Carbon Nanotubes Enhance the Chemotherapy Sensitivity of Tumors with Multidrug Resistance

Author(s): Zhijie Wang, Jinhua Tao, Jianan Chen, Qian Liu*.

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Chemotherapy is the most important treatment method against cancer, in addition to surgery and radiotherapy. However, Multidrug Resistance (MDR) in cancer always results in the failure of chemotherapy. Effective chemotherapy agents need to be delivered efficiently, distributed mostly in the tumor tissue, and highly internalized by tumor cells to eventually inhibit proliferation or promote death of the tumor cells. A growing number of studies have indicated that any defects that emerge during these steps could contribute to the occurrence of MDR in tumors. Carbon Nanotubes (CNTs) are newly developed biocompatible materials that can be designed to deliver anticancer agents by functionalizing the CNTs with drugs. Enhanced drug delivery efficiency and improved treatment efficacy have been observed through CNT-based drug delivery systems. However, some reports have shown that the simple administration of CNTs can reverse MDR in cancer and enhance chemotherapy efficacy without anticancer agents attached to the surface of the CNTs.

Objective: Through an extensive review of previous reports in regard to CNTs and chemotherapy, this paper aims to identify the various mechanisms of CNTs that inhibit MDR in cancer and enhance chemotherapy sensitivity.

Results: CNTs can increase the antitumor effects of chemotherapy agents. CNTs can not only increase drug delivery accuracy and efficiency but also promote drug uptake, decrease drug efflux, improve tumor hypoxia conditions, and induce autophagy and apoptosis in tumor cells, which make the tumor more sensitive to antitumor agents.

Keywords: Cancer, carbon nanotubes, multidrug resistance, chemotherapy, drug delivery, cancer treatment.

[1]
Roquette, R.; Painho, M.; Nunes, B. Spatial epidemiology of cancer: A review of data sources, methods and risk factors. Geospat. Health, 2017, 12(1), 504.
[http://dx.doi.org/10.4081/gh.2017.504] [PMID: 28555468]
[2]
Liu, Q.; Liao, Q.; Zhao, Y. Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell Int., 2017, 17, 68.
[http://dx.doi.org/10.1186/s12935-017-0437-3] [PMID: 28694739]
[3]
Joo, W.D.; Visintin, I.; Mor, G. Targeted cancer therapy--are the days of systemic chemotherapy numbered? Maturitas, 2013, 76(4), 308-314.
[http://dx.doi.org/10.1016/j.maturitas.2013.09.008] [PMID: 24128673]
[4]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[5]
Tonelli, F.M.; Santos, A.K.; Gomes, K.N.; Lorençon, E.; Guatimosim, S.; Ladeira, L.O.; Resende, R.R. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. Int. J. Nanomedicine, 2012, 7, 4511-4529.
[PMID: 22923989]
[6]
Dineshkumar, B.; Krishnakumar, K.; Bhatt, A.R.; Paul, D.; Cherian, J.; John, A.; Suresh, S. Single-walled and multi-walled carbon nanotubes based drug delivery system: Cancer therapy: A review. Indian J. Cancer, 2015, 52(3), 262-264.
[http://dx.doi.org/10.4103/0019-509X.176720] [PMID: 26905103]
[7]
Singh, N.; Sachdev, A.; Gopinath, P. polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol., 2018, 18(3), 1534-1541.
[http://dx.doi.org/10.1166/jnn.2018.14222] [PMID: 29448627]
[8]
Bhirde, A.A.; Patel, S.; Sousa, A.A.; Patel, V.; Molinolo, A.A.; Ji, Y.; Leapman, R.D.; Gutkind, J.S.; Rusling, J.F. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond.), 2010, 5(10), 1535-1546.
[http://dx.doi.org/10.2217/nnm.10.90] [PMID: 21143032]
[9]
Bhatnagar, I.; Venkatesan, J.; Kiml, S.K. Polymer functionalized single walled carbon nanotubes mediated drug delivery of gliotoxin in cancer cells. J. Biomed. Nanotechnol., 2014, 10(1), 120-130.
[http://dx.doi.org/10.1166/jbn.2014.1677] [PMID: 24724504]
[10]
Chaudhuri, P.; Soni, S.; Sengupta, S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology, 2010, 21(2)025102
[http://dx.doi.org/10.1088/0957-4484/21/2/025102] [PMID: 19955607]
[11]
Hampel, S.; Kunze, D.; Haase, D.; Krämer, K.; Rauschenbach, M.; Ritschel, M.; Leonhardt, A.; Thomas, J.; Oswald, S.; Hoffmann, V.; Büchner, B. Carbon nanotubes filled with a chemotherapeutic agent: A nanocarrier mediates inhibition of tumor cell growth. Nanomedicine (Lond.), 2008, 3(2), 175-182.
[http://dx.doi.org/10.2217/17435889.3.2.175] [PMID: 18373424]
[12]
Chen, G.; He, Y.; Wu, X.; Zhang, Y.; Luo, C.; Jing, P. In vitro and in vivo studies of pirarubicin-loaded SWNT for the treatment of bladder cancer. Braz. J. Med. Biol. Res., 2012, 45(8), 771-776.
