Therapeutic Exploitation of Viral Interference

Author(s): Imre Kovesdi*, Tibor Bakacs

Journal Name: Infectious Disorders - Drug Targets
Formerly Current Drug Targets - Infectious Disorders

Volume 20 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Viral interference, originally, referred to a state of temporary immunity, is a state whereby infection with a virus limits replication or production of a second infecting virus. However, replication of a second virus could also be dominant over the first virus. In fact, dominance can alternate between the two viruses. Expression of type I interferon genes is many times upregulated in infected epithelial cells. Since the interferon system can control most, if not all, virus infections in the absence of adaptive immunity, it was proposed that viral induction of a nonspecific localized temporary state of immunity may provide a strategy to control viral infections. Clinical observations also support such a theory, which gave credence to the development of superinfection therapy (SIT). SIT is an innovative therapeutic approach where a non-pathogenic virus is used to infect patients harboring a pathogenic virus.

For the functional cure of persistent viral infections and for the development of broad- spectrum antivirals against emerging viruses a paradigm shift was recently proposed. Instead of the virus, the therapy should be directed at the host. Such a host-directed-therapy (HDT) strategy could be the activation of endogenous innate immune response via toll-like receptors (TLRs). Superinfection therapy is such a host-directed-therapy, which has been validated in patients infected with two completely different viruses, the hepatitis B (DNA), and hepatitis C (RNA) viruses. SIT exerts post-infection interference via the constant presence of an attenuated non-pathogenic avian double- stranded (ds) RNA viral vector which boosts the endogenous innate (IFN) response. SIT could, therefore, be developed into a biological platform for a new “one drug, multiple bugs” broad-spectrum antiviral treatment approach.

Keywords: Viral interference, persistent HBV infection, viral superinfection, dsRNA virus, antiviral gene responses, pandemic preparedness.

[1]
Laurie, K.L.; Guarnaccia, T.A.; Carolan, L.A.; Yan, A.W.; Aban, M.; Petrie, S.; Cao, P.; Heffernan, J.M.; McVernon, J.; Mosse, J.; Kelso, A.; McCaw, J.M.; Barr, I.G. Interval Between Infections and Viral Hierarchy Are Determinants of Viral Interference Following Influenza Virus Infection in a Ferret Model. J. Infect. Dis., 2015, 212(11), 1701-1710.
[http://dx.doi.org/10.1093/infdis/jiv260] [PMID: 25943206]
[2]
Schultz-Cherry, S. Viral Interference: The Case of Influenza Viruses. J. Infect. Dis., 2015, 212(11), 1690-1691.
[http://dx.doi.org/10.1093/infdis/jiv261] [PMID: 25943204]
[3]
McKinney, H.H. Mosaic diseases in the Canary Is-lands, West Africa and Gibraltar. J. Agric. Res., 1929, 39, 577.
[4]
Delbruck, M.; Luria, S.E. Interference between bacterial viruses I. Interference between two bacterial viruses acting upon the same host, and the mechanism of virus growth. Arch. Biochem., 1942, 1, 111.
[5]
Henle, W. Interference phenomena between animal viruses; a review. J. Immunol., 1950, 64(3), 203-236.
[PMID: 15412251]
[6]
Duffy, C.E. Interference between St. Louis Encephalitis Virus and Equine Encephalomyelitis Virus (Western Type) in the Chick Embryo. Science, 1944, 99(2582), 517-518.
[http://dx.doi.org/10.1126/science.99.2582.517] [PMID: 17815105]
[7]
Henle, W.; Henle, G. Interference of Inactive Virus with the Propagation of Virus of Influenza. Science, 1943, 98(2534), 87-89.
[http://dx.doi.org/10.1126/science.98.2534.87] [PMID: 17749157]
[8]
Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci., 1957, 147(927), 258-267.
[http://dx.doi.org/10.1098/rspb.1957.0048] [PMID: 13465720]
[9]
Lindenmann, J. From interference to interferon: a brief historical introduction. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1982, 299(1094), 3-6.
[http://dx.doi.org/10.1098/rstb.1982.0101] [PMID: 6183693]
[10]
Greer, R.M.; McErlean, P.; Arden, K.E.; Faux, C.E.; Nitsche, A.; Lambert, S.B.; Nissen, M.D.; Sloots, T.P.; Mackay, I.M. Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? J. Clin. Virol., 2009, 45(1), 10-15.
[http://dx.doi.org/10.1016/j.jcv.2009.03.008] [PMID: 19376742]
[11]
DaPalma, T.; Doonan, B.P.; Trager, N.M.; Kasman, L.M. A systematic approach to virus-virus interactions. Virus Res., 2010, 149(1), 1-9.
