Recent Advances of Chitosan and its Derivatives in Biomedical Applications

Author(s): Fei Ding, Jiawei Fu, Chuang Tao, Yanhua Yu, Xianran He, Yangguang Gao, Yongmin Zhang*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 18 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Chitosan is the second-most abundant natural polysaccharide. It has unique characteristics, such as biodegradability, biocompatibility, and non-toxicity. Due to the existence of its free amine group and hydroxyl groups on its backbone chain, chitosan can undergo further chemical modifications to generate Chitosan Derivatives (CDs) that permit additional biomedical functionality. Chitosan and CDs can be fabricated into various forms, including Nanoparticles (NPs), micelles, hydrogels, nanocomposites and nano-chelates. For these reasons, chitosan and CDs have found a tremendous variety of biomedical applications in recent years. This paper mainly presents the prominent applications of chitosan and CDs for cancer therapy/diagnosis, molecule biosensing, viral infection, and tissue engineering over the past five years. Moreover, future research directions on chitosan are also considered.

Keywords: Chitosan, chitosan derivatives, nanoparticles, micelles, hydrogels, nanocomposites, nanochelate, cancer therapy, diagnosis, molecular biosensing, virus infection, tissue engineering.

[1]
Sahariah, P.; Másson, M. Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromolecules, 2017, 18(11), 3846-3868.
[http://dx.doi.org/10.1021/acs.biomac.7b01058] [PMID: 28933147]
[2]
Fong, D.; Hoemann, C.D. Chitosan immunomodulatory properties: perspectives on the impact of structural properties and dosage. Future Sci. OA, 2017, 4(1)FSO225
[http://dx.doi.org/10.4155/fsoa-2017-0064] [PMID: 29255618]
[3]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[4]
Sonia, T.A.; Sharma, C.P. Chitosan and its derivatives for drug delivery perspective. Adv. Polym. Sci., 2011, 243, 23-53.
[http://dx.doi.org/10.1007/12_2011_117]
[5]
Huang, G.; Liu, Y.; Chen, L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv, , 2017, 24((sup1)), 108-113.
[http://dx.doi.org/10.1080/10717544.2017.1399305]
[6]
Khan, F.; Ahmad, S.R. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol. Biosci., 2013, 13(4), 395-421.
[http://dx.doi.org/10.1002/mabi.201200409] [PMID: 23512290]
[7]
Mohebbi, S.; Nezhad, M.N.; Zarrintaj, P.; Jafari, S.H.; Gholizadeh, S.S.; Saeb, M.R.; Mozafari, M. Chitosan in biomedical engineering: a critical review. Curr. Stem Cell Res. Ther., 2019, 14(2), 93-116.
[http://dx.doi.org/10.2174/1574888X13666180912142028] [PMID: 30207244]
[8]
Mengatto, L.N.; Helbling, I.M.; Luna, J.A. Recent advances in chitosan films for controlled release of drugs. Recent Pat. Drug Deliv. Formul., 2012, 6(2), 156-170.
[http://dx.doi.org/10.2174/187221112800672967] [PMID: 22436027]
[9]
Lam, P.L.; Lee, K.K.; Wong, R.S.; Cheng, G.Y.; Cheng, S.Y.; Yuen, M.C.; Lam, K.H.; Gambari, R.; Kok, S.H.; Chui, C.H. Development of hydrocortisone succinic acid/and 5-fluorouracil/chitosan microcapsules for oral and topical drug deliveries. Bioorg. Med. Chem. Lett., 2012, 22(9), 3213-3218.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.031] [PMID: 22460032]
[10]
Saranya, N.; Moorthi, A.; Saravanan, S.; Devi, M.P.; Selvamurugan, N. Chitosan and its derivatives for gene delivery. Int. J. Biol. Macromol., 2011, 48(2), 234-238.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.11.013] [PMID: 21134396]
[11]
Shariatinia, Z.; Jalali, A.M. Chitosan-based hydrogels: Preparation, properties and applications. Int. J. Biol. Macromol., 2018, 115, 194-220.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.034] [PMID: 29660456]
[12]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[13]
Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current challenges in clay minerals for drug delivery. Appl. Clay Sci., 2010, 48(3), 291-295.
[http://dx.doi.org/10.1016/j.clay.2010.01.007]
[14]
Cheikh, D.; García-Villén, F.; Majdoub, H.; Viseras, C.; Zayani, M.B. Chitosan/beidellite nanocomposite as diclofenac carrier. Int. J. Biol. Macromol., 2019, 126, 44-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.205] [PMID: 30586582]
[15]
Dimassi, S.; Tabary, N.; Chai, F.; Blanchemain, N.; Martel, B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr. Polym., 2018, 202, 382-396.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.011] [PMID: 30287013]
[16]
Yu, J.M.; Li, W.D.; Lu, L.; Zhou, X.Y.; Wang, D.Y.; Li, H.M.; Xu, X.Y.; Chen, J. Preparation and characterization of galactosylated glycol chitosan micelles and its potential use for hepatoma-targeting delivery of doxorubicin. J. Mater. Sci. Mater. Med., 2014, 25(3), 691-701.
[http://dx.doi.org/10.1007/s10856-013-5109-9] [PMID: 24338380]
[17]
Kim, J.H.; Kim, Y.K.; Arash, M.T.; Hong, S.H.; Lee, J.H.; Kang, B.N.; Bang, Y.B.; Cho, C.S.; Yu, D.Y.; Jiang, H.L.; Cho, M.H. Galactosylation of chitosan-graft-spermine as a gene carrier for hepatocyte targeting in vitro and in vivo. J. Nanosci. Nanotechnol., 2012, 12(7), 5178-5184.
[http://dx.doi.org/10.1166/jnn.2012.6376] [PMID: 22966542]
[18]
Mi, X.; Vijayaragavan, K.S.; Heldt, C.L. Virus adsorption of water-stable quaternized chitosan nanofibers. Carbohydr. Res., 2014, 387, 24-29.