[http://dx.doi.org/10.1590/S0100-879X2012007500111] [PMID: 22782557]
[13]
Wong, A.D.; Ye, M.; Ulmschneider, M.B.; Searson, P.C. quantitative analysis of the enhanced permeation and retention (EPR) effect. PLoS One, 2015, 10(5) e0123461
[http://dx.doi.org/10.1371/journal.pone.0123461] [PMID: 25938565]
[14]
Singh, R.; Mehra, N.K.; Jain, V.; Jain, N.K. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J. Drug Target., 2013, 21(6), 581-592.
[http://dx.doi.org/10.3109/1061186X.2013.778264] [PMID: 23484494]
[15]
Niu, L.; Meng, L.; Lu, Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol. Biosci., 2013, 13(6), 735-744.
[http://dx.doi.org/10.1002/mabi.201200475] [PMID: 23616476]
[16]
Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; Wong, S.S.; Ojima, I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc., 2008, 130(49), 16778-16785.
[http://dx.doi.org/10.1021/ja805570f] [PMID: 19554734]
[17]
Ren, J.; Shen, S.; Wang, D.; Xi, Z.; Guo, L.; Pang, Z.; Qian, Y.; Sun, X.; Jiang, X. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials, 2012, 33(11), 3324-3333.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.025] [PMID: 22281423]
[18]
Villa, C.H.; McDevitt, M.R.; Escorcia, F.E.; Rey, D.A.; Bergkvist, M.; Batt, C.A.; Scheinberg, D.A. Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes. Nano Lett., 2008, 8(12), 4221-4228.
[http://dx.doi.org/10.1021/nl801878d] [PMID: 19367842]
[19]
Datir, S.R.; Das, M.; Singh, R.P.; Jain, S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug. Chem., 2012, 23(11), 2201-2213.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[20]
Mahmood, M.; Karmakar, A.; Fejleh, A.; Mocan, T.; Iancu, C.; Mocan, L.; Iancu, D.T.; Xu, Y.; Dervishi, E.; Li, Z.; Biris, A.R.; Agarwal, R.; Ali, N.; Galanzha, E.I.; Biris, A.S.; Zharov, V.P. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug. Nanomedicine (Lond.), 2009, 4(8), 883-893.
[http://dx.doi.org/10.2217/nnm.09.76] [PMID: 19958225]
[21]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J., 2005, 19(3), 311-330.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[22]
Sajid, M.I.; Jamshaid, U.; Jamshaid, T.; Zafar, N.; Fessi, H.; Elaissari, A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int. J. Pharm., 2016, 501(1-2), 278-299.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.064] [PMID: 26827920]
[23]
Ong, L.C.; Chung, F.F.; Tan, Y.F.; Leong, C.O. Toxicity of single-walled carbon nanotubes. Arch. Toxicol., 2016, 90(1), 103-118.
[http://dx.doi.org/10.1007/s00204-014-1376-6] [PMID: 25273022]
[24]
Pantarotto, D.; Briand, J.P.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb.), 2004, (1), 16-17.
[http://dx.doi.org/10.1039/b311254c] [PMID: 14737310]
[25]
Russier, J.; Ménard-Moyon, C.; Venturelli, E.; Gravel, E.; Marcolongo, G.; Meneghetti, M.; Doris, E.; Bianco, A. Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale, 2011, 3(3), 893-896.
[http://dx.doi.org/10.1039/C0NR00779J] [PMID: 21116547]
[26]
Kotchey, G.P.; Hasan, S.A.; Kapralov, A.A.; Ha, S.H.; Kim, K.; Shvedova, A.A.; Kagan, V.E.; Star, A. A natural vanishing act: The enzyme-catalyzed degradation of carbon nanomaterials. Acc. Chem. Res., 2012, 45(10), 1770-1781.
[http://dx.doi.org/10.1021/ar300106h] [PMID: 22824066]
[27]
Alidori, S.; Bowman, R.L.; Yarilin, D.; Romin, Y.; Barlas, A.; Mulvey, J.J.; Fujisawa, S.; Xu, K.; Ruggiero, A.; Riabov, V.; Thorek, D.L.; Ulmert, H.D.; Brea, E.J.; Behling, K.; Kzhyshkowska, J.; Manova-Todorova, K.; Scheinberg, D.A.; McDevitt, M.R. Deconvoluting hepatic processing of carbon nanotubes. Nat. Commun., 2016, 7, 12343.
[http://dx.doi.org/10.1038/ncomms12343] [PMID: 27468684]
[28]
Pacurari, M.; Yin, X.J.; Zhao, J.; Ding, M.; Leonard, S.S.; Schwegler-Berry, D.; Ducatman, B.S.; Sbarra, D.; Hoover, M.D.; Castranova, V.; Vallyathan, V. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect., 2008, 116(9), 1211-1217.
[http://dx.doi.org/10.1289/ehp.10924] [PMID: 18795165]
[29]
van Berlo, D.; Clift, M.J.; Albrecht, C.; Schins, R.P. Carbon nanotubes: An insight into the mechanisms of their potential genotoxicity. Swiss Med. Wkly., 2012, 142 w13698
[PMID: 23444280]
[30]
Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health, 2017, 59(5), 394-407.