[http://dx.doi.org/10.1016/j.virusres.2010.01.002] [PMID: 20093154]
[12]
Kelly, H.; Barry, S.; Laurie, K.; Mercer, G. Seasonal influenza vaccination and the risk of infection with pandemic influenza: a possible illustration of non-specific temporary immunity following infection. Euro Surveill., 2010, 15(47), 19722.
[http://dx.doi.org/10.2807/ese.15.47.19722-en] [PMID: 21144441]
[13]
Gale, M. Jr Interference with Virus Infection. J. Immunol., 2015, 195(5), 1909-1910.
[http://dx.doi.org/10.4049/jimmunol.1501575] [PMID: 26297789]
[14]
Linde, A.; Rotzén-Ostlund, M.; Zweygberg-Wirgart, B.; Rubinova, S.; Brytting, M. Does viral interference affect spread of influenza? Euro Surveill., 2009, 14(40), 14.
[PMID: 19822124]
[15]
Wang, W.; Cavailler, P.; Ren, P.; Zhang, J.; Dong, W.; Yan, H.; Mardy, S.; Cailhol, J.; Buchy, P.; Sheng, J.; Fontanet, A.; Deubel, V. Molecular monitoring of causative viruses in child acute respiratory infection in endemo-epidemic situations in Shanghai. J. Clin. Virol., 2010, 49(3), 211-218.
[http://dx.doi.org/10.1016/j.jcv.2010.08.005] [PMID: 20855230]
[16]
Ånestad, G.; Nordbø, S.A. Virus interference. Did rhinoviruses activity hamper the progress of the 2009 influenza A (H1N1) pandemic in Norway? Med. Hypotheses, 2011, 77(6), 1132-1134.
[http://dx.doi.org/10.1016/j.mehy.2011.09.021] [PMID: 21975051]
[17]
Casalegno, J.S.; Ottmann, M.; Duchamp, M.B.; Escuret, V.; Billaud, G.; Frobert, E.; Morfin, F.; Lina, B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin. Microbiol. Infect., 2010, 16(4), 326-329.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03167.x] [PMID: 20121829]
[18]
Casalegno, J.S.; Ottmann, M.; Bouscambert-Duchamp, M.; Valette, M.; Morfin, F.; Lina, B. Impact of the 2009 influenza A(H1N1) pandemic wave on the pattern of hibernal respiratory virus epidemics, France, 2009. Euro Surveill., 2010, 15(6), 15.
[PMID: 20158981]
[19]
Van Kerkhove, M.D.; Mounts, A.W. 2009 versus 2010 comparison of influenza activity in southern hemisphere temperate countries. Influenza Other Respir. Viruses, 2011, 5(6), 375-379.
[http://dx.doi.org/10.1111/j.1750-2659.2011.00241.x] [PMID: 21668684]
[20]
Yang, Y.; Wang, Z.; Ren, L.; Wang, W.; Vernet, G.; Paranhos-Baccalà, G.; Jin, Q.; Wang, J. Influenza A/H1N1 2009 pandemic and respiratory virus infections, Beijing, 2009-2010. PLoS One, 2012, 7(9) e45807
[http://dx.doi.org/10.1371/journal.pone.0045807] [PMID: 23029253]
[21]
Mathews, J.D.; McCaw, C.T.; McVernon, J.; McBryde, E.S.; McCaw, J.M. A biological model for influenza transmission: pandemic planning implications of asymptomatic infection and immunity. PLoS One, 2007, 2(11) e1220
[http://dx.doi.org/10.1371/journal.pone.0001220] [PMID: 18043733]
[22]
Mercer, G.N.; Barry, S.I.; Kelly, H. Modelling the effect of seasonal influenza vaccination on the risk of pandemic influenza infection. BMC Public Health, 2011, 11(Suppl. 1), S11.
[http://dx.doi.org/10.1186/1471-2458-11-S1-S11] [PMID: 21356130]
[23]
Skowronski, D.M.; De Serres, G.; Crowcroft, N.S.; Janjua, N.Z.; Boulianne, N.; Hottes, T.S.; Rosella, L.C.; Dickinson, J.A.; Gilca, R.; Sethi, P.; Ouhoummane, N.; Willison, D.J.; Rouleau, I.; Petric, M.; Fonseca, K.; Drews, S.J.; Rebbapragada, A.; Charest, H.; Hamelin, M.E.; Boivin, G.; Gardy, J.L.; Li, Y.; Kwindt, T.L.; Patrick, D.M.; Brunham, R.C.; Ca-nadian, S.T. Canadian SAVOIR Team. Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada. PLoS Med., 2010, 7(4) e1000258
[http://dx.doi.org/10.1371/journal.pmed.1000258] [PMID: 20386731]
[24]
Janjua, N.Z.; Skowronski, D.M.; Hottes, T.S.; Osei, W.; Adams, E.; Petric, M.; Sabaiduc, S.; Chan, T.; Mak, A.; Lem, M.; Tang, P.; Patrick, D.M.; De Serres, G.; Bowering, D. Seasonal influenza vaccine and increased risk of pandemic A/H1N1‐related illness: first detection of the association in British Columbia, Canada. Clin. Infect. Dis., 2010, 51(9), 1017-1027.