[http://dx.doi.org/10.1016/j.carres.2014.01.017] [PMID: 24561959]
[19]
Su, C.; Li, H.; Shi, Y.; Wang, G.; Liu, L.; Zhao, L.; Su, R. Carboxymethyl-β-cyclodextrin conjugated nanoparticles facilitate therapy for folate receptor-positive tumor with the mediation of folic acid. Int. J. Pharm., 2014, 474(1-2), 202-211.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.026] [PMID: 25149123]
[20]
Wei, J.; Xue, W.; Yu, X.; Qiu, X.; Liu, Z. pH Sensitive phosphorylated chitosan hydrogel as vaccine delivery system for intramuscular immunization. J. Biomater. Appl., 2017, 31(10), 1358-1369.
[http://dx.doi.org/10.1177/0885328217704139] [PMID: 28387574]
[21]
Ma, Z.; Garrido-Maestu, A.; Jeong, K.C. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym., 2017, 176, 257-265.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.082] [PMID: 28927606]
[22]
Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4)E53
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[23]
Jamal, A.; Shahzadi, L.; Ahtzaz, S.; Zahid, S.; Chaudhry, A.A.; Rehman, I.U.; Yar, M. Identification of anti-cancer potential of doxazocin: Loading into chitosan based biodegradable hydrogels for on-site delivery to treat cervical cancer. Mater. Sci. Eng. C, 2018, 82, 102-109.
[http://dx.doi.org/10.1016/j.msec.2017.08.054] [PMID: 29025638]
[24]
Kang, R.H.; Kwon, J.Y.; Kim, Y.; Lee, S.M. Cisplatin-mediated formation of polyampholytic chitosan nanoparticles with attenuated viscosity and pH-sensitive drug release. Langmuir, 2017, 33(36), 9091-9099.
[http://dx.doi.org/10.1021/acs.langmuir.7b02043] [PMID: 28853583]
[25]
Maney, V.; Singh, M. An in vitro assessment of novel chitosan/bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin. Nanomedicine (Lond.), 2017, 12(21), 2625-2640.
[http://dx.doi.org/10.2217/nnm-2017-0228] [PMID: 28965478]
[26]
Potara, M.; Nagy-Simon, T.; Craciun, A.M.; Suarasan, S.; Licarete, E.; Imre-Lucaci, F.; Astilean, S. Carboplatin-loaded, raman-encoded, chitosan-coated silver nanotriangles as multimodal traceable nanotherapeutic delivery systems and pH reporters inside human ovarian cancer cells. ACS Appl. Mater. Interfaces, 2017, 9(38), 32565-32576.
[http://dx.doi.org/10.1021/acsami.7b10075] [PMID: 28872817]
[27]
Shi, Y.; Xue, J.; Jia, L.; Du, Q.; Niu, J.; Zhang, D. Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide. Colloids Surf. B Biointerfaces, 2018, 161, 67-72.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.037] [PMID: 29040836]
[28]
Rahimi, S.; Khoee, S.; Ghandi, M. Development of photo and pH dual crosslinked coumarin-containing chitosan nanoparticles for controlled drug release. Carbohydr. Polym., 2018, 201, 236-245.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.074] [PMID: 30241816]
[29]
Bothiraja, C.; Rajput, N.; Poudel, I.; Rajalakshmi, S.; Panda, B.; Pawar, A. Development of novel biofunctionalized chitosan decorated nanocochleates as a cancer targeted drug delivery platform. Artif. Cells Nanomed. Biotechnol., 2018, 46(Supp. 1), 447-461.
[http://dx.doi.org/10.1080/21691401.2018.1430584]
[30]
Shariatinia, Z.; Zahraee, Z. Controlled release of metformin from chitosan-based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J. Colloid Interface Sci., 2017, 501, 60-76.
[http://dx.doi.org/10.1016/j.jcis.2017.04.036] [PMID: 28433886]
[31]
Zhang, Y.; Zhu, W.; Zhang, H.; Han, J.; Zhang, L.; Lin, Q.; Ai, F. Carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanoparticles with pH-responsive and prolonged release properties for oral delivery of the antitumor drug, Docetaxel. Int. J. Pharm., 2017, 532(1), 384-392.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.023] [PMID: 28903067]
[32]
Li, L.; Yang, L.; Li, M.; Zhang, L. A cell-penetrating peptide mediated chitosan nanocarriers for improving intestinal insulin delivery. Carbohydr. Polym., 2017, 174, 182-189.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.061] [PMID: 28821057]
[33]
Maciel, V.B.V.; Yoshida, C.M.P.; Pereira, S.M.S.S.; Goycoolea, F.M.; Franco, T.T. Electrostatic self-assembled chitosan-pectin nano- and microparticles for insulin delivery. Molecules, 2017, 22(10)E1707
[http://dx.doi.org/10.3390/molecules22101707] [PMID: 29023400]
[34]
Luesakul, U.; Puthong, S.; Neamati, N.; Muangsin, N. pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells. Carbohydr. Polym., 2018, 181, 841-850.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.068] [PMID: 29254044]
[35]
Mohammed, M.O.; Hussain, K.S.; Haj, N.Q. Preparation and bioactivity assessment of chitosan-1-acetic acid-5-flurouracil conjugates as cancer prodrugs. Molecules, 2017, 22(11)E1629
[http://dx.doi.org/10.3390/molecules22111629] [PMID: 29117097]
[36]
M, G.A.; S, A.T.; Ayyavu, M.; A, S.; Kandasamy, R. Synthesis and characterization of cystamine conjugated chitosan-SS-mPEG based 5-Fluorouracil loaded polymeric nanoparticles for redox responsive drug release. Eur. J. Pharm. Sci., 2018, 116, 37-47.
[http://dx.doi.org/10.1016/j.ejps.2017.10.035] [PMID: 29080854]
[37]
Yan, J.K.; Qiu, W.Y.; Wang, Y.Y.; Wu, L.X.; Cheung,PCK.Synthesis and characterization of cystamine conjugated chitosan-SS-mPEG based 5-Fluorouracil loaded polymeric nanoparticles for redox responsive drug release. Eur. J. Pharm. Sci., 2018, 116, 37-47.
