-Jian M, Zhong-Mei H, Shi-Rong L, Chao-Jian Q. Activation of silicon quantum dots for emission. Chin Phys B 2012; 21(9)094207
[http://dx.doi.org/10.1088/1674-1056/21/9/094207]
[47]
Erogbogbo F, Tien CA, Chang CW, et al. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem 2011; 22(6): 1081-8.
[http://dx.doi.org/10.1021/bc100552p] [PMID: 21473652]
[48]
Fujioka K, Hiruoka M, Sato K, et al. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 2008; 19(41)415102
[http://dx.doi.org/10.1088/0957-4484/19/41/415102] [PMID: 21832637]
[49]
Stan MS, Memet I, Sima C, et al. Si/SiO2 quantum dots cause cytotoxicity in lung cells through redox homeostasis imbalance. Chem Biol Interact 2014; 220: 102-15.
[http://dx.doi.org/10.1016/j.cbi.2014.06.020] [PMID: 24992398]
[50]
Stanca L, Sima C, Petrache Voicu SN, Serban AI, Dinischiotu A. In vitro evaluation of the morphological and biochemical changes induced by Si/SiO 2 QDs exposure of HepG2 cells. Rom Rep Phys 2015; 67: 1512-24.
[51]
De Stefano D, Carnuccio R, Maiuri MC. Nanomaterials toxicity and cell death modalities. Journal of drug delivery 2012 2012.
[http://dx.doi.org/10.1155/2012/167896]
[52]
Yong KT, Roy I, Law WC, Hu R. Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging. Chem Commun (Camb) 2010; 46(38): 7136-8.
[http://dx.doi.org/10.1039/c0cc00667j] [PMID: 20820500]
[53]
Law WC, Yong KT, Roy I, et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 2009; 5(11): 1302-10.
[http://dx.doi.org/10.1002/smll.200801555] [PMID: 19242947]
[54]
Hu R, Law WC, Lin G, et al. PEGylated phospholipid micelle-encapsulated near-infrared PbS quantum dots for in vitro and in vivo bioimaging. Theranostics 2012; 2(7): 723-33.
[http://dx.doi.org/10.7150/thno.4275] [PMID: 22896774]
[55]
Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009; 8(4): 331-6.
[http://dx.doi.org/10.1038/nmat2398] [PMID: 19234444]
[56]
Tu C, Ma X, House A, Kauzlarich SM, Louie AY. PET imaging and biodistribution of silicon quantum dots in mice. ACS Med Chem Lett 2011; 2(4): 285-8.
[http://dx.doi.org/10.1021/ml1002844] [PMID: 21546997]
[57]
Erogbogbo F, Yong KT, Roy I, et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 2011; 5(1): 413-23.
[http://dx.doi.org/10.1021/nn1018945] [PMID: 21138323]
[58]
Erogbogbo F, Tien CA, Chang CW, et al. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem 2011; 22(6): 1081-8.
[http://dx.doi.org/10.1021/bc100552p] [PMID: 21473652]
[59]
Peng F, Su Y, Zhong Y, Fan C, Lee ST, He Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res 2014; 47(2): 612-23.
[http://dx.doi.org/10.1021/ar400221g] [PMID: 24397270]
[60]
May JL, Erogbogbo F, Yong KT, et al. Enhancing silicon quantum dot uptake by pancreatic cancer cells via pluronic® encapsulation and antibody targeting. J Solid Tumors 2012; 2(3): 24.
[http://dx.doi.org/10.5430/jst.v2n3p24]
[61]
Erogbogbo F, Yong KT, Roy I, Xu G, Prasad PN, Swihart MT. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2008; 2(5): 873-8.
[http://dx.doi.org/10.1021/nn700319z] [PMID: 19206483]
[62]
He Y, Su Y, Yang X, et al. Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J Am Chem Soc 2009; 131(12): 4434-8.
[http://dx.doi.org/10.1021/ja808827g] [PMID: 19235931]
[63]
He Y, Kang ZH, Li QS, Tsang CH, Fan CH, Lee ST. Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew Chem Int Ed Engl 2009; 48(1): 128-32.
