MADD Expression in Lung Adenocarcinoma and its Impact on Proliferation and Apoptosis of Lung Adenocarcinoma Cells

Author(s): Bo Ye, Fangming Zhong, Guocan Yu, Haizhou Lou, Jian Hu*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 3 , 2019

Become EABM
Become Reviewer

Abstract:

Objective: This study investigated the expression of MAPK-activating death domaincontaining protein (MADD) in lung adenocarcinoma and its impact on lung adenocarcinoma SPCA- 1 cell proliferation and apoptosis.

Methods: Clinicopathological lung specimens were collected. MADD expression levels in normal human lung and human lung adenocarcinoma tissues were detected by immunohistochemistry. Lung adenocarcinoma SPC-A-1 cells were cultured, and IG20 gene expression in the SPC-A-1 cells was detected using reverse-transcription PCR. SPC-A-1 cells were transfected with a plasmid carrying the MADD gene and a lentiviral vector capable of silencing MADD expression. CCK-8 assay, western blot and flow cytometry were performed to detect MADD expression, proliferation and apoptosis in the SPC-A-1 cells.

Results: MADD expression levels in the lung adenocarcinoma tissue were significantly higher than those in the normal lung tissue and lung squamous carcinoma cells. MADD can be expressed in lung adenocarcinoma SPC-A-1 cells. High MADD expression can inhibit SPC-A-1 cell apoptosis and enhance SPC-A-1 cell proliferative activity, while silencing MADD expression can promote apoptosis and reduce SPC-A-1 cell proliferation.

Conclusion: MADD expression is significantly upregulated in lung adenocarcinoma tissue. MADD can promote lung adenocarcinoma cell growth by inhibiting apoptosis. This study may improve lung adenocarcinoma levels in patients and, thus, is worthy of clinical promotion.

Keywords: Cancer, MADD, lung adenocarcinoma, cell proliferation, apoptosis, western blot.

[1]
Kemény, L.; Berggren, L.; Dossenbach, M.; Dutronc, Y.; Paul, C. Efficacy and safety of ixekizumab in patients with plaque psoriasis across different degrees of disease severity: results from UNCOVER-2 and UNCOVER-3. J. Dermatolog. Treat., 2018, 40, 1-27.
[2]
Burda, W.N.; Fields, K.B.; Gill, J.B.; Burt, R.; Shepherd, M.; Zhang, X.P.; Shaw, L.N. Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens. Eur. J. Clin. Microbiol., 2012, 31(3), 327-335.
[3]
Bionda, N.; Fleeman, R.M.; Shaw, L.N.; Cudic, P. Effect of ester to amide or N-methylamide substitution on bacterial membrane depolarization and antibacterial activity of novel cyclic lipopeptides. ChemMedChem, 2013, 8(8), 1394-1402.
[4]
Lam, T.; Hilgers, M.T.; Cunningham, M.L.; Kwan, B.P.; Nelson, K.J.; Brown-Driver, V.; Ong, V.; Trzoss, M.; Hough, G.; Shaw, K.J.; Finn, J. Structure-based design of new dihydrofolatereductase antibacterial agents: 7-(benzimidazol-1-yl)-2,4-diaminoquinazo-lines. J. Med. Chem., 2014, 57(3), 651-668.
[5]
T.D., Cheng; S.M., Cramb; P.D., Baade; D.R., Youlden; C., Nwogu; M.E., Reid The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J. Thorac. Oncol., 2016, 11, 1653-1671.
[6]
R.L., Siegel; K.D., Miller; A., Jemal Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66, 7-30.
[7]
M.G., Kris; B.E., Johnson; L.D., Berry; D.J., Kwiatkowski; A.J., Iafrate; I.I., Wistuba; M., Varella-Garcia; W.A., Franklin; S.L., Aronson; P.F., Su; Y., Shyr; D.R., Camidge; L.V., Sequist; B.S., Glisson; F.R., Khuri; E.B., Garon; W., Pao; C., Rudin; J., Schiller; E.B., Haura; M., Socinski; K., Shirai; H., Chen; G., Giaccone; M., Ladanyi; K., Kugler; J.D., Minna; P.A., Bunn Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA, 2014, 11, 1998-2006.
[8]
Boyd, N.; Dancey, J.E.; Gilks, C.B.; Huntsman, D.G. Huntsman, Rare cancers: A sea of opportunity. Lancet Oncol., 2016, 17, e52-e61.
[9]
Olaussen, K.A.; Postel-Vinay, S. Predictors of chemotherapy efficacy in non-smallcell lung cancer: A challenging landscape. Ann. Oncol., 2016, 27, 2004-2016.
[10]
1000 Genomes Project Consortium; Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1092 human genomes. Nature, 2012, 491, 56-65.
[11]
Li, L.C.; Jayarama, S.; Pilli, T.; Qian, L.; Pacini, F.; Prabhakar, B.S. Down Modulation of expression, or dephosphorylation, of IG20/MADD in tumor necrosis factor-related apoptosis-inducing ligand resistant thyroid cancer cells makes them susceptible to treatment with this ligand. Thyroid, 2013, 23, 70-78.
[12]
Oh, Y.T.; Deng, J.; Yue, P.; Owonikoko, T.K.; Khuri, F.R. Sun. S.Y. Inhibition of B-Raf/MEK/ERK signaling suppresses DR5 expression and impairs response of cancer cells to DR5-mediated apoptosis and T cell-induced killing. Oncogene, 2016, 35, 459-467.
[13]
Jin, S.M.; Jang, H.W.; Sohn, S.Y.; Kim, N.K.; Joung, J.Y.; Cho, Y.Y.; Kim, S.W.; Chung, J.H. Role of autophagy in the resistance to tumour necrosis factor-related apoptosis-inducing ligand-induced apoptosis in papillary and anaplastic thyroid cancer cells. Endocrine, 2014, 45, 256-262.
[14]
Choi, D.; Ramu, S.; Park, E.; Jung, E.; Yang, S.; Jung, W.; Choi, I.; Lee, S.; Kim, K.E.; Seong, Y.J.; Hong, M.; Daghlian, G.; Kim, D.; Shin, E.; Seo, J.I.; Khatchadourian, V.; Zou, M.; Li, W.; De Filippo, R.; Kokorowski, P.; Chang, A.; Kim, S.; Bertoni, A.; Furlanetto, T.W.; Shin, S.; Li, M.; Chen, Y.; Wong, A.; Koh, C.; Geliebter, J.; Hong, Y.K. Aberrant activation of Notch signaling inhibits PROX1 activity to enhance the malignant behavior of thyroid cancer cells. Cancer Res., 2016, 76, 582-593.
[15]
Somnay, Y.R.; Yu, X.M.; Lloyd, R.V.; Leverson, G.; Aburjania, Z.; Jang, S.; Jaskula-Sztul, R.; Chen, H. Notch3 expression correlates with thyroid cancer differentiation, induces apoptosis, and predicts disease prognosis. Cancer, 2017, 123, 769-782.
[16]
Jaskula-Sztul, R.; Eide, J.; Tesfazghi, S.; Dammalapati, A.; Harrison, A.D.; Yu, X.M.; Scheinebeck, C.; Winston-McPherson, G.; Kupcho, K.R.; Robers, M.B.; Hundal, A.K.; Tang, W.; Chen, H. Tumor-suppressor role of Notch3 in medullary thyroid carcinoma revealed by genetic and pharmacological induction. Mol. Cancer Ther., 2015, 14, 499-512.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 3
Year: 2019
Page: [207 - 215]
Pages: 9
DOI: 10.2174/1386207322666190404151437
Price: $65

Article Metrics

PDF: 24
HTML: 6