[http://dx.doi.org/10.1016/j.ejps.2017.10.035] [PMID: 29080854]
[38]
Fathi, M.; Sahandi Zangabad, P.; Barar, J.; Aghanejad, A.; Erfan-Niya, H.; Omidi, Y. Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib. Int. J. Biol. Macromol., 2018, 106, 266-276.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.020] [PMID: 28802850]
[39]
Huo, M.; Fu, Y.; Liu, Y.; Chen, Q.; Mu, Y.; Zhou, J.; Li, L.; Xu, W.; Yin, T. N-mercapto acetyl-N'-octyl-O, N″-glycol chitosan as an efficiency oral delivery system of paclitaxel. Carbohydr. Polym., 2018, 181, 477-488.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.066] [PMID: 29253998]
[40]
Singh, P.K.; Srivastava, A.K.; Dev, A.; Kaundal, B.; Choudhury, S.R.; Karmakar, S. 1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydr. Polym., 2018, 180, 365-375.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.030] [PMID: 29103516]
[41]
Tao, R.; Wang, C.Z.; Ye, J.Z.; Zhou, H.; Chen, H.X.; Zhang, Y.S. Antibacterial/antifungal activity and synergistic interactions betweenC70–C120 polyprenol homologs from Ginkgo Biloba L. leaves and the corresponding synthetic derivatives. Eur. Food Res. Technol., 2014, 239, 587-594.
[http://dx.doi.org/10.1007/s00217-014-2254-4]
[42]
Tao, R.; Wang, C.; Zhang, C.; Li, W.; Zhou, H.; Chen, H.; Ye, J. Characterization, cytotoxicity, and genotoxicity of TiO2 and folate-coupled chitosan nanoparticles loading polyprenol-based nanoemulsion. Biol. Trace Elem. Res., 2018, 184(1), 60-74.
[http://dx.doi.org/10.1007/s12011-017-1184-y] [PMID: 28993980]
[43]
Saranya, T.S.; Rajan, V.K.; Biswas, R.; Jayakumar, R.; Sathianarayanan, S. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int. J. Biol. Macromol., 2018, 110, 227-233.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.044] [PMID: 29229242]
[44]
Fan, Y.; Yi, J.; Zhang, Y.; Yokoyama, W. Improved chemical stability and antiproliferative activities of curcumin-loaded nanoparticles with a chitosan chlorogenic acid conjugate. J. Agric. Food Chem., 2017, 65(49), 10812-10819.
[http://dx.doi.org/10.1021/acs.jafc.7b04451] [PMID: 29155582]
[45]
Song, W.; Su, X.; Gregory, D.A.; Li, W.; Cai, Z.; Zhao, X. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials (Basel), 2018, 8(11)E907
[http://dx.doi.org/10.3390/nano8110907] [PMID: 30400634]
[46]
Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm., 2012, 81(3), 463-469.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.007] [PMID: 22561955]
[47]
Shan, D.; Li, J.; Cai, P.; Prasad, P.; Liu, F.; Rauth, A.M.; Wu, X.Y. RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug Deliv. Transl. Res., 2015, 5(1), 15-26.
[http://dx.doi.org/10.1007/s13346-014-0210-2] [PMID: 25787336]
[48]
Babu, A.; Amreddy, N.; Muralidharan, R.; Pathuri, G.; Gali, H.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci. Rep., 2017, 7(1), 14674.
[http://dx.doi.org/10.1038/s41598-017-15012-5] [PMID: 29116098]
[49]
Lou, S.; Zhao, Z.; Dezort, M.; Lohneis, T.; Zhang, C. Multifunctional nanosystem for targeted and controlled delivery of multiple chemotherapeutic agents for the treatment of drug-resistant breast cancer. ACS Omega, 2018, 3(8), 9210-9219.
[http://dx.doi.org/10.1021/acsomega.8b00949] [PMID: 30197996]
[50]
Chiesa, E.; Dorati, R.; Conti, B.; Modena, T.; Cova, E.; Meloni, F.; Genta, I. Hyaluronic acid-decorated chitosan nanoparticles for CD44-targeted delivery of everolimus. Int. J. Mol. Sci., 2018, 19(8)E2310
[http://dx.doi.org/10.3390/ijms19082310] [PMID: 30087241]
[51]
Sang, M.M.; Liu, F.L.; Wang, Y.; Luo, R.J.; Huan, X.X.; Han, L.F.; Zhang, Z.T.; Feng, F.; Qu, W.; Liu, W.; Zheng, F. A novel redox/pH dual-responsive and hyaluronic acid-decorated multifunctional magnetic complex micelle for targeted gambogic acid delivery for the treatment of triple negative breast cancer. Drug Deliv., 2018, 25(1), 1846-1857.
[http://dx.doi.org/10.1080/10717544.2018.1486472] [PMID: 30334478]
[52]
Wei, X.; Liao, J.; Davoudi, Z.; Zheng, H.; Chen, J.; Li, D.; Xiong, X.; Yin, Y.; Yu, X.; Xiong, J.; Wang, Q. Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar. Drugs, 2018, 16(11)E439
[http://dx.doi.org/10.3390/md16110439] [PMID: 30413077]
[53]
Cai, L.; Yu, R.; Hao, X.; Ding, X. Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res. Lett., 2017, 12(1), 509.
[http://dx.doi.org/10.1186/s11671-017-2253-z] [PMID: 28853026]
[54]
Liu, W.; Wang, F.; Zhu, Y.; Li, X.; Liu, X.; Pang, J.; Pan, W. Galactosylated chitosan-functionalized mesoporous silica nanoparticle loading by calcium leucovorin for colon cancer cell-targeted drug delivery. Molecules, 2018, 23(12)E3082
[http://dx.doi.org/10.3390/molecules23123082] [PMID: 30486276]
[55]
Zhang, Y.Q.; Shen, Y.; Liao, M.M.; Mao, X.; Mi, G.J.; You, C.; Guo, Q.Y.; Li, W.J.; Wang, X.Y.; Lin, N.; Webster, T.J. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine (Lond.), 2019, 15(1), 86-97.