[http://dx.doi.org/10.1002/anie.200802230] [PMID: 18979474]
[64]
He Y, Zhong Y, Peng F, et al. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 2011; 133(36): 14192-5.
[http://dx.doi.org/10.1021/ja2048804] [PMID: 21848339]
[65]
Ohta S, Shen P, Inasawa S, Yamaguchi Y. Size-and surface chemistry-dependent intracellular localization of luminescent silicon quantum dot aggregates. J Mater Chem 2012; 22(21): 10631-8.
[http://dx.doi.org/10.1039/c2jm31112g]
[66]
Ge J, Liu W, Zhao W, et al. Preparation of highly stable and water-dispersible silicon quantum dots by using an organic peroxide. Chemistry 2011; 17(46): 12872-6.
[http://dx.doi.org/10.1002/chem.201102356] [PMID: 21984350]
[67]
Wang Q, Bao Y, Ahire J, Chao Y. Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthc Mater 2013; 2(3): 459-66.
[http://dx.doi.org/10.1002/adhm.201200178] [PMID: 23184534]
[68]
Warner JH, Hoshino A, Yamamoto K, Tilley RD. Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed Engl 2005; 44(29): 4550-4.
[http://dx.doi.org/10.1002/anie.200501256] [PMID: 15973756]
[69]
Shiohara A, Prabakar S, Faramus A, et al. Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 2011; 3(8): 3364-70.
[http://dx.doi.org/10.1039/c1nr10458f] [PMID: 21727983]
[70]
Shiohara A, Hanada S, Prabakar S, et al. Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 2010; 132(1): 248-53.
[http://dx.doi.org/10.1021/ja906501v] [PMID: 20000400]
[71]
Hanada S, Fujioka K, Futamura Y, Manabe N, Hoshino A, Yamamoto K. Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: their cytotoxicity and biological effect. Int J Mol Sci 2013; 14(1): 1323-34.
[http://dx.doi.org/10.3390/ijms14011323] [PMID: 23306154]
[72]
Klein S, Zolk O, Fromm MF, Schrödl F, Neuhuber W, Kryschi C. Functionalized silicon quantum dots tailored for targeted siRNA delivery. Biochem Biophys Res Commun 2009; 387(1): 164-8.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.144] [PMID: 19576864]
[73]
Zhao MX, Zhu BJ. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res Lett 2016; 11(1): 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9] [PMID: 27090658]
[74]
Xu Z, Wang D, Guan M, et al. Photoluminescent silicon nanocrystal-based multifunctional carrier for pH-regulated drug delivery. ACS Appl Mater Interfaces 2012; 4(7): 3424-31.
[http://dx.doi.org/10.1021/am300877v] [PMID: 22758606]
[75]
Paul A, Jana A, Karthik S, Bera M, Zhao Y, Singh NP. Photoresponsive real time monitoring silicon quantum dots for regulated delivery of anticancer drugs. J Mater Chem B Mater Biol Med 2016; 4(3): 521-8.
[http://dx.doi.org/10.1039/C5TB02045J]
[76]
Solanki A, Kim JD, Lee KB. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging
[http://dx.doi.org/10.2217/17435889.3.4.567]
[77]
Yukawa H, Baba Y. In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal Chem 2017; 89(5): 2671-81.
[http://dx.doi.org/10.1021/acs.analchem.6b04763] [PMID: 28194939]
[78]
Olson JL, Velez-Montoya R, Mandava N, Stoldt CR. Intravitreal silicon-based quantum dots as neuroprotective factors in a model of retinal photoreceptor degeneration. Invest Ophthalmol Vis Sci 2012; 53(9): 5713-21.
[http://dx.doi.org/10.1167/iovs.12-9745] [PMID: 22761263]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 12
Year: 2019
Published on: 05 April, 2019
Page: [1255 - 1263]
Pages: 9
DOI: 10.2174/1389450120666190405152315
Price: $65

Article Metrics

PDF: 30
HTML: 7
EPUB: 1
PRC: 1