[http://dx.doi.org/10.1086/656586] [PMID: 20887210]
[25]
Tsuchihashi, Y.; Sunagawa, T.; Yahata, Y.; Takahashi, H.; Toyokawa, T.; Odaira, F.; Ohyama, T.; Taniguchi, K.; Okabe, N. Association between seasonal influenza vaccination in 2008-2009 and pandemic influenza A (H1N1) 2009 infection among school students from Kobe, Japan, April-June 2009. Clin. Infect. Dis., 2012, 54(3), 381-383.
[http://dx.doi.org/10.1093/cid/cir787] [PMID: 22100572]
[26]
Cowling, B.J.; Fang, V.J.; Nishiura, H.; Chan, K.H.; Ng, S.; Ip, D.K.; Chiu, S.S.; Leung, G.M.; Peiris, J.S. Increased risk of noninfluenza respiratory virus infections associated with receipt of inactivated influenza vaccine. Clin. Infect. Dis., 2012, 54(12), 1778-1783.
[http://dx.doi.org/10.1093/cid/cis307] [PMID: 22423139]
[27]
Cowling, B.J.; Nishiura, H. Virus interference and estimates of influenza vaccine effectiveness from test-negative studies. Epidemiology, 2012, 23(6), 930-931.
[http://dx.doi.org/10.1097/EDE.0b013e31826b300e] [PMID: 23038121]
[28]
Ferguson, N.M.; Galvani, A.P.; Bush, R.M. Ecological and immunological determinants of influenza evolution. Nature, 2003, 422(6930), 428-433.
[http://dx.doi.org/10.1038/nature01509] [PMID: 12660783]
[29]
D’Mello, T.; Brammer, L.; Blanton, L.; Kniss, K.; Smith, S.; Mustaquim, D.; Steffens, C.; Dhara, R.; Cohen, J.; Chaves, S.S.; Finelli, L.; Bresee, J.; Wallis, T.; Xu, X.; Abd Elal, A.I.; Gubareva, L.; Wentworth, D.; Villanueva, J.; Katz, J.; Jernigan, D. Centers for Disease Control and Prevention (CDC). Update: Influenza activity--United States, September 28, 2014-February 21, 2015. MMWR Morb. Mortal. Wkly. Rep., 2015, 64(8), 206-212.
[PMID: 25742380]
[30]
Fowlkes, A.; Giorgi, A.; Erdman, D.; Temte, J.; Goodin, K.; Di Lonardo, S.; Sun, Y.; Martin, K.; Feist, M.; Linz, R.; Boulton, R.; Bancroft, E.; McHugh, L.; Lojo, J.; Filbert, K.; Finelli, L.; Group, I.W IISP Working Group. Viruses associated with acute respiratory infections and influenza-like illness among outpatients from the Influenza Incidence Surveillance Project, 2010-2011. J. Infect. Dis., 2014, 209(11), 1715-1725.
[http://dx.doi.org/10.1093/infdis/jit806] [PMID: 24338352]
[31]
Costa-Hurtado, M.; Afonso, C.L.; Miller, P.J.; Spackman, E.; Kapczynski, D.R.; Swayne, D.E.; Shepherd, E.; Smith, D.; Zsak, A.; Pantin-Jackwood, M. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys. Vet. Res. (Faisalabad), 2014, 45, 1.
[http://dx.doi.org/10.1186/1297-9716-45-1] [PMID: 24393488]
[32]
Pantin-Jackwood, M.J.; Costa-Hurtado, M.; Miller, P.J.; Afonso, C.L.; Spackman, E.; Kapczynski, D.R.; Shepherd, E.; Smith, D.; Swayne, D.E. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses. Vet. Microbiol., 2015, 177(1-2), 7-17.
[http://dx.doi.org/10.1016/j.vetmic.2015.02.008] [PMID: 25759292]
[33]
Van Reeth, K.; Nauwynck, H.; Pensaert, M. Dual infections of feeder pigs with porcine reproductive and respiratory syndrome virus followed by porcine respiratory coronavirus or swine influenza virus: a clinical and virological study. Vet. Microbiol., 1996, 48(3-4), 325-335.
[http://dx.doi.org/10.1016/0378-1135(95)00145-X] [PMID: 9054128]
[34]
Bonfante, F.; Cattoli, G.; Leardini, S.; Salomoni, A.; Mazzetto, E.; Davidson, I.; Haddas, R.; Terregino, C. Synergy or interference of a H9N2 avian influenza virus with a velogenic Newcastle disease virus in chickens is dose dependent. Avian Pathol., 2017, 46(5), 488-496.