[http://dx.doi.org/10.1016/j.nano.2018.09.002] [PMID: 30244085]
[56]
Sutar, Y.B.; Telvekar, V.N. Chitosan based copolymer-drug conjugate and its protein targeted polyelectrolyte complex nanoparticles to enhance the efficiency and specificity of low potency anticancer agent. Mater. Sci. Eng. C, 2018, 92, 393-406.
[http://dx.doi.org/10.1016/j.msec.2018.07.001] [PMID: 30184765]
[57]
Tsai, W.H.; Yu, K.H.; Huang, Y.C.; Lee, C.I. EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles. Int. J. Nanomedicine, 2018, 13, 903-916.
[http://dx.doi.org/10.2147/IJN.S148305] [PMID: 29445279]
[58]
Tekie, F.S.M.; Atyabi, F.; Soleimani, M.; Arefian, E.; Atashi, A.; Kiani, M.; Khoshayand, M.R.; Amini, M.; Dinarvand, R. Chitosan polyplex nanoparticle vector for miR-145 expression in MCF-7: Optimization by design of experiment. Int. J. Biol. Macromol., 2015, 81, 828-837.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.014] [PMID: 26365019]
[59]
Tekie, F.S.M.; Soleimani, M.; Zakerian, A.; Dinarvand, M.; Amini, M.; Dinarvand, R.; Arefian, E.; Atyabi, F. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr. Polym., 2018, 201, 131-140.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.060] [PMID: 30241804]
[60]
Taghavi, S.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett., 2017, 400, 1-8.
[http://dx.doi.org/10.1016/j.canlet.2017.04.008] [PMID: 28412238]
[61]
Du, Y.Z.; Cai, L.L.; Li, J.; Zhao, M.D.; Chen, F.Y.; Yuan, H.; Hu, F.Q. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. Int. J. Nanomedicine, 2011, 6, 1559-1568.
[http://dx.doi.org/10.2147/IJN.S23828] [PMID: 21845046]
[62]
Capel, V.; Vllasaliu, D.; Watts, P.; Clarke, P.A.; Luxton, D.; Grabowska, A.M.; Mantovani, G.; Stolnik, S. Water-soluble substituted chitosan derivatives as technology platform for inhalation delivery of siRNA. Drug Deliv., 2018, 25(1), 644-653.
[http://dx.doi.org/10.1080/10717544.2018.1440668] [PMID: 29493294]
[63]
Tezgel, Ö.; Szarpak-Jankowska, A.; Arnould, A.; Auzély-Velty, R.; Texier, I. Chitosan-lipid nanoparticles (CS-LNPs): Application to siRNA delivery. J. Colloid Interface Sci., 2018, 510, 45-56.
[http://dx.doi.org/10.1016/j.jcis.2017.09.045] [PMID: 28934610]
[64]
Li, L.; Hu, X.; Zhang, M.; Ma, S.; Yu, F.; Zhao, S.; Liu, N.; Wang, Z.; Wang, Y.; Guan, H.; Pan, X.; Gao, Y.; Zhang, Y.; Liu, Y.; Yang, Y.; Tang, X.; Li, M.; Liu, C.; Li, Z.; Mei, X. Dual tumor-targeting nanocarrier system for siRNA delivery based on pRNA and modified chitosan. Mol. Ther. Nucleic Acids, 2017, 8, 169-183.
[http://dx.doi.org/10.1016/j.omtn.2017.06.014] [PMID: 28918019]
[65]
Ni, S.; Liu, Y.; Tang, Y.; Chen, J.; Li, S.; Pu, J.; Han, L. GABAB receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydr. Polym., 2018, 179, 135-144.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.075] [PMID: 29111036]
[66]
Baghdan, E.; Pinnapireddy, S.R.; Strehlow, B.; Engelhardt, K.H.; Schäfer, J.; Bakowsky, U. Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int. J. Pharm., 2018, 535(1-2), 473-479.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.045] [PMID: 29175439]
[67]
Sharma, D.; Singh, J. Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjug. Chem., 2017, 28(11), 2772-2783.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00505] [PMID: 29040803]
[68]
Yang, S.; Ren, Z.; Chen, M.; Wang, Y.; You, B.; Chen, W.; Qu, C.; Liu, Y.; Zhang, X. Nucleolin-targeting AS1411-aptamer-modified graft polymeric micelle with dual pH/redox sensitivity designed to enhance tumor therapy through the codelivery of Doxorubicin/TLR4 siRNA and suppression of invasion. Mol. Pharm., 2018, 15(1), 314-325.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01093] [PMID: 29250957]
[69]
Majidi Zolbanin, N.; Jafari, R.; Majidi, J.; Atyabi, F.; Yousefi, M.; Jadidi-Niaragh, F.; Aghebati-Maleki, L.; Shanehbandi, D.; Soltani Zangbar, M.S.; Nayebi, A.M. Targeted co-delivery of docetaxel and CMET siRNA for treatment of mucin1 overexpressing breast cancer cells. Adv. Pharm. Bull., 2018, 8(3), 383-393.
[http://dx.doi.org/10.15171/apb.2018.045] [PMID: 30276134]
[70]
Jafari, R.; Majidi Zolbanin, N.; Majidi, J.; Atyabi, F.; Yousefi, M.; Jadidi-Niaragh, F.; Aghebati-Maleki, L.; Shanehbandi, D.; Soltani Zangbar, M.S.; Rafatpanah, H. Anti-Mucin1 aptamer-conjugated chitosan nanoparticles for targeted co-delivery of Docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran. Biomed. J., 2019, 23(1), 21-33.
[http://dx.doi.org/10.29252/ibj.23.1.21] [PMID: 30041514]
[71]
Yu, X.; Yang, G.; Shi, Y.; Su, C.; Liu, M.; Feng, B.; Zhao, L. Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance. Int. J. Nanomedicine, 2015, 10, 7045-7056.