[http://dx.doi.org/10.1539/joh.17-0089-RA] [PMID: 28794394]
[31]
Battistella, C.; Klok, H.A. controlling and monitoring intracellular delivery of anticancer polymer nanomedicines. Macromol. Biosci., 2017, 17(10) doi: 10.1002/mabi.201700022
[http://dx.doi.org/10.1002/mabi.201700022] [PMID: 28444959]
[32]
Wadhwa, S.; Mumper, R.J. Polymer-drug conjugates for anticancer drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2015, 32(3), 215-245.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010174] [PMID: 26080809]
[33]
Jha, S.; Sharma, P.K.; Malviya, R. liposomal drug delivery system for cancer therapy: Advancement and patents. Recent Pat. Drug Deliv. Formul., 2016, 10(3), 177-183.
[http://dx.doi.org/10.2174/1872211310666161004155757] [PMID: 27712569]
[34]
Kang, X.J.; Wang, H.Y.; Peng, H.G.; Chen, B.F.; Zhang, W.Y.; Wu, A.H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin., 2017, 38(6), 885-896.
[http://dx.doi.org/10.1038/aps.2017.10] [PMID: 28479604]
[35]
Dluska, E.; Markowska-Radomska, A.; Metera, A.; Tudek, B.; Kosicki, K. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery. Nanomedicine (Lond.), 2017, 12(18), 2183-2197.
[http://dx.doi.org/10.2217/nnm-2017-0112] [PMID: 28820020]
[36]
Zhao, J.; Liu, S.; Hu, X.; Zhang, Y.; Yan, S.; Zhao, H.; Zeng, M.; Li, Y.; Yang, L.; Zhang, J. Improved delivery of natural alkaloids into lung cancer through woody oil-based emulsive nanosystems. Drug Deliv., 2018, 25(1), 1426-1437.
[http://dx.doi.org/10.1080/10717544.2018.1474970] [PMID: 29890855]
[37]
Belletti, D.; Riva, G.; Luppi, M.; Tosi, G.; Forni, F.; Vandelli, M.A.; Ruozi, B.; Pederzoli, F. Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: Diagnosis/therapy combined approach. Eur. J. Pharm. Sci., 2017, 107, 230-239.
[http://dx.doi.org/10.1016/j.ejps.2017.07.020] [PMID: 28728978]
[38]
Pardo, J.; Peng, Z.; Leblanc, R.M. cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules, 2018, 23(2) E378
[http://dx.doi.org/10.3390/molecules23020378] [PMID: 29439409]
[39]
Chen, C.; Zhang, H.; Hou, L.; Shi, J.; Wang, L.; Zhang, C.; Zhang, M.; Zhang, H.; Shi, X.; Li, H.; Zhang, Z. Single-walled carbon nanotubes mediated neovascularity targeted antitumor drug delivery system. J. Pharm. Pharm. Sci., 2013, 16(1), 40-51.
[http://dx.doi.org/10.18433/J3H02C] [PMID: 23683604]
[40]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[http://dx.doi.org/10.1021/nn9005686] [PMID: 19702292]
[41]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[42]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47-52.
[http://dx.doi.org/10.1038/nnano.2006.170] [PMID: 18654207]
[43]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[44]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[45]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[46]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1468] [PMID: 18701489]
[47]
Heldin, C.H.; Rubin, K.; Pietras, K.; Ostman, A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer, 2004, 4(10), 806-813.
[http://dx.doi.org/10.1038/nrc1456] [PMID: 15510161]
[48]
Chen, B.; Dai, W.; Mei, D.; Liu, T.; Li, S.; He, B.; He, B.; Yuan, L.; Zhang, H.; Wang, X.; Zhang, Q. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J. Control. Release, 2016, 241, 68-80.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.014] [PMID: 27641831]
[49]
Gao, X.; Zhang, J.; Huang, Z.; Zuo, T.; Lu, Q.; Wu, G.; Shen, Q. reducing interstitial fluid pressure and inhibiting pulmonary metastasis of breast cancer by gelatin modified cationic lipid nanoparticles. ACS Appl. Mater. Interfaces, 2017, 9(35), 29457-29468.
[http://dx.doi.org/10.1021/acsami.7b05119] [PMID: 28799743]
[50]
Ji, Z.; Lin, G.; Lu, Q.; Meng, L.; Shen, X.; Dong, L.; Fu, C.; Zhang, X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid Interface Sci., 2012, 365(1), 143-149.
[http://dx.doi.org/10.1016/j.jcis.2011.09.013] [PMID: 21974923]
[51]
Lee, P.C.; Chiou, Y.C.; Wong, J.M.; Peng, C.L.; Shieh, M.J. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials, 2013, 34(34), 8756-8765.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.067] [PMID: 23937913]
[52]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3(2), 307-316.
[http://dx.doi.org/10.1021/nn800551s] [PMID: 19236065]
[53]
Singh, R.P.; Sharma, G.; Sonali, S.; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458.
