Synthesis of New 4-Chloro-6-Methylpyrimidin-2-yl-Aminophosphonates as Potential DU145 and A549 Cancer Cell Inhibitors

Author(s): Gajjala Raghavendra Reddy, Chinta Raveendra Reddy, Gopireddy Venkata Subba Reddy, Pasupuleti Visweswara Rao, Meenakshisundaram Swaminathan, Balam Satheeh Krishna, Cirandur Suresh Reddy*.

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

A series of new α-aminophosphonates containing potential anticancer active 4-chloro-6- methylpyrimidin-2-amino pharmacophore were synthesized.

Background: α-Aminophosphonates are of growing interest to the researchers due to their biological activities. Besides aminophosphoryl functionality, which is responsible for the vital activity, incorporation of a captivating pharmacophore on it will definitely enrich its activity.

Objective: Erstwhile many of the reported α-aminophosphonates impregnated with bioactive heterocycles like quinazoline, chromene, pyrazole, furan and thiophene were used as anticancer drugs, and we are intended to enhance the anticancer potentiality of α-aminophosphonates by substituting a new 4-chloro-6-methylpyrimidin-2-yl group into its structure, specifically on nitrogen atom.

Methods: Title compounds were synthesized by Kabachnik-Fields reaction by using sulfated Titania, a solid acid catalyst that is encompassed with high density of Lewis acidic reaction sites. The series of synthesized compounds were screened for in vitro anti-cancer activity and their ADMET, QSAR and drug properties studied.

Results: Structures of all the title compounds synthesized in high yields were confirmed by spectral & elemental analyses. Their anti-cancer screening studies on various cell lines and evaluation of other properties revealed their potentiality towards the inhibition of growth of DU145 & A549 cell lines.

Conclusion: The substitution of 4-chloro-6-methylpyrimidin-2-amino moiety on to the amino functionality of the α-aminophosphonates is a critical task invariably due to the substitutions that are located on α-carbon. As such, this substitution had increased the scope for growth inhibition of DU145 and A549 cancer cells.

Keywords: Kabachnik-Fields reaction, 4-chloro-6-methylpyrimidin-2-amine, sulfated Titania, DU145 cell lines, A549 cell lines, in vitro anti-cancer activity, QSAR studies, ADMET properties.

