Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

How to Start a Total Synthesis from the Wieland-Miescher Ketone?

Author(s): Zai-Qun Liu *

Volume 16, Issue 3, 2019

Page: [328 - 341] Pages: 14

DOI: 10.2174/1570179416666190328233710

Price: $65

Abstract

Background: The Wieland-Miescher ketone consists of a couple of enantiomers of 9-methyl- Δ5(10)-octalin-1,6-dione, in which the configuration at 9-position is S- or R-type. The Robinson annulation of 2-methyl-1,3-cyclohexanedione with methyl vinyl ketone is able to afford the Wieland-Miescher ketone. As widely used in the total synthesis, the Wieland-Miescher ketone is treated at the beginning of total synthesis, and protocols for treating the Wieland-Miescher ketone are worthy to be addressed.

Objective: The presented review provides the progress of the usage of Wieland-Miescher ketone for the total synthesis, while treatments on C=C and C=O in the Wieland-Miescher ketone at the beginning of total synthesis are exemplified herein.

Conclusion: Modifications of the Wieland-Miescher ketone are composed of oxidation, reduction, and electrophilic or nucleophilic addition. In addition, protection of non-conjugated C=O with glycol or protection of conjugated C=O with ethanedithiol, and the introduction of substituents into α-position of C=C can also be used to modify the structure of the Wieland-Miescher ketone. It is reasonably believed that many novel strategies will be found to treat the Wieland-Miescher ketone in the future total synthesis.

Keywords: Wieland-Miescher ketone, total synthesis, structural modification, screening chiral organocatalysts, bioactive molecules, novel protocols.