[http://dx.doi.org/10.1016/j.msec.2017.03.225] [PMID: 28532051]
[54]
Yan, C.; Chen, C.; Hou, L.; Zhang, H.; Che, Y.; Qi, Y.; Zhang, X.; Cheng, J.; Zhang, Z. Single-walled carbon nanotube-loaded doxorubicin and Gd-DTPA for targeted drug delivery and magnetic resonance imaging. J. Drug Target., 2017, 25(2), 163-171.
[http://dx.doi.org/10.1080/1061186X.2016.1221958] [PMID: 27499100]
[55]
Singh, R.P.; Sharma, G.; Sonali, S.; Singh, S.; Patne, S.C.U.; Pandey, B.L.; Koch, B.; Muthu, M.S. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater. Sci. Eng. C, 2016, 67, 313-325.
[http://dx.doi.org/10.1016/j.msec.2016.05.013] [PMID: 27287127]
[56]
Tavakolifard, S.; Biazar, E.; Pourshamsian, K.; Moslemin, M.H. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artif. Cells Nanomed. Biotechnol., 2016, 44(5), 1247-1253.
[PMID: 25783856]
[57]
Cao, X.; Tao, L.; Wen, S.; Hou, W.; Shi, X. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr. Res., 2015, 405, 70-77.
[http://dx.doi.org/10.1016/j.carres.2014.06.030] [PMID: 25500334]
[58]
Bhirde, A.A.; Chikkaveeraiah, B.V.; Srivatsan, A.; Niu, G.; Jin, A.J.; Kapoor, A.; Wang, Z.; Patel, S.; Patel, V.; Gorbach, A.M.; Leapman, R.D.; Gutkind, J.S.; Hight Walker, A.R.; Chen, X. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS Nano, 2014, 8(5), 4177-4189.
[http://dx.doi.org/10.1021/nn501223q] [PMID: 24708375]
[59]
Li, R.; Wu, R.; Zhao, L.; Wu, M.; Yang, L.; Zou, H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano, 2010, 4(3), 1399-1408.
[http://dx.doi.org/10.1021/nn9011225] [PMID: 20148593]
[60]
Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.031] [PMID: 25712164]
[61]
Yao, H.J.; Zhang, Y.G.; Sun, L.; Liu, Y. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials, 2014, 35(33), 9208-9223.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.033] [PMID: 25115788]
[62]
Al Faraj, A.; Shaik, A.S.; Ratemi, E.; Halwani, R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Control. Release, 2016, 225, 240-251.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.053] [PMID: 26827662]
[63]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[64]
Sun, Y.L.; Patel, A.; Kumar, P.; Chen, Z.S. Role of ABC transporters in cancer chemotherapy. Chin. J. Cancer, 2012, 31(2), 51-57.
[http://dx.doi.org/10.5732/cjc.011.10466] [PMID: 22257384]
[65]
Anbarasan, B.; Babu, S.V.; Elango, K.; Shriya, B.; Ramaprabhu, S. pH responsive release of doxorubicin to the cancer cells by functionalized multi-walled carbon nanotubes. J. Nanosci. Nanotechnol., 2015, 15(7), 4799-4805.
[http://dx.doi.org/10.1166/jnn.2015.9817] [PMID: 26373040]
[66]
Ghosh, M.; Brahmachari, S.; Das, P.K. pH-Responsive single walled carbon nanotube dispersion for target specific release of doxorubicin to cancer cells. Macromol. Biosci., 2014, 14(12), 1795-1806.
[http://dx.doi.org/10.1002/mabi.201400290] [PMID: 25212998]
[67]
Zhang, X.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P.J. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 2009, 30(30), 6041-6047.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.025] [PMID: 19643474]
[68]
Gu, Y.J.; Cheng, J.; Jin, J.; Cheng, S.H.; Wong, W.T. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int. J. Nanomedicine, 2011, 6, 2889-2898.
[PMID: 22131835]
[69]
Wu, P.; Li, S.; Zhang, H. Design real-time reversal of tumor multidrug resistance cleverly with shortened carbon nanotubes. Drug Des. Devel. Ther., 2014, 8, 2431-2438.
[PMID: 25525333]
[70]
Holzer, A.K.; Howell, S.B. The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res., 2006, 66(22), 10944-10952.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1710] [PMID: 17108132]
[71]
Ringel, J.; Erdmann, K.; Hampel, S.; Kraemer, K.; Maier, D.; Arlt, M.; Kunze, D.; Wirth, M.P.; Fuessel, S. Carbon nanofibers and carbon nanotubes sensitize prostate and bladder cancer cells to platinum-based chemotherapeutics. J. Biomed. Nanotechnol., 2014, 10(3), 463-477.
[http://dx.doi.org/10.1166/jbn.2014.1758] [PMID: 24730242]
[72]
Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv., 2015, 12(1), 129-142.
[http://dx.doi.org/10.1517/17425247.2014.950564] [PMID: 25138827]
[73]
Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2(2), 108-113.
[http://dx.doi.org/10.1038/nnano.2006.209] [PMID: 18654229]
[74]
Wang, M.; Yu, S.; Wang, C.; Kong, J. Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. ACS Nano, 2010, 4(11), 6483-6490.
[http://dx.doi.org/10.1021/nn101445y] [PMID: 20977256]
[75]
Charbgoo, F.; Nikkhah, M.; Behmanesh, M. Size of single-wall carbon nanotube affects the folate receptor-mediated cancer cell targeting. Biotechnol. Appl. Biochem., 2018, 65(3), 328-337.
[http://dx.doi.org/10.1002/bab.1592] [PMID: 28857275]
[76]
Mahmood, M.; Xu, Y.; Dantuluri, V.; Mustafa, T.; Zhang, Y.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, A. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics. Nanotechnology, 2013, 24(4)045102
[http://dx.doi.org/10.1088/0957-4484/24/4/045102] [PMID: 23291321]
[77]
Kumar, P.; Zhang, D.M.; Degenhardt, K.; Chen, Z.S. Autophagy and transporter-based multi-drug resistance. Cells, 2012, 1(3), 558-575.
[http://dx.doi.org/10.3390/cells1030558] [PMID: 24710490]
[78]
Elliott, A.M.; Al-Hajj, M.A. ABCB8 mediates doxorubicin resistance in melanoma cells by protecting the mitochondrial genome. Mol. Cancer Res., 2009, 7(1), 79-87.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0235] [PMID: 19147539]
[79]
Wang, Z.; Xu, Y.; Meng, X.; Watari, F.; Liu, H.; Chen, X. Suppression of c-Myc is involved in multi-walled carbon nanotubes’ down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells. Toxicol. Appl. Pharmacol., 2015, 282(1), 42-51.
[http://dx.doi.org/10.1016/j.taap.2014.11.002] [PMID: 25461681]
[80]
Gevertz, J.L.; Torquato, S. Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol., 2006, 243(4), 517-531.
[http://dx.doi.org/10.1016/j.jtbi.2006.07.002] [PMID: 16938311]
[81]
Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; Frese, K.K.; Denicola, G.; Feig, C.; Combs, C.; Winter, S.P.; Ireland-Zecchini, H.; Reichelt, S.; Howat, W.J.; Chang, A.; Dhara, M.; Wang, L.; Rückert, F.; Grützmann, R.; Pilarsky, C.; Izeradjene, K.; Hingorani, S.R.; Huang, P.; Davies, S.E.; Plunkett, W.; Egorin, M.; Hruban, R.H.; Whitebread, N.; McGovern, K.; Adams, J.; Iacobuzio-Donahue, C.; Griffiths, J.; Tuveson, D.A. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009, 324(5933), 1457-1461.
[http://dx.doi.org/10.1126/science.1171362] [PMID: 19460966]
[82]
Grantab, R.; Sivananthan, S.; Tannock, I.F. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res., 2006, 66(2), 1033-1039.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-307]7] [PMID: 16424039]
[83]
Grantab, R.H.; Tannock, I.F. Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. BMC Cancer, 2012, 12, 214.
[http://dx.doi.org/10.1186/1471-2407-12-214] [PMID: 22672469]
[84]
Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer, 2004, 4(6), 437-447.
[http://dx.doi.org/10.1038/nrc1367] [PMID: 15170446]
[85]
Luoto, K.R.; Kumareswaran, R.; Bristow, R.G. Tumor hypoxia as a driving force in genetic instability. Genome Integr., 2013, 4(1), 5.
[http://dx.doi.org/10.1186/2041-9414-4-5] [PMID: 24152759]
[86]
Rouschop, K.M.; Ramaekers, C.H.; Schaaf, M.B.; Keulers, T.G.; Savelkouls, K.G.; Lambin, P.; Koritzinsky, M.; Wouters, B.G. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother. Oncol., 2009, 92(3), 411-416.
[http://dx.doi.org/10.1016/j.radonc.2009.06.029] [PMID: 19616335]
[87]
Koritzinsky, M.; Wouters, B.G. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin. Radiat. Oncol., 2013, 23(4), 252-261.
[http://dx.doi.org/10.1016/j.semradonc.2013.05.006] [PMID: 24012339]
[88]
Zhou, Y.; Tozzi, F.; Chen, J.; Fan, F.; Xia, L.; Wang, J.; Gao, G.; Zhang, A.; Xia, X.; Brasher, H.; Widger, W.; Ellis, L.M.; Weihua, Z. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res., 2012, 72(1), 304-314.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1674] [PMID: 22084398]
[89]
Meijer, T.W.; Kaanders, J.H.; Span, P.N.; Bussink, J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin. Cancer Res., 2012, 18(20), 5585-5594.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0858] [PMID: 23071360]
[90]
Chen, J.; Ding, Z.; Peng, Y.; Pan, F.; Li, J.; Zou, L.; Zhang, Y.; Liang, H. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein. PLoS One, 2014, 9(6) e98882
[http://dx.doi.org/10.1371/journal.pone.0098882] [PMID: 24901645]
[91]
Sullivan, R.; Paré, G.C.; Frederiksen, L.J.; Semenza, G.L.; Graham, C.H. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol. Cancer Ther., 2008, 7(7), 1961-1973.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0198] [PMID: 18645006]
[92]
Shen, X.; Zhi, Q.; Wang, Y.; Li, Z.; Zhou, J.; Huang, J. hypoxia induces multidrug resistance via enhancement of epidermal growth factor-like domain 7 expression in non-small lung cancer cells. Chemotherapy, 2017, 62(3), 172-180.
[http://dx.doi.org/10.1159/000456066] [PMID: 28351036]
[93]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[94]
Li, F.; Mei, H.; Gao, Y.; Xie, X.; Nie, H.; Li, T.; Zhang, H.; Jia, L. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials, 2017, 145, 56-71.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.030] [PMID: 28843733]
[95]
Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001, 93(4), 266-276.
[http://dx.doi.org/10.1093/jnci/93.4.266] [PMID: 11181773]
[96]
Rademakers, S.E.; Span, P.N.; Kaanders, J.H.; Sweep, F.C.; van der Kogel, A.J.; Bussink, J. Molecular aspects of tumour hypoxia. Mol. Oncol., 2008, 2(1), 41-53.
[http://dx.doi.org/10.1016/j.molonc.2008.03.006] [PMID: 19383328]
[97]
Korkeila, E.A.; Sundström, J.; Pyrhönen, S.; Syrjänen, K. Carbonic anhydrase IX, hypoxia-inducible factor-1α, ezrin and glucose transporter-1 as predictors of disease outcome in rectal cancer: Multivariate Cox survival models following data reduction by principal component analysis of the clinicopathological predictors. Anticancer Res., 2011, 31(12), 4529-4535.
[PMID: 22199327]
[98]
Shannon, A.M.; Bouchier-Hayes, D.J.; Condron, C.M.; Toomey, D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat. Rev., 2003, 29(4), 297-307.
[http://dx.doi.org/10.1016/S0305-7372(03)00003-3] [PMID: 12927570]
[99]
Song, X.; Liu, X.; Chi, W.; Liu, Y.; Wei, L.; Wang, X.; Yu, J. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother. Pharmacol., 2006, 58(6), 776-784.
[http://dx.doi.org/10.1007/s00280-006-0224-7] [PMID: 16532342]
[100]
Wang, Y.; Wang, C.; Jia, Y.; Cheng, X.; Lin, Q.; Zhu, M.; Lu, Y.; Ding, L.; Weng, Z.; Wu, K. Oxygen-carbon nanotubes as a chemotherapy sensitizer for paclitaxel in breast cancer treatment. PLoS One, 2014, 9(8) e104209
[http://dx.doi.org/10.1371/journal.pone.0104209] [PMID: 25089613]
[101]
Jia, Y.; Weng, Z.; Wang, C.; Zhu, M.; Lu, Y.; Ding, L.; Wang, Y.; Cheng, X.; Lin, Q.; Wu, K. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes. Oncol. Lett., 2017, 13(1), 206-214.
[http://dx.doi.org/10.3892/ol.2016.5402] [PMID: 28123543]
[102]
Wang, W.; Shen, J.; Tao, H.; Zhao, Y.; Nian, H.; Wei, L.; Ling, X.; Yang, Y.; Xia, L. A strategy for precise treatment of cardiac malignant neoplasms. Sci. Rep., 2017, 7, 46168.
[http://dx.doi.org/10.1038/srep46168] [PMID: 28393926]
[103]
Brennan, M.E.; Coleman, J.N.; Drury, A.; Lahr, B.; Kobayashi, T.; Blau, W.J. Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Opt. Lett., 2003, 28(4), 266-268.
[http://dx.doi.org/10.1364/OL.28.000266] [PMID: 12653367]
[104]
Bahreyni-Toosi, M.H.; Zare, M.H.; Ale-Davood, A.; Shakeri, M.T.; Soudmand, S. In vitro study of photothermal anticancer activity of carboxylated multiwalled carbon nanotubes. J. Biomed. Phys. Eng., 2017, 7(4), 317-332.
[PMID: 29445711]
[105]
Lin, Z.; Liu, Y.; Ma, X.; Hu, S.; Zhang, J.; Wu, Q.; Ye, W.; Zhu, S.; Yang, D.; Qu, D.; Jiang, J. Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes. Sci. Rep., 2015, 5, 11709.
[http://dx.doi.org/10.1038/srep11709] [PMID: 26122018]
[106]
Sanginario, A.; Miccoli, B.; Demarchi, D. carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors (Basel), 2017, 7(1) E9
[http://dx.doi.org/10.3390/bios7010009] [PMID: 28212271]
[107]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[108]
Zhou, F.; Xing, D.; Ou, Z.; Wu, B.; Resasco, D.E.; Chen, W.R. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt., 2009, 14(2) 021009
[http://dx.doi.org/10.1117/1.3078803] [PMID: 19405722]
[109]
Iancu, C.; Mocan, L.; Bele, C.; Orza, A.I.; Tabaran, F.A.; Catoi, C.; Stiufiuc, R.; Stir, A.; Matea, C.; Iancu, D.; Agoston-Coldea, L.; Zaharie, F.; Mocan, T. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin. Int. J. Nanomedicine, 2011, 6, 129-141.
[http://dx.doi.org/10.2147/IJN.S15841] [PMID: 21289990]
[110]
Suo, X.; Eldridge, B.N.; Zhang, H.; Mao, C.; Min, Y.; Sun, Y.; Singh, R.; Ming, X. P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33464-33473.
[http://dx.doi.org/10.1021/acsami.8b11974] [PMID: 30188117]
[111]
Moon, H.K.; Lee, S.H.; Choi, H.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 2009, 3(11), 3707-3713.
[http://dx.doi.org/10.1021/nn900904h] [PMID: 19877694]
[112]
Neves, L.F.; Krais, J.J.; Van Rite, B.D.; Ramesh, R.; Resasco, D.E.; Harrison, R.G. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology, 2013, 24(37)375104
[http://dx.doi.org/10.1088/0957-4484/24/37/375104] [PMID: 23975064]
[113]
Mocan, T.; Matea, C.T.; Cojocaru, I.; Ilie, I.; Tabaran, F.A.; Zaharie, F.; Iancu, C.; Bartos, D.; Mocan, L. Photothermal treatment of human pancreatic cancer using pegylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism. J. Cancer, 2014, 5(8), 679-688.
[http://dx.doi.org/10.7150/jca.9481] [PMID: 25258649]
[114]
Li, L.; ten Hagen, T.L.; Haeri, A.; Soullié, T.; Scholten, C.; Seynhaeve, A.L.; Eggermont, A.M.; Koning, G.A. A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J. Control. Release, 2014, 174, 202-208.
[http://dx.doi.org/10.1016/j.jconrel.2013.11.012] [PMID: 24269966]
[115]
Oh, Y.; Jin, J.O.; Oh, J. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology, 2017, 28(12) 125101
[http://dx.doi.org/10.1088/1361-6528/aa5d7d] [PMID: 28145889]
[116]
Fu, X.; Wang, X.; Zhou, S.; Zhang, Y. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy. Int. J. Nanomedicine, 2017, 12, 3751-3766.
[http://dx.doi.org/10.2147/IJN.S113963] [PMID: 28553112]
[117]
Wang, L.; Zhang, M.; Zhang, N.; Shi, J.; Zhang, H.; Li, M.; Lu, C.; Zhang, Z. Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int. J. Nanomedicine, 2011, 6, 2641-2652.
[http://dx.doi.org/10.2147/IJN.S24167] [PMID: 22114495]
[118]
Yoo, S.; Hou, J.; Yi, W.; Li, Y.; Chen, W.; Meng, L.; Si, J.; Hou, X. Enhanced response of metformin towards the cancer cells due to synergism with multi-walled carbon nanotubes in photothermal therapy. Sci. Rep., 2017, 7(1), 1071.
[http://dx.doi.org/10.1038/s41598-017-01118-3] [PMID: 28432330]
[119]
Schaaf, L.; Schwab, M.; Ulmer, C.; Heine, S.; Mürdter, T.E.; Schmid, J.O.; Sauer, G.; Aulitzky, W.E.; van der Kuip, H. Hyperthermia synergizes with chemotherapy by inhibiting PARP1-dependent DNA replication arrest. Cancer Res, 2016, 76(10), 2868-2875.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2908] [PMID: 27013194]
[120]
Yi, W.; Zhang, P.; Hou, J.; Chen, W.; Bai, L.; Yoo, S.; Khalid, A.; Hou, X. Enhanced response of tamoxifen toward the cancer cells using a combination of chemotherapy and photothermal ablation induced by lentinan-functionalized multi-walled carbon nanotubes. Int J. Biol. Macromol., 2018, 120(Pt B), 1525-1532.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.085]
[121]
Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[http://dx.doi.org/10.1023/A:1009616228304] [PMID: 11256882]
[122]
Yang, S.T.; Chen, S.; Chang, Y.; Cao, A.; Liu, Y.; Wang, H. Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci., 2011, 359(1), 24-29.
[http://dx.doi.org/10.1016/j.jcis.2011.02.064] [PMID: 21482424]
[123]
Manna, S.K.; Sarkar, S.; Barr, J.; Wise, K.; Barrera, E.V.; Jejelowo, O.; Rice-Ficht, A.C.; Ramesh, G.T. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett., 2005, 5(9), 1676-1684.
[http://dx.doi.org/10.1021/nl0507966] [PMID: 16159204]
[124]
Zheng, L.; Wu, S.; Tan, L.; Tan, H.; Yu, B. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells. J. Biomater. Appl., 2016, 31(3), 379-386.
[http://dx.doi.org/10.1177/0885328216651183] [PMID: 27231263]
[125]
Yu, B.; Tan, L.; Zheng, R.; Tan, H.; Zheng, L. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater. Sci. Eng. C, 2016, 68, 579-584.
[http://dx.doi.org/10.1016/j.msec.2016.06.025] [PMID: 27524057]
[126]
Bacus, S.S.; Gudkov, A.V.; Lowe, M.; Lyass, L.; Yung, Y.; Komarov, A.P.; Keyomarsi, K.; Yarden, Y.; Seger, R. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene, 2001, 20(2), 147-155.
[http://dx.doi.org/10.1038/sj.onc.1204062] [PMID: 11313944]
[127]
Arya, N.; Arora, A.; Vasu, K.S.; Sood, A.K.; Katti, D.S. Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: A reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale, 2013, 5(7), 2818-2829.