[1]
Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem., 2011, 54(17), 5955-5980.
[http://dx.doi.org/10.1021/jm200587f] [PMID: 21780776]
[2]
Kukhar, V.P.; Hudson, H.R. Aminophosphonic and aminophosphinic acids: Chemistry and biological activity; John Wiley & Sons: Chichester, 2000.
[3]
Li, Y.J.; Wang, C.Y.; Ye, M.Y.; Yao, G.Y.; Wang, H.S. Novel Coumarin containing aminophosphonates as antitumor agent: Synthesis, cytotoxicity, DNA-binding and apoptosis evaluation. Molecules, 2015, 20(8), 14791-14809.
[http://dx.doi.org/10.3390/molecules200814791] [PMID: 26287139]
[4]
He, X.Y.; Ouyang, S.; Huang, X.L.; Hu, X.C.; Dai, W.S.; Tian, W.L.; Pan, H.S.; Huang, Y.M.; Wang, S.W. Synthesis of derivatives of artesunate α-aminophosphonate and their antimicrobial activities. Lett. Drug Des. Discov., 2015, 12(5), 408-416.
[http://dx.doi.org/10.2174/1570180812666141125004502]
[5]
Hu, D.Y.; Wan, Q.Q.; Yang, S.; Song, B.A.; Bhadury, P.S.; Jin, L.H.; Yan, K.; Liu, F.; Chen, Z.; Xue, W. Synthesis and antiviral activities of amide derivatives containing the α-aminophosphonate moiety. J. Agric. Food Chem., 2008, 56(3), 998-1001.
[http://dx.doi.org/10.1021/jf072394k] [PMID: 18183949]
[6]
Lu, A.; Ma, Y.; Wang, Z.; Zhou, Z.; Wang, Q. Application of “Hydrogen- Bonding Interaction” in drug design. Part 2: Design, synthesis, and structure-activity relationships of Thiophosphoramide derivatives as novel antiviral and antifungal agents. J. Agric. Food Chem., 2015, 63(43), 9435-9440.
[http://dx.doi.org/10.1021/acs.jafc.5b02676] [PMID: 26485246]
[7]
Reddy, C.B.; Kumar, K.S.; Kumar, M.A.; Narayana Reddy, M.V.; Krishna, B.S.; Naveen, M.; Arunasree, M.K.; Reddy, C.S.; Raju, C.N.; Reddy, C.D. PEG-SO(3)H catalyzed synthesis and cytotoxicity of α-aminophosphonates. Eur. J. Med. Chem., 2012, 47(1), 553-559.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.026] [PMID: 22136905]
[8]
Damiche, R.; Chafaa, S. Synthesis of new bioactive aminophosphonates and study of their antioxidant, anti-inflammatory and antibacterial activities as well the assessment of their toxicological activity. J. Mol. Struct., 2017, 1130, 1009-1017.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.054]
[9]
Reddy, G.S.; Rao, K.U.M.; Sundar, C.S.; Sudha, S.S.; Haritha, B.; Swapna, S.; Reddy, C.S. Neat synthesis and antioxidant activity of α-aminophosphonates. Arab. J. Chem., 2014, 7(5), 833-838.
[http://dx.doi.org/10.1016/j.arabjc.2013.01.004]
[10]
Du, S.; Faiger, H.; Belakhov, V.; Baasov, T. Towards the development of novel antibiotics: Synthesis and evaluation of a mechanism-based inhibitor of Kdo8P synthase. Bioorg. Med. Chem., 1999, 7(12), 2671-2682.
[http://dx.doi.org/10.1016/S0968-0896(99)00233-3] [PMID: 10658571]
[11]
Geetha, C.; Kesavulu, M.M.; Venkanna, B.; Reddy, S.B.; Uma, A.; Syam, P.G.; Naga, R.C.; Rao, M.V.B. Microwave‐assisted one‐pot synthesis of new α‐aminophosphonates using ZnBr2‐SiO2 as a catalyst under solvent‐free conditions and their anticancer activity. ChemistrySelect, 2018, 3(34), 9778-9784.
[http://dx.doi.org/10.1002/slct.201801965]
[12]
Huang, X.C.; Wang, M.; Pan, Y.M.; Tian, X.Y.; Wang, H.S.; Zhang, Y. Synthesis and antitumor activities of novel α-aminophosphonates dehydroabietic acid derivatives. Bioorg. Med. Chem. Lett., 2013, 23(19), 5283-5289.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.005] [PMID: 23988357]
