Growth Inhibitory Properties of Synthetic Chalcones

Author(s): Gajanan D. Kottapalle, Nagesh J. Deshmukh, Avinash T. Shinde*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: In the present study, chalcones were synthesized from 2-hydroxy-1- acetonaphthone and substituted aromatic aldehydes were synthesized by Claisen Schmidt condensation reaction using potassium hydroxide as a base. The synthesized chalcones were purified by recrystallization from ethanol and evaluated for antibacterial activity by well diffusion method. The antibacterial activity was evaluated against Bacillus licheniformis, Bacillus species, Escherichia coli and Staphylococcus aureus using Ciprofloxacin as a standard.

Methods: The target molecules were prepared by reacting 2-hydroxy-1-acetonaphthone and various substituted aromatic aldehyde in the presence of suitable condensing agents. The structure of synthesized compounds was confirmed on the basis of elemental analysis, IR, 1H NMR and 13C NMR spectral data. These synthesized compounds were also screened for antibacterial activity.

Results: In the present study, free hydroxyl group in position 2 or 4 of aldehyde ring of synthesized chalcones appears to be a very important requirement in increasing the activity (2-5 and 8-13). When the hydroxyl group in position 4 is alkylated (14, 15), the chalcones become less active. When more complex substituent is present on the aldehyde ring (6, 7) there is a decrease in the activity.

Conclusion: Newly synthesized chalcones (1-15) show good and moderate antibacterial activity. We believe that the new hydroxy substituted (in aldehyde ring) chalcones (2-5 and 8-13) reported in this work may provide an interesting insight for further optimization.

Keywords: 2-hydroxy-1-acetonaphthone, chalcones, antibacterial activity, Minimum Inhibitory Concentration (MIC), hybrid molecules, aromatic aldehydes.

[1]
Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline at the end of 2015. J. Antibiot. (Tokyo), 2017, 70(1), 3-24.
[http://dx.doi.org/10.1038/ja.2016.72] [PMID: 27353164]
[2]
Czaplewski, L.; Bax, R.; Clokie, M.; Dawson, M.; Fairhead, H.; Fischetti, V.A.; Foster, S.; Gilmore, B.F.; Hancock, R.E.; Harper, D.; Henderson, I.R.; Hilpert, K.; Jones, B.V.; Kadioglu, A.; Knowles, D.; Ólafsdóttir, S.; Payne, D.; Projan, S.; Shaunak, S.; Silverman, J.; Thomas, C.M.; Trust, T.J.; Warn, P.; Rex, J.H. Alternatives to antibiotics-A pipeline portfolio review. Lancet Infect. Dis., 2016, 16(2), 239-251.
[http://dx.doi.org/10.1016/S1473-3099(15)00466-1] [PMID: 26795692]
[3]
Bush, K.; Page, M.G.P. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J. Pharmacokinet. Pharmacodyn., 2017, 44(2), 113-132.
[http://dx.doi.org/10.1007/s10928-017-9506-4] [PMID: 28161807]
[4]
Patel, N.B.; Shaikh, F.M. Synthesis and antimicrobial activity of new 4-thiazolidinone derivatives containing 2-amino-6-methoxybenzothiazole. Saudi Pharm. J., 2010, 18(3), 129-136.
[http://dx.doi.org/10.1016/j.jsps.2010.05.002] [PMID: 23964172]
[5]
Nogrady, T.; Weaver, D.F. Medicinal Chemistry: A Molecular and Biochemical Approach, 3rd ed; Oxford University Press, 2005, pp. 559-580.
[6]
Gillani, S.J.; Khan, S.A.; Alam, O.; Siddiqui, N. Synthesis and in vitro antimicrobial evaluation of condensed heterocyclic 6-substituted 1,2,4- triazolo-[3,4-b]-1,3,4- thiadiazole and 1,3,4-oxadiazole derivatives of isoniazid. Acta Pol. Pharm. Drug Res., 2011, 68(2), 205-211.
[7]
Avila, H.P. Smânia, Ede.F.; Monache, F.D.; Smânia, A., Jr. Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem., 2008, 16(22), 9790-9794.
[http://dx.doi.org/10.1016/j.bmc.2008.09.064] [PMID: 18951808]
[8]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[9]
Bhale, P.S.; Chavan, H.V.; Dongare, S.B.; Shringare, S.N.; Mule, Y.B.; Choudhari, P.B.; Bandgar, B.P. Synthesis, characterization and evaluation of 1,3-Bisindolyl-2- Propen-1- one derivatives as potent anti-breast cancer agents. Curr. Bioact. Compd., 2018, 14(3), 299-308.
[http://dx.doi.org/10.2174/1573407213666170428112855]
[10]
Sharma, A.; Chakravarti, B.; Gupt, M.P.; Siddiqui, J.A.; Konwar, R.; Tripathi, R.P. Synthesis and anti-breast cancer activity of biphenyl based chalcones. Bioorg. Med. Chem., 2010, 18(13), 4711-4720.
[http://dx.doi.org/10.1016/j.bmc.2010.05.015] [PMID: 20605470]
[11]
Tatsuzaki, J.; Bastow, K.F.; Nakagawa-Goto, K.; Nakamura, S.; Itokawa, H.; Lee, K.H. Dehydrozingerone, chalcone, and isoeugenol analogues as in vitro anticancer agents. J. Nat. Prod., 2006, 69(10), 1445-1449.
[http://dx.doi.org/10.1021/np060252z] [PMID: 17067159]
[12]
Kumari, S.; Paliwal, S.K.; Chauhan, R. An improved protocol for the synthesis of Chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr. Bioact. Compd., 2018, 14(1), 39-47.
[http://dx.doi.org/10.2174/1573407212666161101152735]
[13]
Beom-Tae, K.; Kwang-joong, O.; Jae-Chul, C. Ki-.Jun, H. Synthesis of dihydroxylated chalcone derivatives with diverse substitution patterns and their radical scavenging Ability toward DPPH free radicals. Bull. Korean Chem. Soc., 2008, 29(6), 1125-1130.
[http://dx.doi.org/10.5012/bkcs.2008.29.6.1125]
[14]
Yusuf, M.; Thakur, S. Bis (4, 5-dihydropyrazole) derivatives: Synthesis, characterization and antimicrobial-antioxidant evaluations. Asian J. Chem., 2018, 30(9), 2097-2102.
[http://dx.doi.org/10.14233/ajchem.2018.21451]
[15]
Amir, M.; Kumar, H.; Khan, S.A. Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg. Med. Chem. Lett., 2008, 18(3), 918-922.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.043] [PMID: 18182288]
[16]
Gómez-Rivera, A.; Aguilar-Mariscal, H.; Romero-Ceronio, N.; Roa-de la Fuente, L.F.; Lobato-García, C.E. Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg. Med. Chem. Lett., 2013, 23(20), 5519-5522.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.061] [PMID: 24012185]
[17]
Sharma, V.; Singh, G.; Kaur, H.; Saxena, A.K.; Ishar, M.P.S. Synthesis of β-ionone derived chalcones as potent antimicrobial agents. Bioorg. Med. Chem. Lett., 2012, 22(20), 6343-6346.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.084] [PMID: 22999415]
[18]
Siddiqui, Z.N.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2860-2865.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.080] [PMID: 21507638]
[19]
Al-Omran, F. EI-Khair, A.A. Synthesis of polyfunctionally substituted heteroaromatic compounds via benzotriazolyl chalcones with antimicrobial and antifungal activities. J. Het. Chem., 2004, 41(3), 327-333.
[http://dx.doi.org/10.1002/jhet.5570410304]
[20]
Srivastava, A.K.; Pandey, L.K. Synthesis of chalcones and nucleosides incorporating [1, 3, 4]Oxadiazolenone core and evaluation of their antifungal and antibacterial activities. Curr. Bioact. Compd., 2018, 14, 1-14.
[21]
Valla, A.; Valla, B.; Cartier, D.; Le Guillou, R.; Labia, R.; Florent, L.; Charneau, S.; Schrevel, J.; Potier, P. New syntheses and potential antimalarial activities of new ‘retinoid-like chalcones’. Eur. J. Med. Chem., 2006, 41(1), 142-146.
[http://dx.doi.org/10.1016/j.ejmech.2005.05.008] [PMID: 16274873]
[22]
Domínguez, J.N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco, 2005, 60(4), 307-311.
[http://dx.doi.org/10.1016/j.farmac.2005.01.005] [PMID: 15848205]
[23]
Seo, W.D.; Ryu, Y.B.; Curtis-Long, M.J.; Lee, C.W.; Ryu, H.W.; Jang, K.C.; Park, K.H. Evaluation of anti-pigmentary effect of synthetic sulfonylamino chalcone. Eur. J. Med. Chem., 2010, 45(5), 2010-2017.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.049] [PMID: 20149498]
[24]
Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; Clercq, E.D.; Shah, A.K. Im-proved and rapid synthesis of new coumarinyl chalcones derivatives and their antiviral activity. Tetrahedron Lett., 2007, 48(48), 8472-8474.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.175]
[25]
Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett., 2010, 20(3), 942-944.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.062] [PMID: 20045640]
[26]
Gacche, R.N.; Dhole, N.A.; Kamble, S.G.; Bandgar, B.P. In-vitro evaluation of selected chalcones for antioxidant activity. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 28-31.
[http://dx.doi.org/10.1080/14756360701306370] [PMID: 18341249]
[27]
Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett., 1998, 8(9), 1051-1056.
[http://dx.doi.org/10.1016/S0960-894X(98)00162-0] [PMID: 9871706]
[28]
Boeck, P.; Bandeira Falcão, C.A.; Leal, P.C.; Yunes, R.A.; Filho, V.C.; Torres-Santos, E.C.; Rossi-Bergmann, B. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem., 2006, 14(5), 1538-1545.
[http://dx.doi.org/10.1016/j.bmc.2005.10.005] [PMID: 16386424]
[29]
Bonesi, M.; Loizzo, M.R.; Statti, G.A.; Michel, S.; Tillequin, F.; Menichini, F. The synthesis and Angiotensin Converting Enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1990-1993.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.113] [PMID: 20167484]
[30]
Prasad, Y.R.; Rao, A.L.; Rambabu, R.; Kumar, P.R. Synthesis and biological evaluation of some novel chalcone derivatives. Orient. J. Chem., 2007, 23(3), 927-937.
[31]
Siddiqui, Z.N.; Asad, M.; Praveen, S. Synthesis and biologi-cal activity of heterocycles from chalcones. Med. Chem. Res., 2008, 17(2), 318-325.
[http://dx.doi.org/10.1007/s00044-007-9067-y]
[32]
Batovska, D.; Parushev, S.; Stamboliyska, B.; Tsvetkova, I.; Ninova, M.; Najdenski, H. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur. J. Med. Chem., 2009, 44(5), 2211-2218.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.010] [PMID: 18584918]
[33]
Prasad, Y.R.; Ravikumar, P.; Deepti, C.A.; Venkataramana, M. synthesis and antimicrobial activity of some novel chalcones of 2-hydroxy -1-acetonapthone and 3-acetyl coumarin. E-J. Chem., 2006, 3(4), 236-241.
[http://dx.doi.org/10.1155/2006/395386]
[34]
Santra, S.; Jat, B.; Santra, P.K. Synthesis and antimicrobial activities of chalcones and indole derived from acetyl pyridines. Asian J. Chem., 2018, 30(4), 883-888.
[http://dx.doi.org/10.14233/ajchem.2018.21124]
[35]
Deshmukh, N.J.; Kottapalle, G.D.; Shinde, A.T. Synthesis of some chloro substituted isoxazoline derivatives as antibacterial agents. Asian J. Pharm. & Pharmacol., 2018, 5(1), I-IV.
[http://dx.doi.org/10.31024/ajpp.2019.5.1.6]
[36]
Chinnamanayakar, R.; Ezhilarasi, M.R.; Prabha, B. Ku-landhaivel. In vitro antimicrobial activity and in silico activity of 1-thiocarbamoyl substituted pyrazole derivatives. Asian J. Chem., 2018, 30(4), 783-789.
[http://dx.doi.org/10.14233/ajchem.2018.20992]
[37]
Hridhya, K.V.; Kulandhaivel, M. Antimicrobial activity of Chromolaena odorata against selected pyogenic pathogens. Int. J. Pharmacog. Phytochem. Res., 2017, 9(7), 1001-1007.
[38]
Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Differential effects of synthesized 2′-oxygenated chalcone derivatives: Modulation of human cell cycle phase distribution. Bioorg. Med. Chem., 2004, 12(10), 2679-2686.
[http://dx.doi.org/10.1016/j.bmc.2004.03.014] [PMID: 15110849]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2020
Published on: 01 October, 2020
Page: [892 - 899]
Pages: 8
DOI: 10.2174/1573407215666190401202553
Price: $65

Article Metrics

PDF: 12
HTML: 3
PRC: 1