Integration of Fuzzy Logic and ABC Algorithm for Optimized Network Selection in Heterogeneous Wireless Environment

Author(s): Shilpa R. Litake*, Prachi Mukherji

Journal Name: International Journal of Sensors, Wireless Communications and Control

Volume 10 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background & Objective: Various Radio Access Technologies are integrated in the next generation of Heterogeneous Wireless Networks. The coexistence of various kinds of wireless access networks ensures high service quality (QoS) for the users. Seamless vertical handover plays a significant role in providing ubiquitous access to users. The ability to select the optimal access network out of available access networks decides the comprehensive performance of the system. A novel scheme: Handoff Urgency Estimator and Target Access Network Selector using Artificial Bee Colony algorithm (HUETANSABC) for deciding the necessity of handover and selection of the best network is proposed in this paper. The objective of the proposed work is to choose the most promising access network out of available coexisting networks for enhancing user experience. Fuzzy logic provides reliable results even when the input parameters are random in nature and can not be defined precisely. Artificial Bee Colony is an effective method for searching and optimization. Proposed system combines best of fuzzy logic and ABC algorithm for timely initiation of vertical handover. To gather the required information for handover, services provided by IEEE 802.21 standard are utilized. Proposed integration of fuzzy logic and the ABC algorithm has resulted in a decreasing number of unnecessary handovers.

Methods: The effect of varying context parameters is analyzed using Fuzzy Inference System to estimate the urgency of handover. The optimization of a target access network selection process is achieved using meta-heuristic method.

Results: Simulation results on MATLAB indicate that the proposed system performs better than ABC and Multiple Attribute Decision Making (MADM) techniques.

Keywords: Access network, artificial bee colony algorithm, fuzzy logic, heterogeneous wireless network, MADM, vertical handover.