[13]
Gnant, M.; Clézardin, P. Direct and indirect anticancer activity of bisphosphonates: A brief review of published literature. Cancer Treat. Rev., 2012, 38(5), 407-415.
[http://dx.doi.org/10.1016/j.ctrv.2011.09.003 PMID: 21983264]
[14]
Chinthaparthi, R.R.; Bhatnagar, I.; Gangireddy, C.S.; Syama, S.C.; Cirandur, S.R. Green synthesis of α-aminophosphonate derivatives on a solid supported TiO2 -SiO2 catalyst and their anticancer activity. Arch. Pharm. (Weinheim), 2013, 346(9), 667-676.
[http://dx.doi.org/10.1002/ardp.201300214 PMID: 23959690]
[15]
Sthanikam, S.P.; Krishnammagari, S.K.; Soora, H.J.; Balam, S.K.; Chereddy, S.S.; Pasupuleti, V.R.; Tirumalasetty, M.B.; Wudayagiri, R.; Cirandur, S.R. Design, synthesis, antioxidant, and anti-breast cancer activities of novel diethyl(alkyl/aryl/hetero arylamino)(4-(pyridin-2-yl)phenyl)methylphosphonates. Arch. Pharm. Chem. Life Sci., 2013, 346(5), 380-391.
[http://dx.doi.org/10.1002/ardp.201300032]
[16]
Valasani, K.R.; Sanapalli, S.R.; Balam, S.K.; Cirandur, S.R.; Nimmanapalli, P.R.; Tamatam, C.M.R.; Chamarthi, N.R.; Ghosh, S.K. Design, synthesis and anti-colon cancer activity evaluation of phosphorylated derivatives of Lamivudine (3TC). Lett. Drug Des. Discov., 2011, 8(1), 59-64.
[http://dx.doi.org/10.2174/157018011793663921]
[17]
Avula, B.; Kishore, K.C.; Mudumala, V.N.R.; Rajesh, R.; Sandip, K.N.; Sathees, C.R.; Cirandur, S.R. Synthesis, characterization and evaluation of cytotoxicity of new aminophosphonic acid diesters in human leukemia cells. Lett. Drug Des. Discov., 2010, 7(4), 250-259.
[http://dx.doi.org/10.2174/157018010790945841]
[18]
Awad, M.K.; Aal, M.F.A.; Atlam, F.M.; Hekal, H.A. Design, synthesis, molecular modeling, and biological evaluation of novel α-aminophosphonates based quinazolinone moiety as potential anticancer agents: DFT, NBO and vibrational studies. ‎. J. Mol. Struct., 2018, 1173, 128-141.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.094]
[19]
Ye, M.Y.; Yao, G.Y.; Pan, Y.M.; Liao, Z.X.; Zhang, Y.; Wang, H.S. Synthesis and antitumor activities of novel α-aminophosphonate derivatives containing an alizarin moiety. Eur. J. Med. Chem., 2014, 83, 116-128.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.067] [PMID: 24953029]
[20]
Azaam, M.M.; Kenawy, E.R.; Ahmed, S.B.E.; Khamis, A.A.; Mohammed, A.E.M. Antioxidant and anticancer activities of α-aminophosphonates containing thiadiazole moiety. J. Saudi Chem. Soc., 2018, 22(1), 34-41.
[http://dx.doi.org/10.1016/j.jscs.2017.06.002]
[21]
Gu, L.; Jin, C. Synthesis and antitumor activity of α-aminophosphonates containing thiazole[5,4-b]pyridine moiety. Org. Biomol. Chem., 2012, 10(35), 7098-7102.
[http://dx.doi.org/10.1039/c2ob25875g] [PMID: 22850968]
[22]
Abdel-Megeed, M.F.; Badr, B.E.; Azaam, M.M.; El-Hiti, G.A. Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl)ethylphosphonates. Bioorg. Med. Chem., 2012, 20(7), 2252-2258.
[http://dx.doi.org/10.1016/j.bmc.2012.02.015] [PMID: 22370339]
[23]
Jin, L.; Song, B.; Zhang, G.; Xu, R.; Zhang, S.; Gao, X.; Hu, D.; Yang, S. Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-1-(fluorophenyl)-O,O-dialkyl-α-aminophosphonates. Bioorg. Med. Chem. Lett., 2006, 16(6), 1537-1543.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.041] [PMID: 16406612]
[24]
Ali, Na.; Zakir, S.; Patel, M.; Farooqui, M. Synthesis of new α aminophosphonate system bearing Indazole moiety and their biological activity. Eur. J. Med. Chem., 2012, 50, 39-43.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.024] [PMID: 22341789]
[25]
Tiwari, S.V.; Sharif, N.S.; Gajare, R.I.; Vazquez, J.A.S.; Sangshetti, J.N.; Damale, M.D.; Nikalje, A.P.G. New 2-Oxoindolin phosphonates as novel agents to treat can-cer: A green synthesis and molecular modeling. Molecules, 2018, 23(8), 1-20.
[26]
Mungara, A.K.; Park, Y.K.; Lee, K.D. Synthesis and antiproliferative activity of novel α-aminophosphonates. Chem. Pharm. Bull. (Tokyo), 2012, 60(12), 1531-1537.
[PMID: 22986831]
[27]
Kumbhare, R.M.; Dadmal, T.L.; Ramaiah, M.J.; Kishore, K.S.V.; Pushpa Valli, S.N.; Tiwari, S.K.; Appalanaidu, K.; Rao, Y.K.; Bhadra, M.P. Synthesis and anticancer evaluation of novel triazole linked N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells. Bioorg. Med. Chem. Lett., 2015, 25(3), 654-658.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.083] [PMID: 25563891]
[28]
Abdellatif, K.R.; Abdelall, E.K.; Abdelgawad, M.A.; Ahmed, R.R.; Bakr, R.B. Synthesis and anticancer activity of some new pyrazolo[3,4-d]pyrimidin-4-one derivatives. Molecules, 2014, 19(3), 3297-3309.
[http://dx.doi.org/10.3390/molecules19033297] [PMID: 24647032]
[29]
Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.A.; Safwat, N.A.; Elaasser, M.M.; Soliman, A.M. Biological evaluation of some new N-(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2016, 124, 299-310.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.060] [PMID: 27597407]
[30]
Ramya, P.V.S.; Sowjanya, T.; Srinivas, A.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of thieno[2, 3‐d]pyrimidine‐amides as potential anticancer agents. ChemistrySelect, 2018, 3(11), 3101-3106.
[http://dx.doi.org/10.1002/slct.201703061]
[31]
Mishra, C.B.; Mongre, R.K.; Kumari, S.; Jeong, D.K.; Tiwari, M. Synthesis, in vitro and in vivo anticancer activity of novel 1-(4-imino-1-substituted-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-yl)urea derivatives. RSC Advances, 2016, 6(29), 24491-24500.
[http://dx.doi.org/10.1039/C5RA26939C]
[32]
Yong, J.; Lu, C.; Wu, X. Synthesis of Isoxazole moiety containing thieno[2,3-d]pyrimidine derivatives and preliminarily in vitro anticancer activity (Part II). Anticancer. Agents Med. Chem., 2015, 15(9), 1148-1155.
[http://dx.doi.org/10.2174/1871520615666150305103122] [PMID: 25742095]
[33]
Reddy, G.L.; Guru, S.K.; Srinivas, M.; Pathania, A.S.; Mahajan, P.; Nargotra, A.; Bhushan, S.; Vishwakarma, R.A.; Sawant, S.D. Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors. Eur. J. Med. Chem., 2014, 80, 201-208.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.051 PMID: 24780597]
[34]
Yan, C.G.; Li, J. Jiao, L.M.; Yu, Z.R.; Wang, H.W.; Zhu, W.J.; Liao, X.X.; Yu, F.Z. Synthesis and antitumor activity of α-aminophosphonate derivatives containing thieno[2,3-d]pyrimidines. Chin. Chem. Lett., 2015, 26(6), 755-758.
[http://dx.doi.org/10.1016/j.cclet.2015.03.026]
[35]
Ghafuri, H.; Rashidizadeh, A.; Zand, H.R.E. Highly efficient solvent free synthesis of α-aminophosphonates catalyzed by recyclable nano-magnetic sulfated zirconia (Fe3O4@ZrO2/SO42-). RSC Advances, 2016, 6(19), 16046-16056.
[http://dx.doi.org/10.1039/C5RA13173A]
[36]
Tang, J.; Wanga, L.; Wang, W.; Zhang, L.; Wu, S.; Mao, D. A facile synthesis of α-aminophosphonates catalyzed by Ytterbium perfluorooctanoate under solvent-free conditions. J. Fluor. Chem., 2011, 132(2), 102-106.
[http://dx.doi.org/10.1016/j.jfluchem.2010.12.002]
[37]
Ghosh, R.; Maiti, S.; Chakraborty, A.; Maiti, D.K. In(OTf)3 Catalysed simple one-pot synthesis of α-aminophosphonates. J. Mol. Catal. Chem., 2004, 210(1-2), 53-57.
[http://dx.doi.org/10.1016/j.molcata.2003.09.020]
[38]
Kabanchnik, M.M.; Ternovskaya, T.N.; Zobnina, E.V.; Beletskaya, I.P. Reactions of Hydrophosphoryl compounds with schiff bases in the presence of CdI2. Russ. J. Org. Chem., 2002, 38(4), 480-487.
[http://dx.doi.org/10.1023/A:1016578602100]
[39]
Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Gold nanoparticles supported on titanium dioxide: An efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chem. Commun. (Camb.), 2014, 50(46), 6145-6148.
[http://dx.doi.org/10.1039/c4cc01822b] [PMID: 24776805]
[40]
Yasuhiro, S.; Yoshitsune, S.; Shunsuke, T.; Takayuki, H. One‐pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles. Angew. Chem., 2010, 122(9), 1700-1704.
[http://dx.doi.org/10.1002/ange.200906573]
[41]
Prasad, S.S.; Jayaprakash, S.H.; Rao, K.U.; Reddy, N.B.; Kumar, P.C.R.; Reddy, C.S. Nano-TiO2 catalyzed microwave synthesis of α-Hydroxyphosphonates. Org. Commun., 2014, 7(3), 98-105.
[42]
Hirakawa, H.; Katayama, M.; Shiraishi, Y.; Sakamoto, H.; Wang, K.; Ohtani, B.; Ichikawa, S.; Tanaka, S.; Hirai, T. One-pot synthesis of imines from nitroaromatics and alcohols by tandem photocatalytic and catalytic reactions on Degussa (Evonik) P25 titanium dioxide. ACS Appl. Mater. Interfaces, 2015, 7(6), 3797-3806.
[http://dx.doi.org/10.1021/am508769x] [PMID: 25621386]
[43]
Vega, J.L.R.; Pérez, A.A.; Gómez, R.; Gómez, M.E.N. Sulfated Titania [TiO2/SO4 2−]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol. Appl. Catal., A., 2010, 379(1-2), 24-29.
[44]
Krishnakumar, B.; Swaminathan, M. An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-Titania as a novel solid acid catalyst. Catal. Commun., 2011, 16(1), 50-55.
[http://dx.doi.org/10.1016/j.catcom.2011.08.029]
[45]
Santhisudha, S.; Jayaprakash, S.H.; Mohan, G.; Kumar, Y.N.; Suganthi, V.; Mohanasrinivasan, V.; Reddy, C.S. TiO2-SO42- catalyzed synthesis and antimicrobial activity/molecular docking studies of β-Indolylnitroalkanes. Comb. Chem. High Throughput Screen., 2016, 19(4), 290-297.
[http://dx.doi.org/10.2174/1386207319666160315113237] [PMID: 26975404]
[46]
Mona, H.S.; Sepideh, N.D. Nano TiO2/SO42- as a heterogeneous solid acid catalyst for the synthesis of 5-substited-1H-tetrazoles. C. R. Chim., 2014, 17(10), 1007-1012.
[http://dx.doi.org/10.1016/j.crci.2013.11.002]
[47]
Abdel-Megeed, M.F.; Badr, B.E.; Azaam, M.M.; El-Hiti, G.A. Synthesis and antimicrobial activities of a novel series of heterocyclic α-aminophosphonates. Arch. Pharm. (Weinheim), 2012, 345(10), 784-789.
[http://dx.doi.org/10.1002/ardp.201200109] [PMID: 22829337]
[48]
Krishnakumar, B.; Swaminathan, M. A convenient method for the N-formylation of amines at room temperature using TiO2-P25 or sulfated Titania. J. Mol. Catal. Chem., 2011, 334(1-2), 98-102.
[http://dx.doi.org/10.1016/j.molcata.2010.11.002]
[49]
Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th ed; Butterworth-Heinemann: Oxford, 1997.
[50]