[http://dx.doi.org/10.1039/c3nr33190c] [PMID: 23443459]
[128]
Shi, J.; Ma, R.; Wang, L.; Zhang, J.; Liu, R.; Li, L.; Liu, Y.; Hou, L.; Yu, X.; Gao, J.; Zhang, Z. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int. J. Nanomedicine, 2013, 8, 2361-2373.
[http://dx.doi.org/10.2147/IJN.S45407] [PMID: 23843694]
[129]
Platini, F.; Pérez-Tomás, R.; Ambrosio, S.; Tessitore, L. Understanding autophagy in cell death control. Curr. Pharm. Des., 2010, 16(1), 101-113.
[http://dx.doi.org/10.2174/138161210789941810] [PMID: 20214621]
[130]
Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y.; Nelson, D.A.; Jin, S.; White, E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006, 10(1), 51-64.
[http://dx.doi.org/10.1016/j.ccr.2006.06.001] [PMID: 16843265]
[131]
Roy, S.; Debnath, J. Autophagy and tumorigenesis. Semin. Immunopathol., 2010, 32(4), 383-396.
[http://dx.doi.org/10.1007/s00281-010-0213-0] [PMID: 20589500]
[132]
Ajabnoor, G.M.; Crook, T.; Coley, H.M. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis., 2012, 3 e260
[http://dx.doi.org/10.1038/cddis.2011.139] [PMID: 22278287]
[133]
Sirichanchuen, B.; Pengsuparp, T.; Chanvorachote, P. Long-term cisplatin exposure impairs autophagy and causes cisplatin resistance in human lung cancer cells. Mol. Cell. Biochem., 2012, 364(1-2), 11-18.
[http://dx.doi.org/10.1007/s11010-011-1199-1] [PMID: 22278384]
[134]
Tsukahara, T.; Matsuda, Y.; Haniu, H. The role of autophagy as a mechanism of toxicity induced by multi-walled carbon nanotubes in human lung cells. Int. J. Mol. Sci., 2014, 16(1), 40-48.
[http://dx.doi.org/10.3390/ijms16010040] [PMID: 25546386]
[135]
Chen, G.Y.; Meng, C.L.; Lin, K.C.; Tuan, H.Y.; Yang, H.J.; Chen, C.L.; Li, K.C.; Chiang, C.S.; Hu, Y.C. Graphene oxide as a chemosensitizer: Diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials, 2015, 40, 12-22.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.034] [PMID: 25498801]
[136]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35(Suppl.), S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001] [PMID: 25936818]
[137]
Reddy, R.K.; Mao, C.; Baumeister, P.; Austin, R.C.; Kaufman, R.J.; Lee, A.S. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: Role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem., 2003, 278(23), 20915-20924.
[http://dx.doi.org/10.1074/jbc.M212328200] [PMID: 12665508]
[138]
Hwang, J.H.; Kim, J.Y.; Cha, M.R.; Ryoo, I.J.; Choo, S.J.; Cho, S.M.; Tsukumo, Y.; Tomida, A.; Shin-Ya, K.; Hwang, Y.I.; Yoo, I.D.; Park, H.R. Etoposide-resistant HT-29 human colon carcinoma cells during glucose deprivation are sensitive to piericidin A, a GRP78 down-regulator. J. Cell. Physiol., 2008, 215(1), 243-250.
[http://dx.doi.org/10.1002/jcp.21308] [PMID: 17941090]
[139]
Soengas, M.S.; Capodieci, P.; Polsky, D.; Mora, J.; Esteller, M.; Opitz-Araya, X.; McCombie, R.; Herman, J.G.; Gerald, W.L.; Lazebnik, Y.A.; Cordón-Cardó, C.; Lowe, S.W. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature, 2001, 409(6817), 207-211.
[http://dx.doi.org/10.1038/35051606] [PMID: 11196646]
[140]
Zheng, A.W.; Chen, Y.Q.; Zhao, L.Q.; Feng, J.G. Myricetin induces apoptosis and enhances chemosensitivity in ovarian cancer cells. Oncol. Lett., 2017, 13(6), 4974-4978.
[http://dx.doi.org/10.3892/ol.2017.6031] [PMID: 28588737]
[141]
He, Z.; Xiao, X.; Li, S.; Guo, Y.; Huang, Q.; Shi, X.; Wang, X.; Liu, Y. Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells. Oncol. Lett., 2017, 14(2), 2499-2504.
[http://dx.doi.org/10.3892/ol.2017.6421] [PMID: 28781688]
[142]
Erdmann, K.; Ringel, J.; Hampel, S.; Rieger, C.; Huebner, D.; Wirth, M.P.; Fuessel, S. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: Enhanced apoptosis and inhibition of proliferation as underlying mechanisms. Nanotechnology, 2014, 25(40) 405102
[http://dx.doi.org/10.1088/0957-4484/25/40/405102] [PMID: 25224682]
[143]
Erdmann, K.; Ringel, J.; Hampel, S.; Wirth, M.P.; Fuessel, S. Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation. Beilstein J. Nanotechnol., 2017, 8, 1307-1317.
[http://dx.doi.org/10.3762/bjnano.8.132] [PMID: 28690966]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Page: [366 - 378]
Pages: 13
DOI: 10.2174/1570180816666190405110858
Price: $65

Article Metrics

PDF: 10
HTML: 1