[PMID: 26648717]
[72]
Han, L.; Tang, C.; Yin, C. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials, 2015, 60, 42-52.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.001] [PMID: 25982552]
[73]
Bao, X.; Wang, W.; Wang, C.; Wang, Y.; Zhou, J.; Ding, Y.; Wang, X.; Jin, Y. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials, 2014, 35(29), 8450-8466.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.025] [PMID: 24997481]
[74]
Yemisci, M.; Caban, S.; Fernandez-Megia, E.; Capan, Y.; Couvreur, P.; Dalkara, T. Preparation and characterization of biocompatible chitosan nanoparticles for targeted brain delivery of peptides. Methods Mol. Biol., 2018, 1727, 443-454.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_36] [PMID: 29222804]
[75]
Lopes, M.A.; Abrahim, B.A.; Seiça, R.; Veiga, F.; Rodrigues, C.R.; Ribeiro, A.J. Intestinal uptake of insulin nanoparticles: facts or myths? Curr. Pharm. Biotechnol., 2014, 15(7), 629-638.
[http://dx.doi.org/10.2174/1389201015666140915151319] [PMID: 25219866]
[76]
Zhang, Z.; Li, H.; Xu, G.; Yao, P. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Drug Deliv., 2018, 25(1), 1224-1233.
[http://dx.doi.org/10.1080/10717544.2018.1469685] [PMID: 29791242]
[77]
Liao, J.; Ren, X.; Yang, B.; Li, H.; Zhang, Y.; Yin, Z. Targeted thrombolysis by using c-RGD-modified N, N, N-Trimethyl chitosan nanoparticles loaded with lumbrokinase. Drug Dev. Ind. Pharm., 2018, 1-8.
[PMID: 30198790]
[78]
Martins, J.P.; Liu, D.; Fontana, F.; Ferreira, M.P.A.; Correia, A.; Valentino, S.; Kemell, M.; Moslova, K.; Mäkilä, E.; Salonen, J.; Hirvonen, J.; Sarmento, B.; Santos, H.A. Microfluidic nanoassembly of bioengineered chitosan-modified FcRn-targeted porous silicon nanoparticles @ hypromellose acetate succinate for oral delivery of antidiabetic peptides. ACS Appl. Mater. Interfaces, 2018, 10(51), 44354-44367.
[http://dx.doi.org/10.1021/acsami.8b20821] [PMID: 30525379]
[79]
Baranwal, A.; Kumar, A.; Priyadharshini, A.; Oggu, G.S.; Bhatnagar, I.; Srivastava, A.; Chandra, P. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int. J. Biol. Macromol., 2018, 110, 110-123.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.006] [PMID: 29339286]
[80]
Bhatnagar, I.; Mahato, K.; Ealla, K.K.R.; Asthana, A.; Chandra, P. Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive Aspergillosis. Int. J. Biol. Macromol., 2018, 110, 449-456.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.084] [PMID: 29253546]
[81]
Koh, W.C.; Chandra, P.; Kim, D.M.; Shim, Y.B. Electropolymerized self-assembled layer on gold nanoparticles: detection of inducible nitric oxide synthase in neuronal cell culture. Anal. Chem., 2011, 83(16), 6177-6183.
[http://dx.doi.org/10.1021/ac2006558] [PMID: 21739944]
[82]
Ibrahim, H.; Temerk, Y.; Farhan, N. A novel sensor based on nanobiocomposite Au--In2O3--chitosan modified acetylene black paste electrode for sensitive detection of antimycotic ciclopirox olamine. Talanta, 2018, 179, 75-85.
[http://dx.doi.org/10.1016/j.talanta.2017.10.036] [PMID: 29310303]
[83]
Donmez, M.; Oktem, H.A.; Yilmaz, M.D. Ratiometric fluorescence detection of an anthrax biomarker with Eu3+-chelated chitosan biopolymers. Carbohydr. Polym., 2018, 180, 226-230.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.039] [PMID: 29103500]
[84]
Mo, G.; He, X.; Zhou, C.; Ya, D.; Feng, J.; Yu, C.; Deng, B. A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens. Bioelectron., 2019, 126, 558-564.
[http://dx.doi.org/10.1016/j.bios.2018.11.013] [PMID: 30497022]
[85]
Rizwan, M.; Elma, S.; Lim, S.A.; Ahmed, M.U. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens. Bioelectron., 2018, 107, 211-217.
[http://dx.doi.org/10.1016/j.bios.2018.02.037] [PMID: 29471282]
[86]
Li, X.; Wang, Y.; Shi, L.; Ma, H.; Zhang, Y.; Du, B.; Wu, D.; Wei, Q. A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe. Biosens. Bioelectron., 2017, 96, 113-120.
[http://dx.doi.org/10.1016/j.bios.2017.04.050] [PMID: 28475956]
[87]
Ravikumar, R.; Chen, L.H.; Jayaraman, P.; Poh, C.L.; Chan, C.C. Chitosan-nickel film based interferometric optical fiber sensor for label-free detection of histidine tagged proteins. Biosens. Bioelectron., 2018, 99, 578-585.
[http://dx.doi.org/10.1016/j.bios.2017.08.012] [PMID: 28826002]
[88]
Zhang, D.; Sun, Y.; Wu, Q.; Ma, P.; Zhang, H.; Wang, Y.; Song, D. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta, 2016, 146, 364-368.
[http://dx.doi.org/10.1016/j.talanta.2015.08.050] [PMID: 26695276]
[89]
Medawar-Aguilar, V.; Jofre, C.F.; Fernández-Baldo, M.A.; Alonso, A.; Angel, S.; Raba, J.; Pereira, S.V.; Messina, G.A. Serological diagnosis of Toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Anal. Biochem., 2019, 564-565, 116-122.