Krishnakumar, B.; Velmurugan, R.; Swaminathan, M. TiO2-SO42- as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation. Catal. Commun., 2011, 12(5), 375-379.
[http://dx.doi.org/10.1016/j.catcom.2010.10.015]
[51]
Krishnakumar, B.; Velmurugan, R.; Jothivel, S.; Swaminathan, M. An efficient protocol for the green synthesis of quinoxaline and dipyridophenazine derivatives at room temperature using sulfated Titania. Catal. Commun., 2010, 11(12), 997-1002.
[http://dx.doi.org/10.1016/j.catcom.2010.04.021]
[52]
Available at:. http://preadmet.bmdrc.org/ [Accessed: 18th January 2019].
[53]
Available at. http://www.molinspiration.com/cgi-bin/properties [Accessed: 21st January 2019].
[54]
Available at. http://www.organic-chemistry.org/prog/peo/ [Accessed: 25th January 2019].
[55]
Mona, H.S. TiO2 as a new and reusable catalyst for one-pot three-component syntheses of α-aminophosphonates in solvent-free conditions. Tetrahedron, 2008, 64(23), 5459-5466.
[http://dx.doi.org/10.1016/j.tet.2008.04.016]
[56]
Sundar, C.S.; Reddy, N.B.; Prasad, S.S.; Rao, K.U.M.; Prakash, S.H.J.; Reddy, C.S. The synthesis and bioactivity of dimethyl (2,3- dihydrobenzo[b][1,4]dioxin-6-yl)(aryl amino)methylphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189(4), 551-557.
[http://dx.doi.org/10.1080/10426507.2013.842998]
[57]
Sravya, G.; Grigory, V.Z.; Balakrishna, A.; Reddy, K.M.K.; Reddy, C.S.; Reddy, G.M.; Camilo, A.J.; Garcia, J.R.; Reddy, N.B. Nano-TiO2/SiO2 catalyzed synthesis, theoretical calculations and bioactivity studies of new α-aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(9), 562-567.
[http://dx.doi.org/10.1080/10426507.2018.1455201]
[58]
Prashanthi, Y.; Bhasker, N.; Kavita, A.; Srinivas, R.; Reddy, B.V.S. Sulfated zirconia: A novel and reusable catalyst for the one-pot synthesis of α-aminophosphonates. Der Pharma Chem., 2013, 5(3), 288-293.
[59]
Chetan, K.K.; Vardhan, B.S.; Ganesh, U.C. Sulfated polyborate catalyzed Kabachnik-fields reaction: An efficient and eco-friendly protocol for synthesis of α-amino phosphonates. Tetrahedron Lett., 2017, 58(7), 694-698.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.022]
[60]
Thomas, L.C. Interpretation of the Infrared Spectra of Organophosphorus Compounds Heyden & Son Ltd: London, 1974.
[61]
Quin, L.D. A Guide to Organophosphorus Chemistry; John Wiley & Sons: New York, 2000.
[62]
Kemp, W. Organic Specroscopy, 3rd ed; Macmillan International Higher Education: New York, 1991.
[http://dx.doi.org/10.1007/978-1-349-15203-2]
[63]
Chen, Z.; Zeng, M.; Song, B.; Hou, C.; Hu, D.; Li, X.; Wang, Z.; Fan, H.; Bi, L.; Liu, J. Dufulin activates HrBP1 to produce antiviral responses in tobacco. PLoS One, 2012, 7(5), e37944 (1-17).
[http://dx.doi.org/10.1371/journal.pone.0037944]
[64]
Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci., 2008, 64(4), 319-325.
[http://dx.doi.org/10.1002/ps.1518] [PMID: 18273882]
[65]
Atherton, F.R.; Hassall, C.H.; Lambert, R.W. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J. Med. Chem., 1986, 29(1), 29-40.
[http://dx.doi.org/10.1021/jm00151a005] [PMID: 3510298]
[66]
Oprea, T.I.; Matter, H. Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol., 2004, 8(4), 349-358.
[http://dx.doi.org/10.1016/j.cbpa.2004.06.008] [PMID: 15288243]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Page: [396 - 410]
Pages: 15
DOI: 10.2174/1570180816666190329223207
Price: $65

Article Metrics

PDF: 13
HTML: 1