[1]
Ahmed A, Boulahia LM, Gaiti D. Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Comm Surv Tutor 2014; 16(2): 776-811.
[http://dx.doi.org/10.1109/SURV.2013.082713.00141]
[2]
IEEE Standard for Local and Metropolitan Area Networks, Media Independent Handover Services IEEE P80221-2008 2009.
[3]
Ghahfarokhi BS, Movahhedinia N. A survey on applications of IEEE 802.21 media independent handover framework in next generation wireless networks. Comput Commun 2013; 36(10-11): 1101-19.
[http://dx.doi.org/10.1016/j.comcom.2013.04.006]
[4]
Wang L, Kuo GS. Mathematical modeling for network selection in heterogeneous wireless networks- A tutorial. IEEE Comm Surv Tutor 2013; 15(1): 271-92.
[http://dx.doi.org/10.1109/SURV.2012.010912.00044]
[5]
Fernandes S, Karmouch A. Vertical mobility management architectures in wireless networks: A comprehensive survey and future directions. IEEE Comm Surv Tutor 2012; 14(1): 45-63.
[http://dx.doi.org/10.1109/SURV.2011.082010.00099]
[6]
Chinnappan A, Balasubramanian R. Complexity-consistency trade-off in multi-attribute decision making for vertical handover in heterogeneous wireless networks. IET Networks 2016; 5(1): 13-21.
[http://dx.doi.org/10.1049/iet-net.2015.0042]
[7]
Lin CP, Chen HL, Leu JS. A predictive handover scheme to improve service quality in the IEEE 802.21 network. Comput Electr Eng 2012; 38(3): 681-93.
[http://dx.doi.org/10.1016/j.compeleceng.2012.02.013]
[8]
Fallon E, Murphy L, Murphy J, Miro-Muntean G. FRAME- Fixed route adapted media streaming enhanced handover algorithm. IEEE Trans Broadcast 2013; 59(1): 96-115.
[http://dx.doi.org/10.1109/TBC.2012.2219232]
[9]
Taleb T, Ksentini A. VECOS: A vehicular connection steering protocol. IEEE Trans Vehicular Technol 2015; 64(3): 1171-87.
[http://dx.doi.org/10.1109/TVT.2014.2327241]
[10]
Sarma A, Chakraborty S, Nandi S. Deciding handover points based on context-aware load balancing in a WiFi-WiMAX heterogeneous network environment. IEEE Trans Vehicular Technol 2016; 65(1): 348-57.
[http://dx.doi.org/10.1109/TVT.2015.2394371]
[11]
Marquez-Barja JM, Ahmadi H, Tornell SM, et al. Breaking the vehicular wireless communications barriers: Vertical handover techniques for heterogeneous networks. IEEE Trans Vehicular Technol 2015; 64(12): 5878-90.
[http://dx.doi.org/10.1109/TVT.2014.2386911]
[12]
Goudarzi S, Hassan WH, Anisi MH, Soleymani SA. MDP-based network selection scheme by genetic algorithm and simulated annealing for vertical-handover in heterogeneous wireless networks. Wirel Pers Commun 2017; 92(2): 399-436.
[http://dx.doi.org/10.1007/s11277-016-3549-5]
[13]
Goudarzi S, Hassan WH, Anisi MH, et al. ABC-PSO for vertical handover in heterogeneous wireless networks. Neurocomputing 2017; 256: 63-81.
[http://dx.doi.org/10.1016/j.neucom.2016.08.136]
[14]
Stevens-Navarro E, Wong VW. Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. Vehicul Technol Conf IEEE 2006; 2: 947-51.
[http://dx.doi.org/10.1109/VETECS.2006.1682964]
[15]
Opricovic S, Tzeng GH. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 2004; 156(2): 445-55.
[http://dx.doi.org/10.1016/S0377-2217(03)00020-1]
[16]
Mehbodniya A, Kaleem F, Yen KK, Adachi F. A fuzzy extension of VIKOR for target network selection in heterogeneous wireless environments. Phys Commun 2013; 7: 145-55.
[http://dx.doi.org/10.1016/j.phycom.2013.02.002]
[17]
Zhang W. Handover decision using fuzzy MADM in heterogeneous networks. In: Wireless communications and networking conference WCNC IEEE 2004; 2: 21653-8.
[18]
Kantubukta V, Maheshwari S, Mahapatra S, Kumar CS. Energy and quality of service aware FUZZY-technique for order preference by similarity to ideal solution based vertical handover decision algorithm for heterogeneous wireless networks. IET Netw 2013; 2(3): 103-4.
[19]
Wilson A, Lenaghan A, Malyan R. Optimising wireless access network selection to maintain QoS in heterogeneous wireless environments In wireless personal multimedia communications 2005; 18: 18-22.
[20]
Nădăban S, Dzitac S, Dzitac I. Fuzzy topsis: A general view. Procedia Comput Sci 2016; 91: 823-31.
[http://dx.doi.org/10.1016/j.procs.2016.07.088]
[21]
Opricovic S. Fuzzy VIKOR with an application to water resources planning. Expert Syst Appl 2011; 38(10): 12983-90.
[http://dx.doi.org/10.1016/j.eswa.2011.04.097]
[22]
Hosen MA, Khosravi A, Nahavandi S, Creighton D. Improving the quality of prediction intervals through optimal aggregation. IEEE Trans Ind Electron 2015; 62(7): 4420-9.
[http://dx.doi.org/10.1109/TIE.2014.2383994]
[23]
Saadat J, Moallem P, Koofigar H. Training echo state neural network using harmony search algorithm. Int J Artific Intell 2017; 15(1): 163-79.
[24]
Precup RE, David RC, Szedlak-Stinean AI, Petriu EM, Dragan F. An easily understandable grey wolf optimizer and its application to fuzzy controller tuning. Algorithms 2017; 10(2): 68.
[http://dx.doi.org/10.3390/a10020068]
[25]
Roman RC, Precup RE, David RC. Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems. Procedia Comput Sci 2018; 139: 372-80.
[http://dx.doi.org/10.1016/j.procs.2018.10.277]
[26]
Vrkalovic S, Lunca EC, Borlea ID. Model-free sliding mode and fuzzy controllers for reverse osmosis desalination plants. Int J Artif Intell 2018; 16: 208-22.
[27]
Chatterjee A, Chatterjee R, Matsuno F, Endo T. Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling. IEEE Trans Ind Electron 2008; 55(3): 1256-70.
[http://dx.doi.org/10.1109/TIE.2007.896439]
[28]
Haidegger T, Kovács L, Precup RE, Benyó B, Benyó Z, Preitl S. Simulation and control for telerobots in space medicine. Acta Astronaut 2012; 81(1): 390-402.
[http://dx.doi.org/10.1016/j.actaastro.2012.06.010]
[29]
Radgolchin M, Moeenfard H. Development of a multi-level adaptive fuzzy controller for beyond pull-in stabilization of electrostatically actuated microplates. J Vib Control 2018; 24(5): 860-78.
[http://dx.doi.org/10.1177/1077546316653040]
[30]
Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 1975; 8(3): 199-249.
[http://dx.doi.org/10.1016/0020-0255(75)90036-5]
[31]
Pal M. Triangular fuzzy matrices. Iranian J Fuzzy Syst 2007; 4(1): 75-87.
[32]
Julong D. Introduction to grey system theory: The journal of grey system, No 1. Google Scholar 1989; pp. 1-24.
[33]
Saaty TL. Decision making with the analytic hierarchy process. Int J Serv Sci 2008; 1(1): 83-98.
[http://dx.doi.org/10.1504/IJSSCI.2008.017590]
[34]
Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. J Glob Optim 2007; 39(3): 459-71.
[http://dx.doi.org/10.1007/s10898-007-9149-x]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2020
Published on: 15 September, 2020
Page: [248 - 261]
Pages: 14
DOI: 10.2174/2210327909666190401205928
Price: $25

Article Metrics

PDF: 7
HTML: 1