[http://dx.doi.org/10.1080/03079457.2017.1319904] [PMID: 28417679]
[35]
Mitre, H.P.; Mendonça, J.S.d. Co-infection with hepati-tis B virus and hepatitis C virus. Braz. J. Infect. Dis., 2007, 11, 33.
[http://dx.doi.org/10.1590/S1413-86702007000700011]
[36]
Lucey, D.; Gostin, L.O. A yellow fever epidemic: A new global health emergency? JAMA, 2016, 315(24), 2661-2662.
[http://dx.doi.org/10.1001/jama.2016.6606] [PMID: 27158803]
[37]
Lefort, S.; Gravel, A.; Flamand, L. Repression of interferon-α stimulated genes expression by Kaposi’s sarcoma-associated herpesvirus K-bZIP protein. Virology, 2010, 408(1), 14-30.
[http://dx.doi.org/10.1016/j.virol.2010.07.027] [PMID: 20870261]
[38]
Isaacs, A.; Lindenmann, J.; Valentine, R.C. Virus interference. II. Some properties of interferon. Proc. R. Soc. Lond. B Biol. Sci., 1957, 147(927), 268-273.
[http://dx.doi.org/10.1098/rspb.1957.0049] [PMID: 13465721]
[39]
De Andrea, M.; Ravera, R.; Gioia, D.; Gariglio, M.; Landolfo, S. The interferon system: an overview. Eur. J. Paediatr. Neurol., 2002.
[http://dx.doi.org/10.1053/ejpn.2002.0573]
[40]
Marcus, P.I. Interferon induction by viruses: one molecule of dsRNA as the threshold for interferon induction. Interferon, 1983, 5, 115-180.
[PMID: 6202641]
[41]
Marcus, P.I.; Svitlik, C.; Sekellick, M.J. Interferon induction by viruses. X. A model for interferon induction by Newcastle disease virus. J. Gen. Virol., 1983, 64(Pt 11), 2419-2431.
[http://dx.doi.org/10.1099/0022-1317-64-11-2419] [PMID: 6644275]
[42]
Said, E.A.; Tremblay, N.; Al-Balushi, M.S.; Al-Jabri, A.A.; Lamarre, D. Viruses Seen by Our Cells: The Role of Viral RNA Sensors. J. Immunol. Res., 2018, ••• 20189480497
[http://dx.doi.org/10.1155/2018/9480497] [PMID: 29854853]
[43]
Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 2001, 413(6857), 732-738.
[http://dx.doi.org/10.1038/35099560] [PMID: 11607032]
[44]
Randall, R.E.; Goodbourn, S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol., 2008, 89(Pt 1), 1-47.
[http://dx.doi.org/10.1099/vir.0.83391-0] [PMID: 18089727]
[45]
Bagasra, O.; Bagasra, A.U.; Sheraz, M.; Pace, D.G. Potential utility of GB virus type C as a preventive vaccine for HIV-1. Expert Rev. Vaccines, 2012, 11(3), 335-347.
[http://dx.doi.org/10.1586/erv.11.191] [PMID: 22380825]
[46]
Baggio-Zappia, G.L.; Hernandes Granato, C.F. HIV-GB virus C co-infection: an overview. Clin. Chem. Lab. Med., 2009, 47(1), 12-19.
[http://dx.doi.org/10.1515/CCLM.2009.001] [PMID: 19055469]
[47]
Giret, M.T.; Kallas, E.G. GBV-C: state of the art and future prospects. Curr. HIV/AIDS Rep., 2012, 9(1), 26-33.
[http://dx.doi.org/10.1007/s11904-011-0109-1] [PMID: 22246585]
[48]
Herrera, E.; Gomara, M.J.; Mazzini, S.; Ragg, E.; Haro, I. Synthetic peptides of hepatitis G virus (GBV-C/HGV) in the selection of putative peptide inhibitors of the HIV-1 fusion peptide. J. Phys. Chem. B, 2009, 113(20), 7383-7391.
[http://dx.doi.org/10.1021/jp900707t] [PMID: 19402654]
[49]
Tillmann, H.L.; Heiken, H.; Knapik-Botor, A.; Heringlake, S.; Ockenga, J.; Wilber, J.C.; Goergen, B.; Detmer, J.; McMorrow, M.; Stoll, M.; Schmidt, R.E.; Manns, M.P. Infection with GB virus C and reduced mortality among HIV-infected patients. N. Engl. J. Med., 2001, 345(10), 715-724.
[http://dx.doi.org/10.1056/NEJMoa010398] [PMID: 11547740]
[50]
Shankar, E.M.; Solomon, S.S.; Vignesh, R.; Murugavel, K.G.; Sundaram, M.; Solomon, S.; Balakrishnan, P.; Kumarasamy, N. GB virus infection: a silent anti-HIV panacea within? Trans. R. Soc. Trop. Med. Hyg., 2008, 102(12), 1176-1180.