Graphical Abstract
[1]
Moyano, A.; Rios, R. Asymmetric organocatalytic cyclization and cycloaddition reactions. Chem. Rev., 2011, 111, 4703-4832.
[2]
Bradshaw, B.; Bonjoch, J. The Wieland-Miescher ketone: A journey from organocatalysis to natural product synthesis. Synlett, 2012, 23, 337-356.
[3]
Gallier, F.; Martel, A.; Dujardin, G. Enantioselective access to Robinson annulation products and Michael adducts as precursors. Angew. Chem. Int. Ed., 2017, 56, 12424-12458.
[4]
Volla, C.M.R.; Atodiresei, I.; Rueping, M. Catalytic C-C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114, 2390-2431.
[5]
Bradshaw, B.; Etxebarría-Jardi, G.; Bonjoch, J.; Viózquez, S.F.; Guillena, G.; Nájera, C. Efficient solvent-free Robinson annulation protocols for the highly enantioselective synthesis of the Wieland-Miescher ketone and analogues. Adv. Synth. Catal., 2009, 351, 2482-2490.
[6]
Liu, Z-Q. An overview on the Robinson annulation. Curr. Org. Chem., 2018, 22, 1347-1372.
[7]
Lazarski, K.E.; Rich, A.A.; Mascarenhas, C.M. A one-pot, asymmetric Robinson annulation in the organic chemistry majors laboratory. J. Chem. Educ., 2008, 85, 1531-1534.
[8]
Yang, X.; Wang, J.; Li, P. Recent progress on asymmetric organocatalytic construction of chiral cyclohexenone skeletons. Org. Biomol. Chem., 2014, 12, 2499-2513.
[9]
Nagasawa, K.; Matsuda, N.; Noguchi, Y.; Yamanashi, M.; Zako, Y.; Shimizu, I. Stereoselective synthesis of cyclopentanones by reductive cleavage of 6-oxonorbornane-2-carboxylates and its application to the synthesis of lα,25-dihydroxyvitamin D3CD ring. J. Org. Chem., 1993, 58, 1483-1490.
[10]
Zhou, G.; Gao, X.; Li, W.Z.; Li, Y. An enantioselective synthetic strategy toward the polyhydroxylated agarofuran. Tetrahedron Lett., 2001, 42, 3101-3103.
[11]
Smith, III , A.B.; Leenay, T.L. Indole diterpene synthetic studies. 5. Development of a unified synthetic strategy; a stereocontrolled, second-generation synthesis of (-)-paspaline. J. Am. Chem. Soc., 1989, 111, 5761-5768.
[12]
Krieger, J.; Smeilus, T.; Schackow, O.; Giannis, A. Lewis acid mediated Nazarov cyclization as a convergent and enantioselective entry to C-nor-D-homo-steroids. Chem. Eur. J., 2017, 23, 5000-5004.
[13]
Kapras, V.; Vyklicky, V.; Budesinsky, M.; Cisarova, I.; Vyklicky, L.; Chodounska, H.; Jahn, U. Total synthesis of ent-pregnanolone sulfate and its biological investigation at the NMDA receptor. Org. Lett., 2018, 20, 946-949.
[14]
Dethe, D.H.; Mahapatra, S.; Sau, S.K. Enantioselective total synthesis and assignment of the absolute configuration of the meroterpenoid (+)-taondiol. Org. Lett., 2018, 20, 2766-2769.
[15]
Schiavo, L.; Lebedel, L.; Massé, P.; Choppin, S.; Hanquet, G. Access to Wieland-Miescher diketone-derived building blocks by stereoselective construction of the C-9 quaternary carbon center using the Mukaiyama Aldol reaction. J. Org. Chem., 2018, 83, 6247-6258.
[16]
Tahara, T.; Streit, U.; Pelish, H.E.; Shair, M.D. STAT3 inhibitory activity of structurally simplified withaferin A analogues. Org. Lett., 2017, 19, 1538-1541.
[17]
Yu, J.; Yu, B. Synthesis of the ABC skeleton of the aglycon of echinoside A. Chin. Chem. Lett., 2015, 26, 1331-1335.
[18]
Bürki, C.; Bonjoch, J.; Bradshaw, B.; Villa, G.; Renaud, P. Total synthesis of aignopsanes, a class of sesquiterpenes: (+)-Aignopsanoic acid A, (-)-methyl aignopsanoate A, and (-)-isoaignopsanoic A. Chem. Eur. J., 2015, 21, 395-401.
[19]
Smith, III, A.B; Kürti, L.; Davulcu, A.H.; Cho, Y.S. Development of a scalable synthesis of a common eastern tricyclic lactone for construction of the nodulisporic acids. Org. Process Res. Dev., 2007, 11, 19-24.
[20]
Kamishima, T.; Kikuchi, T.; Katoh, T. Total synthesis of (+)-strongylin A, a rearranged sesquiterpenoid hydroquinone from a marine sponge. Eur. J. Org. Chem., 2013, 4558-4563.
[21]
Katoh, T.; Atsumi, S.; Saito, R.; Narita, K.; Katoh, T. Unified synthesis of the marine sesquiterpene quinines (+)-smenoqualone, (–)-ilimaquinone, (+)-smenospongine, and (+)-isospongiaquinone. Eur. J. Org. Chem., 2017, 3837-3849.
[22]
Ma, K.; Zhang, C.; Liu, M.; Chu, Y.; Zhou, L.; Hu, C.; Ye, D. First total synthesis of (+)-carainterol A. Tetrahedron Lett., 2010, 51, 1870-1872.
[23]
Richard, J-A.; Chen, D.Y-K. A chiral-pool-based approach to the core structure of (+)-hyperforin. Eur. J. Org. Chem., 2012, 484-487.
[24]
Schmalzbauer, B.; Herrmann, J.; Müller, R.; Menche, D. Total synthesis and antibacterial activity of dysidavarone A. Org. Lett., 2013, 15, 964-967.
[25]