[http://dx.doi.org/10.1016/j.ab.2018.10.025] [PMID: 30393087]
[90]
Hasanzadeh, M.; Mohammadzadeh, A.; Jafari, M.; Habibi, B. Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB chitosan) doped with silver nanoparticles. Int J Biol Macromol, 2018, 120(Pt B), 2048-2064.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.208] [PMID: 30287383]
[91]
Duan, F.; Zhang, S.; Yang, L.; Zhang, Z.; He, L.; Wang, M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Anal. Chim. Acta, 2018, 1036, 121-132.
[http://dx.doi.org/10.1016/j.aca.2018.06.070] [PMID: 30253822]
[92]
Wei, Y.; Li, X.; Sun, X.; Ma, H.; Zhang, Y.; Wei, Q. Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on Au-CoS/graphene and CeO2/ionic liquids doped with carboxymethyl chitosan complex. Biosens. Bioelectron., 2017, 94, 141-147.
[http://dx.doi.org/10.1016/j.bios.2017.03.001] [PMID: 28268207]
[93]
Liu, Z.; Liu, H.; Wang, L.; Su, X. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles. Anal. Chim. Acta, 2016, 932, 88-97.
[http://dx.doi.org/10.1016/j.aca.2016.05.025] [PMID: 27286773]
[94]
Sun, Y.; Wang, Y.; Li, J.; Ding, C.; Lin, Y.; Sun, W.; Luo, C. An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta, 2017, 174, 809-818.
[http://dx.doi.org/10.1016/j.talanta.2017.07.001] [PMID: 28738658]
[95]
Rezaei, B.; Jamei, H.R.; Ensafi, A.A. An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme. Biosens. Bioelectron., 2018, 115, 37-44.
[http://dx.doi.org/10.1016/j.bios.2018.05.012] [PMID: 29793133]
[96]
Hernández-Ibáñez, N.; García-Cruz, L.; Montiel, V.; Foster, C.W.; Banks, C.E.; Iniesta, J. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens. Bioelectron., 2016, 77, 1168-1174.
[http://dx.doi.org/10.1016/j.bios.2015.11.005] [PMID: 26579934]
[97]
Apetrei, I.M.; Apetrei, C. Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection. Sensors (Basel), 2016, 16(4), 422.
[http://dx.doi.org/10.3390/s16040422] [PMID: 27023541]
[98]
Dong, X.X.; Yang, J.Y.; Luo, L.; Zhang, Y.F.; Mao, C.; Sun, Y.M.; Lei, H.T.; Shen, Y.D.; Beier, R.C.; Xu, Z.L. Portable amperometric immunosensor for histamine detection using Prussian blue-chitosan-gold nanoparticle nanocomposite films. Biosens. Bioelectron., 2017, 98, 305-309.
[http://dx.doi.org/10.1016/j.bios.2017.07.014] [PMID: 28697442]
[99]
Tabasi, A.; Noorbakhsh, A.; Sharifi, E. Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens. Bioelectron., 2017, 95, 117-123.
[http://dx.doi.org/10.1016/j.bios.2017.04.020] [PMID: 28433858]
[100]
Güner, A.; Çevik, E.; Şenel, M.; Alpsoy, L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem., 2017, 229, 358-365.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.083] [PMID: 28372186]
[101]
Gayathri, C.H.; Mayuri, P.; Sankaran, K.; Kumar, A.S. An electrochemical immunosensor for efficient detection of uropathogenic E. coli based on thionine dye immobilized chitosan/functionalized-MWCNT modified electrode. Biosens. Bioelectron., 2016, 82, 71-77.
[http://dx.doi.org/10.1016/j.bios.2016.03.062] [PMID: 27040944]
[102]
Kashish, B.S.; Jyoti, A.; Mahato, K.; Chandra, P.; Prakash, R. Highly sensitive in vitro biosensor for enterotoxigenic escherichia coli detection based on ssDNA anchored on PtNPs-chitosan nanocomposite. Electroanalysis, 2017, 29(11), 2665-2671.
[http://dx.doi.org/10.1002/elan.201600169]
[103]
Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens. Bioelectron., 2017, 98, 299-304.
[http://dx.doi.org/10.1016/j.bios.2017.06.036] [PMID: 28697441]
[104]
Shrestha, B.K.; Ahmad, R.; Mousa, H.M.; Kim, I.G.; Kim, J.I.; Neupane, M.P.; Park, C.H.; Kim, C.S. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film. J. Colloid Interface Sci., 2016, 482, 39-47.
[http://dx.doi.org/10.1016/j.jcis.2016.07.067] [PMID: 27485503]
[105]
Krishnan, S.K.; Prokhorov, E.; Bahena, D.; Esparza, R.; Meyyappan, M. Chitosan-covered Pd@Pt core-shell nanocubes for direct electron transfer in electrochemical enzymatic glucose biosensor. ACS Omega, 2017, 2(5), 1896-1904.
[http://dx.doi.org/10.1021/acsomega.7b00060] [PMID: 30023649]
[106]
Paik, E.S.; Kim, Y.R.; Hong, H.G. Amperometric glucose biosensor utilizing zinc oxide-chitosan-glucose oxidase hybrid composite films on electrodeposited Pt-Fe(III). Anal. Sci., 2018, 34(11), 1271-1276.
[http://dx.doi.org/10.2116/analsci.18P054] [PMID: 30416185]
[107]
Maruthupandy, M.; Rajivgandhi, G.; Muneeswaran, T.; Vennila, T.; Quero, F.; Song, J.M. Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int. J. Biol. Macromol., 2019, 121, 822-828.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.063] [PMID: 30342135]
[108]
Asrami, P.N.; Mozzafari, S.A.; Tehrani, M.S.; Azar, P.A. A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode. Int. J. Biomacro., 2018, 118(A), 649-660..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.228]
[109]
Rassas, I.; Braiek, M.; Bonhomme, A.; Bessueille, F.; Rafin, G.; Majdoub, H.; Jaffrezic-Renault, N. Voltammetric glucose biosensor based on glucose oxidase encapsulation in a chitosan-kappa-carrageenan polyelectrolyte complex. Mater. Sci. Eng. C, 2019, 95, 152-159.
[http://dx.doi.org/10.1016/j.msec.2018.10.078] [PMID: 30573236]
[110]
Krishna, R.; Campiña, J.M.; Fernandes, P.M.; Ventura, J.; Titus, E.; Silva, A.F. Reduced graphene oxide-nickel nanoparticles/biopolymer composite films for the sub-millimolar detection of glucose. Analyst (Lond.), 2016, 141(13), 4151-4161.
[http://dx.doi.org/10.1039/C6AN00475J] [PMID: 27214596]
[111]
Zhang, W.; Li, X.; Zou, R.; Wu, H.; Shi, H.; Yu, S.; Liu, Y. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Sci. Rep., 2015, 5, 11129.
[http://dx.doi.org/10.1038/srep11129] [PMID: 26052919]
[112]
Liu, Z.; Guo, Y.; Dong, C. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite. Talanta, 2015, 137, 87-93.
[http://dx.doi.org/10.1016/j.talanta.2015.01.037] [PMID: 25770610]
[113]
Mutyala, S.; Mathiyarasu, J. Direct electron transfer at a glucose oxidase-chitosan-modified Vulcan carbon paste electrode for electrochemical biosensing of glucose. Appl. Biochem. Biotechnol., 2014, 172(3), 1517-1529.
[http://dx.doi.org/10.1007/s12010-013-0642-z] [PMID: 24222502]
[114]
Yang, J.; Yu, J.H.; Rudi Strickler, J.; Chang, W.J.; Gunasekaran, S. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectron., 2013, 47, 530-538.
[http://dx.doi.org/10.1016/j.bios.2013.03.051] [PMID: 23644058]
[115]
Zhong, L.; Yun, K. Fluorometric ‘switch-on’ detection of heparin based on a system composed of rhodamine-labeled chitosan oligosaccharide lactate, and graphene oxide. Methods Appl. Fluoresc., 2018, 6(3)035011
[http://dx.doi.org/10.1088/2050-6120/aac51c] [PMID: 29765011]
[116]
Tian, L.; Qi, J.; Ma, X.; Wang, X.; Yao, C.; Song, W.; Wang, Y. A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/molybdenum carbide nanocomposite for microRNA-21 detection. Biosens. Bioelectron., 2018, 122, 43-50.
[http://dx.doi.org/10.1016/j.bios.2018.09.037] [PMID: 30240965]
[117]
Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. Biosens. Bioelectron., 2018, 121, 80-89.
[http://dx.doi.org/10.1016/j.bios.2018.09.008] [PMID: 30199712]
[118]
Sarkar, T.; Bohidar, H.B.; Solanki, P.R. Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. Int. J. Biol. Macromol., 2018, 109, 687-697.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.122] [PMID: 29275197]
[119]
Song, J.; Zhao, L.; Wang, Y.; Xue, Y.; Deng, Y.; Zhao, X.; Li, Q. Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection. Nanomaterials (Basel), 2018, 8(12)E1043
[http://dx.doi.org/10.3390/nano8121043] [PMID: 30551611]
[120]
Hu, L.; Zhu, B.; Zhang, L.; Yuan, H.; Zhao, Q.; Yan, Z. Chitosan-gold nanocomposite and its functionalized paper strips for reversible visual sensing and removal of trace Hg2+ in practice. Analyst (Lond.), 2019, 144(2), 474-480.
[http://dx.doi.org/10.1039/c8an01707g] [PMID: 30426976]
[121]
Wu, S.; Dai, X.; Cheng, T.; Li, S. Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr(VI). Carbohydr. Polym., 2018, 195, 199-206.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.077] [PMID: 29804969]
[122]
Maity, S.; Parshi, N.; Prodhan, C.; Chaudhuri, K.; Ganguly, J. Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live-cell imaging. Carbohydr. Polym., 2018, 193, 119-128.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.073] [PMID: 29773363]
[123]
Lu, J.; Kang, Q.; Xiao, J.; Wang, T.; Fang, M.; Yu, L. Luminescent, stabilized and environmentally friendly [EuW10O36]9--Chitosan films for sensitive detection of hydrogen peroxide. Carbohydr. Polym., 2018, 200, 560-566.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.038] [PMID: 30177199]
[124]
Zhu, Q.; Liang, B.; Cai, Y.; Cao, Q.; Tu, T.; Huang, B.; Fang, L.; Ye, X. Layer-by-layer chitosan-decorated pristine graphene on screen-printed electrodes by one-step electrodeposition for non-enzymatic hydrogen peroxide sensor. Talanta, 2018, 190, 70-77.
[http://dx.doi.org/10.1016/j.talanta.2018.07.038] [PMID: 30172543]
[125]
Yuan, J.; Xu, S.; Zeng, H.Y.; Cao, X.; Dan Pan, A.; Xiao, G.F.; Ding, P.X. Hydrogen peroxide biosensor based on chitosan/2D layered double hydroxide composite for the determination of H2O2. Bioelectrochemistry, 2018, 123, 94-102.
[http://dx.doi.org/10.1016/j.bioelechem.2018.04.009] [PMID: 29734031]
[126]
Yu, Q.; Gao, P.; Zhang, K.Y.; Tong, X.; Yang, H.; Liu, S.; Du, J.; Zhao, Q.; Huang, W. Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light Sci. Appl., 2017, 6(12)e17107
[http://dx.doi.org/10.1038/lsa.2017.107] [PMID: 30167221]
[127]
Damiati, S.; Peacock, M.; Leonhardt, S.; Damiati, L.; Baghdadi, M.A.; Becker, H.; Kodzius, R.; Schuster, B. Embedded disposable functionalized electrochemical biosensor with a 3D-Printed flow cell for detection of hepatic oval cells (HOCs). Genes (Basel), 2018, 9(2)E89
[http://dx.doi.org/10.3390/genes9020089] [PMID: 29443890]
[128]
Suresh, L.; Brahman, P.K.; Reddy, K.R.; J S, B. Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker. Enzyme Microb. Technol., 2018, 112, 43-51.
[http://dx.doi.org/10.1016/j.enzmictec.2017.10.009] [PMID: 29499779]
[129]
Narwal, V.; Kumar, P.; Joon, P.; Pundir, C.S. Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. Enzyme Microb. Technol., 2018, 113, 44-51.
[http://dx.doi.org/10.1016/j.enzmictec.2018.02.010] [PMID: 29602386]
[130]
Jamali, A.; Mottaghitalab, F.; Abdoli, A.; Dinarvand, M.; Esmailie, A.; Kheiri, M.T.; Atyabi, F. Inhibiting influenza virus replication and inducing protection against lethal influenza virus challenge through chitosan nanoparticles loaded by siRNA. Drug Deliv. Transl. Res., 2018, 8(1), 12-20.
[http://dx.doi.org/10.1007/s13346-017-0426-z] [PMID: 29063498]
[131]
Mohamed, S.H.; Arafa, A.S.; Mady, W.H.; Fahmy, H.A.; Omer, L.M.; Morsi, R.E. Preparation and immunological evaluation of inactivated avian influenza virus vaccine encapsulated in chitosan nanoparticles. Biologicals, 2018, 51, 46-53.
[http://dx.doi.org/10.1016/j.biologicals.2017.10.004] [PMID: 29126666]
[132]
Zheng, M.; Qu, D.; Wang, H.; Sun, Z.; Liu, X.; Chen, J.; Li, C.; Li, X.; Chen, Z. Intranasal administration of chitosan against influenza A (H7N9) virus infection in a mouse model. Sci. Rep., 2016, 6, 28729.
[http://dx.doi.org/10.1038/srep28729] [PMID: 27353250]
[133]
Hajam, I.A.; Senevirathne, A.; Hewawaduge, C.; Kim, J.; Lee, J.H. Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet. Res. (Faisalabad), 2020, 51(1), 37.
[http://dx.doi.org/10.1186/s13567-020-00762-4] [PMID: 32143695]
[134]
Gao, Y.; Liu, W.; Wang, W.; Zhang, X.; Zhao, X. The inhibitory effects and mechanisms of 3,6-O-sulfated chitosan against human papillomavirus infection. Carbohydr. Polym., 2018, 198, 329-338.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.096] [PMID: 30093007]
[135]
Wu, D.; Ensinas, A.; Verrier, B.; Primard, C.; Cuvillier, A.; Champier, G.; Paul, S.; Delair, T. Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol. Pharm., 2016, 13(9), 3279-3291.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00568] [PMID: 27454202]
[136]
Tao, W.; Zheng, H.Q.; Fu, T.; He, Z.J.; Hong, Y. N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: An immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice. Hum. Vaccin. Immunother., 2017, 13(8), 1818-1822.
[http://dx.doi.org/10.1080/21645515.2017.1331191] [PMID: 28604244]
[137]
Yue, L.; Li, J.; Chen, W.; Liu, X.; Jiang, Q.; Xia, W. Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydr. Polym., 2017, 176, 356-364.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.043] [PMID: 28927618]
[138]
Chen, W.; Viljoen, A.M. Geraniol-A review of a commercially important fragrance material. S. Afr. J. Bot., 2010, 76(4), 643-651.
[http://dx.doi.org/10.1016/j.sajb.2010.05.008]
[139]
Kim, C.H.; Park, S.J.; Yang, D.H.; Chun, H.J. Chitosan for tissue engineering In: Novel biomaterials for regenerative medicine; Jae, H.; Park, K.; Kim, C-H.; Khang, G. (Eds.);. , 2018; Vol. 1077, pp. 475-485.
[http://dx.doi.org/10.1007/978-981-13-0947-2_25]
[140]
Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Sooraparaju, S.G.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol., 2018, 110, 97-109.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.140] [PMID: 28866015]
[141]
Cao, L.; Lu, C.; Wang, Q.; Li, F. Biocompatibility and fabrication of RGO/chitosan film for cartilage tissue recovery. Environ. Toxicol. Pharmacol., 2017, 54, 199-203.
[http://dx.doi.org/10.1016/j.etap.2017.07.006] [PMID: 28787675]
[142]
Zia, I.; Mirza, S.; Jolly, R.; Rehman, A.; Ullah, R.; Shakir, M. Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: A ternary nanocomposite for bone tissue engineering. Int. J. Biol. Macromol., 2019, 124, 88-101.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.059] [PMID: 30439426]
[143]
Shaheen, T.I.; Montaser, A.S.; Li, S. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol., 2019, 121, 814-821.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.081] [PMID: 30342123]
[144]
Jahan, K.; Mekhail, M.; Tabrizian, M. One-step fabrication of apatite-chitosan scaffold as a potential injectable construct for bone tissue engineering. Carbohydr. Polym., 2019, 203, 60-70.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.017] [PMID: 30318236]
[145]
Saekhor, K.; Udomsinprasert, W.; Honsawek, S.; Tachaboonyakiat, W. Preparation of an injectable modified chitosan-based hydrogel approaching for bone tissue engineering. Int. J. Biol. Macromol., 2019, 123, 167-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.041] [PMID: 30423397]
[146]
Singh, A.; Shiekh, P.A.; Das, M.; Seppälä, J.; Kumar, A. Aligned chitosan-gelatin cryogel filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization and in vitro evaluation. Biomacromolecules, 2019, 20(2), 662-673.
[http://dx.doi.org/10.1021/acs.biomac.8b01308] [PMID: 30354073]
[147]
Sadeghi, A.; Moztarzadeh, F.; Aghazadeh Mohandesi, J. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. Int. J. Biol. Macromol., 2019, 121, 625-632.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.022] [PMID: 30300697]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 18
Year: 2020
Published on: 05 April, 2019
Page: [3023 - 3045]
Pages: 23
DOI: 10.2174/0929867326666190405151538
Price: $65

Article Metrics

PDF: 43
HTML: 5