[http://dx.doi.org/10.1016/j.trstmh.2008.04.034] [PMID: 18513775]
[51]
Shankar, E.M.; Balakrishnan, P.; Vignesh, R.; Velu, V.; Jayakumar, P.; Solomon, S. Current Views on the Pathophysiology of GB Virus C Coinfection with HIV-1 Infection. Curr. Infect. Dis. Rep., 2011, 13(1), 47-52.
[http://dx.doi.org/10.1007/s11908-010-0142-z] [PMID: 21308454]
[52]
Xiang, J.; Wünschmann, S.; Diekema, D.J.; Klinzman, D.; Patrick, K.D.; George, S.L.; Stapleton, J.T. Effect of coinfection with GB virus C on survival among patients with HIV infection. N. Engl. J. Med., 2001, 345(10), 707-714.
[http://dx.doi.org/10.1056/NEJMoa003364] [PMID: 11547739]
[53]
Stapleton, J.T. GB virus type C/Hepatitis G virus. Semin. Liver Dis., 2003, 23(2), 137-148.
[http://dx.doi.org/10.1055/s-2003-39943] [PMID: 12800067]
[54]
Heringlake, S.; Ockenga, J.; Tillmann, H.L.; Trautwein, C.; Meissner, D.; Stoll, M.; Hunt, J.; Jou, C.; Solomon, N.; Schmidt, R.E.; Manns, M.P. GB virus C/hepatitis G virus infection: a favorable prognostic factor in human immunodeficiency virus-infected patients? J. Infect. Dis., 1998, 177(6), 1723-1726.
[http://dx.doi.org/10.1086/517431] [PMID: 9607857]
[55]
Toyoda, H.; Fukuda, Y.; Hayakawa, T.; Takamatsu, J.; Saito, H. Effect of GB virus C/hepatitis G virus coinfection on the course of HIV infection in hemophilia patients in Japan. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 1998, 17(3), 209-213.
[http://dx.doi.org/10.1097/00042560-199803010-00004] [PMID: 9495219]
[56]
Lefrère, J.J.; Roudot-Thoraval, F.; Morand-Joubert, L.; Petit, J.C.; Lerable, J.; Thauvin, M.; Mariotti, M. Carriage of GB virus C/hepatitis G virus RNA is associated with a slower immunologic, virologic, and clinical progression of human immunodeficiency virus disease in coinfected persons. J. Infect. Dis., 1999, 179(4), 783-789.
[http://dx.doi.org/10.1086/314671] [PMID: 10068572]
[57]
Yeo, A.E.; Matsumoto, A.; Hisada, M.; Shih, J.W.; Alter, H.J.; Goedert, J.J. Effect of hepatitis G virus infection on progression of HIV infection in patients with hemophilia. Multicenter Hemophilia Cohort Study. Ann. Intern. Med., 2000, 132(12), 959-963.
[http://dx.doi.org/10.7326/0003-4819-132-12-200006200-00006] [PMID: 10858179]
[58]
Takamatsu, J.; Toyoda, H.; Fukuda, Y. GB virus C and mortality from HIV infection. N. Engl. J. Med., 2002, 346(5), 377-379.
[http://dx.doi.org/10.1056/NEJM200201313460518] [PMID: 11824421]
[59]
Nunnari, G.; Nigro, L.; Palermo, F.; Attanasio, M.; Berger, A.; Doerr, H.W.; Pomerantz, R.J.; Cacopardo, B. Slower progression of HIV-1 infection in persons with GB virus C co-infection correlates with an intact T-helper 1 cytokine profile. Ann. Intern. Med., 2003, 139(1), 26-30.
[http://dx.doi.org/10.7326/0003-4819-139-1-200307010-00009] [PMID: 12834315]
[60]
Bhattarai, N.; Stapleton, J.T. GB virus C: the good boy virus? Trends Microbiol., 2012, 20(3), 124-130.
[http://dx.doi.org/10.1016/j.tim.2012.01.004] [PMID: 22325031]
[61]
Timmons, C.L.; Shao, Q.; Wang, C.; Liu, L.; Liu, H.; Dong, X.; Liu, B. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 assembly through interference with HIV-1 gag plasma membrane targeting. J. Infect. Dis., 2013, 207(7), 1171-1180.
[http://dx.doi.org/10.1093/infdis/jit001] [PMID: 23303812]
[62]
Liang, T.J.; Block, T.M.; McMahon, B.J.; Ghany, M.G.; Urban, S.; Guo, J.T.; Locarnini, S.; Zoulim, F.; Chang, K.M.; Lok, A.S. Present and future therapies of hepatitis B: From discovery to cure. Hepatology, 2015, 62(6), 1893-1908.
[http://dx.doi.org/10.1002/hep.28025] [PMID: 26239691]
[63]
Seeger, C.; Mason, W.S. Molecular biology of hepatitis B virus infection. Virology, 2015, 479-480, 672-686.
[http://dx.doi.org/10.1016/j.virol.2015.02.031] [PMID: 25759099]
[64]
Jiang, X.W.; Ye, J.Z.; Li, Y.T.; Li, L.J. Hepatitis B reactivation in patients receiving direct-acting antiviral therapy or interferon-based therapy for hepatitis C: A systematic review and meta-analysis. World J. Gastroenterol., 2018, 24(28), 3181-3191.
[http://dx.doi.org/10.3748/wjg.v24.i28.3181] [PMID: 30065564]
[65]
Morillas, R.M.; López Sisamón, D. Reactivation of hepatitis B associated with immunosuppressants and chemotherapy. Natural history, risk factors and recommendations for prevention. Med. Clin. (Barc.), 2019, 152(3), 107-114.
[http://dx.doi.org/10.1016/j.medcli.2018.08.018] [PMID: 30424935]
[66]
Bloom, K.; Maepa, M.B.; Ely, A.; Arbuthnot, P. Gene Therapy for Chronic HBV-Can We Eliminate cccDNA? Genes (Basel), 2018, 9(4), 9.
[http://dx.doi.org/10.3390/genes9040207] [PMID: 29649127]
[67]
Loomba, R.; Liang, T.J.; Hepatitis, B. Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology, 2017, 152(6), 1297-1309.
[http://dx.doi.org/10.1053/j.gastro.2017.02.009] [PMID: 28219691]
[68]
Urbanowicz, A.; Zagozdzon, R.; Ciszek, M. Modulation of the Immune System in Chronic Hepatitis C and During Antiviral Interferon-Free Therapy Arch Immunol Ther Exp, 2018.
[69]
Yen, Y.H.; Kee, K.M.; Kuo, F.Y.; Chang, K.C.; Hu, T.H.; Lu, S.N.; Wang, J.H.; Hung, C.H.; Chen, C.H. A scoring system to predict HBsAg seroclearance in hepatitis B and C coinfected patients treated with interferon and ribavirin in an Asian cohort. Medicine (Baltimore), 2018, 97(50) e13383
[http://dx.doi.org/10.1097/MD.0000000000013383] [PMID: 30557991]
[70]
Puoti, M.; Torti, C.; Bruno, R.; Filice, G.; Carosi, G. Natural history of chronic hepatitis B in co-infected patients. J. Hepatol., 2006, 44(1)(Suppl.), S65-S70.
[http://dx.doi.org/10.1016/j.jhep.2005.11.015] [PMID: 16338021]
[71]
De Monte, A.; Courjon, J.; Anty, R.; Cua, E.; Naqvi, A.; Mondain, V.; Cottalorda, J.; Ollier, L.; Giordanengo, V. Direct-acting antiviral treatment in adults infected with hepatitis C virus: Reactivation of hepatitis B virus coinfection as a further challenge. J. Clin. Virol., 2016, 78, 27-30.
[http://dx.doi.org/10.1016/j.jcv.2016.02.026] [PMID: 26967675]
[72]
Koh, C.; Canini, L.; Dahari, H.; Zhao, X.; Uprichard, S.L.; Haynes-Williams, V.; Winters, M.A.; Subramanya, G.; Cooper, S.L.; Pinto, P.; Wolff, E.F.; Bishop, R.; Ai Thanda Han, M.; Cotler, S.J.; Kleiner, D.E.; Keskin, O.; Idilman, R.; Yurdaydin, C.; Glenn, J.S.; Heller, T. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect. Dis., 2015, 15(10), 1167-1174.
[http://dx.doi.org/10.1016/S1473-3099(15)00074-2] [PMID: 26189433]
[73]
Gish, R.G. HBV/HCV Coinfection and Possible Reactivation of HBV Following DAA Use. Gastroenterol. Hepatol. (N. Y.), 2017, 13(5), 292-295.
[PMID: 28656026]
[74]
Bilgehan, AYGEN The Prevalence and Epidemio-logical Characteristics of Hepatitis B Virus and Hepatitis C Vi-rus Coinfection in Turkey. Turkiye Klinikleri J Med Sci, 2013, 33, 1245.
[http://dx.doi.org/10.5336/medsci.2012-32319]
[75]
Aygen, B.; Demir, A.M.; Gümüş, M.; Karabay, O.; Kaymakoğlu, S.; Köksal, A.S.; Köksal, İ.; Örmeci, N.; Tabak, F. Immunosuppressive therapy and the risk of hepatitis B reactivation: Consensus report. Turk. J. Gastroenterol., 2018, 29(3), 259-269.
[http://dx.doi.org/10.5152/tjg.2018.18263] [PMID: 29755010]
[76]
Chu, C.J.; Lee, S.D. Hepatitis B virus/hepatitis C virus coinfection: epidemiology, clinical features, viral interactions and treatment. J. Gastroenterol. Hepatol., 2008, 23(4), 512-520.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05384.x] [PMID: 18397482]
[77]
Papadopoulos, N.; Papavdi, M.; Pavlidou, A.; Konstantinou, D.; Kranidioti, H.; Kontos, G.; Koskinas, J.; Papatheodoridis, G.V.; Manolakopoulos, S.; Deutsch, M. Hepatitis B and C coinfection in a real-life setting: viral interactions and treatment issues. Ann. Gastroenterol., 2018, 31(3), 365-370.
[http://dx.doi.org/10.20524/aog.2018.0255] [PMID: 29720863]
[78]
Aggeletopoulou, I.; Konstantakis, C.; Manolakopoulos, S.; Triantos, C. Risk of hepatitis B reactivation in patients treated with direct-acting antivirals for hepatitis C. World J. Gastroenterol., 2017, 23(24), 4317-4323.
[http://dx.doi.org/10.3748/wjg.v23.i24.4317] [PMID: 28706414]
[79]
Liu, C-J.; Chuang, W-L.; Sheen, I.S.; Wang, H-Y.; Chen, C-Y.; Tseng, K-C.; Chang, T-T.; Massetto, B.; Yang, J.C.; Yun, C.; Knox, S.J.; Osinusi, A.; Camus, G.; Jiang, D.; Brainard, D.M.; McHutchison, J.G.; Hu, T-H.; Hsu, Y-C.; Lo, G-H.; Chu, C-J.; Chen, J-J.; Peng, C-Y.; Chien, R-N.; Chen, P-J. Efficacy of Ledipasvir and Sofosbuvir Treatment of HCV Infection in Patients Coinfected With HBV. Gastroenterology, 2018, 154(4), 989-997.
[http://dx.doi.org/10.1053/j.gastro.2017.11.011] [PMID: 29174546]
[80]
Bersoff-Matcha, S.J.; Cao, K.; Jason, M.; Ajao, A.; Jones, S.C.; Meyer, T.; Brinker, A.; Hepatitis, B. Virus Reactivation Associated With Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus: A Review of Cases Reported to the U.S. Food and Drug Administration Adverse Event Reporting System. Ann. Intern. Med., 2017, 166(11), 792-798.
[http://dx.doi.org/10.7326/M17-0377] [PMID: 28437794]
[81]
Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56.
[http://dx.doi.org/10.1038/nrd.2017.162] [PMID: 28935918]
[82]
Abreu, M.T.; Arditi, M. Innate immunity and toll-like receptors: clinical implications of basic science research. J. Pediatr., 2004, 144(4), 421-429.
[http://dx.doi.org/10.1016/j.jpeds.2004.01.057] [PMID: 15069387]
[83]
Cross, R.W.; Mire, C.E.; Feldmann, H.; Geisbert, T.W. Post-exposure treatments for Ebola and Marburg virus infections. Nat. Rev. Drug Discov., 2018, 17(6), 413-434.
[http://dx.doi.org/10.1038/nrd.2017.251] [PMID: 29375139]
[84]
Frieden, T.R. Still not ready for Ebola. Science, 2018, 360(6393), 1049.
[http://dx.doi.org/10.1126/science.aau3345] [PMID: 29880661]
[85]
Lanini, S.; Portella, G.; Vairo, F.; Kobinger, G.P.; Pesenti, A.; Langer, M.; Kabia, S.; Brogiato, G.; Amone, J.; Castilletti, C.; Miccio, R.; Zumla, A.; Capobianchi, M.R.; Di Caro, A.; Strada, G.; Ippolito, G. INMI-EMERGENCY EBOV Sierra Leone Study Group. Blood kinetics of Ebola virus in survivors and nonsurvivors. J. Clin. Invest., 2015, 125(12), 4692-4698.
[http://dx.doi.org/10.1172/JCI83111] [PMID: 26551684]
[86]
Ayithan, N.; Bradfute, S.B.; Anthony, S.M.; Stuthman, K.S.; Bavari, S.; Bray, M.; Ozato, K. Virus-like particles activate type I interferon pathways to facilitate post-exposure protection against Ebola virus infection. PLoS One, 2015, 10(2) e0118345
[http://dx.doi.org/10.1371/journal.pone.0118345] [PMID: 25719445]
[87]
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012, 142(6), 1264-1273.e1.
[http://dx.doi.org/10.1053/j.gastro.2011.12.061] [PMID: 22537432]
[88]
Bakacs, T.; Safadi, R.; Kovesdi, I. Post-infection viral superinfection technology could treat HBV and HCV patients with unmet needs. Hepatol. Med. Policy, 2018, 3, 2.
[http://dx.doi.org/10.1186/s41124-017-0028-x] [PMID: 30288325]
[89]
Berg, T.P. Acute infectious bursal disease in poultry: a review. Avian Pathol., 2000, 29(3), 175-194.
[http://dx.doi.org/10.1080/03079450050045431] [PMID: 19184804]
[90]
Kibenge, F.S.; Dhillon, A.S.; Russell, R.G. Growth of serotypes I and II and variant strains of infectious bursal disease virus in Vero cells. Avian Dis., 1988, 32(2), 298-303.
[http://dx.doi.org/10.2307/1590816] [PMID: 2840882]
[91]
Pedersden, K.A.; Sadasiv, E.C.; Chang, P.W.; Yates, V.J. Detection of antibody to avian viruses in human populations. Epidemiol. Infect., 1990, 104(3), 519-525.
[http://dx.doi.org/10.1017/S095026880004752X] [PMID: 2161349]
[92]
Bakács, T.; Mehrishi, J.N. Examination of the value of treatment of decompensated viral hepatitis patients by intentionally coinfecting them with an apathogenic IBDV and using the lessons learnt to seriously consider treating patients infected with HIV using the apathogenic hepatitis G virus. Vaccine, 2004, 23(1), 3-13.
[http://dx.doi.org/10.1016/j.vaccine.2004.08.005] [PMID: 15519701]
[93]
Mehrishi, J.N.; Bakács, T. HIV and hepatitis G virus/GB virus C co-infection: beneficial or not? Lancet Infect. Dis., 2005, 5(8), 464-465.
[http://dx.doi.org/10.1016/S1473-3099(05)70171-7] [PMID: 16048712]
[94]
Hornyák, Á.; Lipinski, K.S.; Bakonyi, T.; Forgách, P.; Horváth, E.; Farsang, A.; Hedley, S.J.; Palya, V.; Bakács, T.; Kovesdi, I. Effective multiple oral administration of reverse genetics engineered infectious bursal disease virus in mice in the presence of neutralizing antibodies. J. Gene Med., 2015, 17(6-7), 116-131.
[http://dx.doi.org/10.1002/jgm.2830] [PMID: 25929556]
[95]
Csatary, L.K.; Kasza, L.; Massey, R.J. Interference between human hepatitis A virus and an attenuated apathogenic avian virus. Acta Microbiol. Hung., 1984, 31(2), 153-158.
[PMID: 6087596]
[96]
Csatary, L.K.; Telegdy, L.; Gergely, P.; Bodey, B.; Bakács, T. Preliminary report of a controlled trial of MTH-68/B virus vaccine treatment in acute B and C hepatitis: a phase II study. Anticancer Res., 1998, 18(2B), 1279-1282.
[PMID: 9615801]
[97]
Csatary, L.K.; Schnabel, R.; Bakács, T. Successful treatment of decompensated chronic viral hepatitis by bursal disease virus vaccine. Anticancer Res., 1999, 19(1B), 629-633.
[PMID: 10216467]
[98]
Bakács, T.; Mehrishi, J.N. Intentional coinfection of patients with HCV infection using avian infection bursal disease virus. Hepatology, 2002, 36(1), 255.
[http://dx.doi.org/10.1053/jhep.2002.33712] [PMID: 12085374]
[99]
de Weerd, N.A.; Nguyen, T. The interferons and their receptors--distribution and regulation. Immunol. Cell Biol., 2012, 90(5), 483-491.
[http://dx.doi.org/10.1038/icb.2012.9] [PMID: 22410872]
[100]
Nomaguchi, M.; Fujita, M.; Miyazaki, Y.; Adachi, A. Viral tropism. Front. Microbiol., 2012, 3, 281.
[http://dx.doi.org/10.3389/fmicb.2012.00281] [PMID: 22876241]
[101]
Kaiser, J. Biomedicine. Rare cancer successes spawn ‘exceptional’ research efforts. Science, 2013, 340(6130), 263.
[http://dx.doi.org/10.1126/science.340.6130.263] [PMID: 23599454]
[102]
Bekerman, E.; Einav, S. Infectious disease. Combating emerging viral threats. Science, 2015, 348(6232), 282-283.
[http://dx.doi.org/10.1126/science.aaa3778] [PMID: 25883340]
[103]
Gostin, L.O.; Hodge, J.G., Jr Is the united states pre-pared for a major zika virus outbreak? JAMA, 2016, 315(22), 2395-2396.
[http://dx.doi.org/10.1001/jama.2016.4919] [PMID: 27074330]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2020
Published on: 05 April, 2019
Page: [423 - 432]
Pages: 10
DOI: 10.2174/1871526519666190405140858
Price: $65

Article Metrics

PDF: 19
HTML: 1