Sakurai, J.; Oguchi, T.; Watanabe, K.; Abe, H.; Kanno, S-i.; Ishikawa, M.; Katoh, T. Highly efficient total synthesis of the marine natural products (+)-avarone, (+)-avarol, (-)-neoavarone, (-) -neoavarol and (+)-aureol. Chem. Eur. J., 2008, 14, 829-837.
[26]
Oguchi, T.; Watanabe, K.; Ohkubo, K.; Abe, H.; Katoh, T. Enantioselective total synthesis of (-)-candelalides A, B and C: Potential Kv1.3 blocking immunosuppressive agents. Chem. Eur. J., 2009, 15, 2826-2845.
[27]
Hagiwara, H.; Uda, H. Optically pure (4aS)-(+)- or (4aR)-(-)-l,4a-dimethyl-4,4a,7,8-tetrahydro naphthalene-2,5(3H,6H)-dione and its use in the synthesis of an inhibitor of steroid biosynthesis. J. Org. Chem., 1988, 53, 2308-2311.
[28]
Kim, H.; Baker, J.B.; Lee, S-U.; Park, Y.; Bolduc, K.L.; Park, H-B.; Dickens, M.G.; Lee, D-S.; Kim, Y.; Kim, S.H.; Hong, J. Stereoselective synthesis and osteogenic activity of subglutinols A and B. J. Am. Chem. Soc., 2009, 131, 3192-3194.
[29]
Nozawa, M.; Suka, Y.; Hoshi, T.; Suzuki, T.; Hagiwara, H. Total synthesis of the hallucinogenic neoclerodane diterpenoid salvinorin A. Org. Lett., 2008, 10, 1365-1368.
[30]
Carneiro, V.M.T.; Ferraz, H.M.C.; Vieira, T.O.; Ishikawa, E.E.; Silva, Jr, L.F. A ring contraction strategy toward a diastereoselective total synthesis of (+)-bakkenolide A. J. Org. Chem., 2010, 75, 2877-2882.
[31]
Wang, Y.; Jäger, A.; Gruner, M.; Lübken, T.; Metz, P. Enantioselective total synthesis of 3β-hydroxy-7β-kemp-8(9)-en-6-one, a diterpene isolated from higher termites. Angew. Chem. Int. Ed., 2017, 56, 15861-15865.
[32]
Villa, G.; Bradshaw, B.; Bürki, C.; Bonjoch, J.; Renaud, P. Synthesis of the all-cis-trimethyldecalin fragment of unusual terpenes by radical-mediated protonolysis of an alkylboron derivative. Tetrahedron Lett., 2014, 55, 4608-4611.
[33]
Xu, X-S.; Li, Z-W.; Zhang, Y-J.; Peng, X-S.; Wong, H.N.C. Total synthesis of (±)-pallambins C and D. Chem. Commun., 2012, 48, 8517-8519.
[34]
Kaliappan, K.P.; Ravikumar, V. An expedient enantioselective strategy for the oxatetracyclic core of platensimycin. Org. Lett., 2007, 9, 2417-2419.
[35]
Yokoe, H.; Mitsuhashi, C.; Matsuoka, Y.; Yoshimura, T.; Yoshida, M.; Shishido, K. Enantiocontrolled total syntheses of breviones A, B, and C. J. Am. Chem. Soc., 2011, 133, 8854-8857.
[36]
Smith, III, A.B.; Mewshaw, R. An efficient approach to chiral, nonracemic trans-decahydro-5,8a-dimethyl-l,6-naphthalenedione derivatives: Total synthesis of (+)-pallescensin A. J. Org. Chem., 1984, 49, 3685-3689.
[37]
Werner, B.; Kalesse, M. Pinacol coupling strategy for the construction of the bicyclo[6.4.1] tridecane framework of schiglautone A. Org. Lett., 2017, 19, 1524-1526.
[38]
Chapelain, C.L. Strategy towards the enantioselective synthesis of schiglautone A. Org. Biomol. Chem., 2017, 15, 6242-6256.
[39]
Zhang, M.; Liu, N.; Tang, W. Stereoselective total synthesis of hainanolidol and harringtonolide via oxidopyrylium-based [5+2] Cycloaddition. J. Am. Chem. Soc., 2013, 135, 12434-12438.
[40]
Shigehisa, H.; Mizutani, T.; Tosaki, S-y.; Ohshima, T.; Shibasaki, M. Formal total synthesis of (+)-wortmannin using catalytic asymmetric intramolecular Aldol condensation reaction. Tetrahedron, 2005, 61, 5057-5065.
[41]
Min, S-J.; Danishefsky, S.J. An approach to the synthesis of tricholomalide A: An effective means for achieving homo-Robinson annulation. Tetrahedron Lett., 2008, 49, 3496-3499.
[42]
Boulifa, E.; Fernández, A.; Alvarez, E.; Alvarez-Manzaneda, R.; Mansour, A.I.; Chahboun, R.; Alvarez-Manzaneda, E. Synthesis of the putative structure of 15-oxopuupehenoic acid. J. Org. Chem., 2014, 79, 10689-10695.
[43]
Cañellas, S.; Ayats, C.; Henseler, A.H.; Pericàs, M.A. A highly active polymer-supported catalyst for asymmetric Robinson annulations in continuous flow. ACS Catal., 2017, 7, 1383-1391.
[44]
Alarcon, J.; Lamilla, C.; Cespedes, C.L. Insecticidal activity of sesquiterpenes skeleton synthesized by the conventional Robinson annulations reaction on Drosophila melanogaster. Ind. Crops Prod., 2013, 42, 268-272.
[45]
Liu, Q.; Han, L.; Qin, B.; Mu, Y.; Guan, P.; Wang, S.; Huang, X. Total synthesis of (±)-(1β, 4β, 4aβ, 8aα)-4,8a-dimethyl-octahydro-naphthalene-1,4a(2H)-diol. Org. Chem. Front., 2018, 5, 1719-1723.
[46]
Pemp, A.; Seifert, K. Enantioselective total synthesis of (+)-labd-8(17)-ene-3β,15-diol and (-)-labd-8(17)-ene-3β,7α,15-triol. Tetrahedron Lett., 1997, 38, 2081-2084.
[47]
Jung, M.E.; Duclos, B.A. Synthetic approach to analogues of betulinic acid. Tetrahedron, 2006, 62, 9321-9334.
[48]
Schneider, L.M.; Schmiedel, V.M.; Pecchioli, T.; Lentz, D.; Merten, C.; Christmann, M. Asymmetric synthesis of carbocyclic propellanes. Org. Lett., 2017, 19, 2310-2313.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy