The Role of Nanofiltration in the Pathogen Safety of Biologicals: An Update

Author(s): Masaharu Inouye, Thierry Burnouf*

Journal Name: Current Nanoscience

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Nanofiltration technology to remove possible pathogenic viruses during biopharmaceutical manufacturing was introduced in the biopharmaceutical industry in 1989. The very first industrial implementation took place in the early 1990s, through commercial manufacturing processes of plasma- derived medical products. Then it was applied to recombinant protein medical products, including monoclonal antibodies. In the first review published in 2005 in this journal, the technology was already considered promising and was much welcomed by the industry, but it was still a relatively emerging technology at that time, and many questions were raised about its robustness as a reliable virus-removal tool. We conducted a review to update the published information (SCI journals and suppliers’ documentation) existing on the use of nanofiltration as an industrial process for removing viruses from various biologicals. After almost a decade from the previous review, nanofiltration has established itself as a routine production step in most biopharmaceutical manufacturing. It has become one of the essential manufacturing processes used to assure safety against viral contamination. The technology is applied to manufacturing processes of various biologicals (human plasma products and complex recombinant proteins, such as coagulation factors and monoclonal antibodies made from mammalian cells). Many biologicals that undergo nanofiltration are licensed by regulatory authorities, which illustrates that nanofiltration is recognized as a robust and safe virus-removal method. No adverse events related to the use of nanofiltration have been recorded. New trends in nanofiltration technology continue to appear. As was identified during its introduction to the market and predicted in the previous review, nanofiltration has achieved major technical breakthroughs for ensuring the safety of biologicals, particularly human plasma-derived products, against viruses.

Keywords: Nanofiltration, virus removal, plasma, monoclonal antibodies, recombinant proteins, viral safety, prion.

[1]
Burnouf, T.; Radosevich, M. Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia, 2003, 9(1), 24-37.
[http://dx.doi.org/10.1046/j.1365-2516.2003.00701.x] [PMID: 12558776]
[2]
Burnouf, T.; Radosevich, M.; Goubran, H.; Willkommen, H. Place of nanofiltration for assuring viral safety of biologicals. Curr. Nanosci., 2005, 1(3), 189-201.
[http://dx.doi.org/10.2174/157341305774642894]
[3]
Burnouf-Radosevich, M.; Appourchaux, P.; Huart, J.J.; Burnouf, T. Nanofiltration, a new specific virus elimination method applied to high-purity factor IX and factor XI concentrates. Vox Sang., 1994, 67(2), 132-138.
[http://dx.doi.org/10.1159/000462577] [PMID: 7801601]
[4]
Burnouf, T. Modern plasma fractionation. Transfus. Med. Rev., 2007, 21(2), 101-117.
[http://dx.doi.org/10.1016/j.tmrv.2006.11.001] [PMID: 17397761]
[5]
Burnouf, T. Value of virus filtration as a method for improving the safety of plasma products. Vox Sang., 1996, 70(4), 235-236.
[http://dx.doi.org/10.1111/j.1423-0410.1996.tb01334.x] [PMID: 9123931]
[6]
Celis, P.; Silvester, G. European Regulatory guidance on virus safety of recombinant proteins, monoclonal antibodies and plasma derived medicinal products. Dev. Biol. (Basel), 2004, 118, 3-10.
[PMID: 15645667]
[7]
Horowitz, B.; Prince, A.M.; Horowitz, M.S.; Watklevicz, C. Viral safety of solvent-detergent treated blood products. Dev. Biol. Stand., 1993, 81, 147-161.
[PMID: 8174797]
[8]
ICH Expert Working Group - Viral safety evaluation of biotechnology products derived from cell lines of human or ani-mal origin Q5A(R1) 1999. Available from: https://vnras.com/wp-content/uploads/2017/05/Q5AR1_VIRAL-SAFETY-EVALUATION-OF-BIOTECHNOLOGY-PRODUCTS-DERIVED-FROM-CELL-LINES-OF-HUMAN-OR-ANIMAL-ORIGIN.pdf (Accessed on: December 28, 2018)
[9]
EMEA - CHMP/BWP - Guideline on virus safety evaluation of biotechnological investigational medicinal products 2009. Available from: https://www.ema.europa.eu/documents/scientific-guideline/guideline-virus-safety-evaluation-biotechnological-investigational-medicinal-products_en.pdf (Accessed on: December 28, 2018)
[10]
EMA - Reflection paper on viral safety of plasma-derived medicinal products with respect to Hepatitis E virus 2016. Available from: https://www.ema.europa.eu/documents/scientific-guideline/reflection-paper-viral-safety-plasma-derived-medicinal-products-respect-hepatitis-e-virus_en.pdf (Accessed on:December 28, 2018)
[11]
Farcet, M.R.; Lackner, C.; Antoine, G.; Rabel, P.O.; Wieser, A.; Flicker, A.; Unger, U.; Modrof, J.; Kreil, T.R. Hepatitis E virus and the safety of plasma products: investigations into the reduction capacity of manufacturing processes. Transfusion, 2016, 56(2), 383-391.
[http://dx.doi.org/10.1111/trf.13343] [PMID: 26399175]
[12]
Yunoki, M.; Yamamoto, S.; Tanaka, H.; Nishigaki, H.; Tanaka, Y.; Nishida, A.; Adan-Kubo, J.; Tsujikawa, M.; Hattori, S.; Urayama, T.; Yoshikawa, M.; Yamamoto, I.; Hagiwara, K.; Ikuta, K. Extent of hepatitis E virus elimination is affected by stabilizers present in plasma products and pore size of nanofilters. Vox Sang., 2008, 95(2), 94-100.
[http://dx.doi.org/10.1111/j.1423-0410.2008.01078.x] [PMID: 18714441]
[13]
European Commission - Note for guidance on minimising the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products (EMA/410/01 rev.3) 2011. Available from: https://www.ema.europa.eu/documents/scientific-guideline/minimising-risk-transmitting-animal-spongiform-encephalopathy-agents-human-veterinary-medicinal_en.pdf (Accessed on: December 28, 2018)
[14]
Yunoki, M.; Tanaka, H.; Urayama, T.; Hattori, S.; Ohtani, M.; Ohkubo, Y.; Kawabata, Y.; Miyatake, Y.; Nanjo, A.; Iwao, E.; Morita, M.; Wilson, E.; MacLean, C.; Ikuta, K. Prion removal by nanofiltration under different experimental conditions. Biologicals, 2008, 36(1), 27-36.
[http://dx.doi.org/10.1016/j.biologicals.2007.04.005] [PMID: 17890100]
[15]
Yunoki, M.; Tanaka, H.; Urayama, T.; Kanai, Y.; Nishida, A.; Yoshikawa, M.; Ohkubo, Y.; Kawabata, Y.; Hagiwara, K.; Ikuta, K. Infectious prion protein in the filtrate even after 15 nm filtration. Biologicals, 2010, 38(2), 311-313.
[http://dx.doi.org/10.1016/j.biologicals.2009.10.018] [PMID: 19931469]
[16]
Chtourou, S.; Porte, P.; Nogré, M.; Bihoreau, N.; Cheesman, E.; Samor, B.; Sauger, A.; Raut, S.; Mazurier, C. A solvent/detergent-treated and 15-nm filtered factor VIII: a new safety standard for plasma-derived coagulation factor concentrates. Vox Sang., 2007, 92(4), 327-337.
[http://dx.doi.org/10.1111/j.1423-0410.2007.00892.x] [PMID: 17456157]
[17]
Caballero, S.; Diez, J.M.; Belda, F.J.; Otegui, M.; Herring, S.; Roth, N.J.; Lee, D.; Gajardo, R.; Jorquera, J.I. Robustness of nanofiltration for increasing the viral safety margin of biological products. Biologicals, 2014, 42(2), 79-85.
[http://dx.doi.org/10.1016/j.biologicals.2013.10.003] [PMID: 24485384]
[18]
Nowak, T.; Popp, B.; Gröner, A.; Schäfer, W.; Kalina, U.; Enssle, K.; Roth, N.J. Pathogen safety of a pasteurized four-factor human prothrombin complex concentrate preparation using serial 20N virus filtration. Transfusion, 2017, 57(5), 1184-1191.
[http://dx.doi.org/10.1111/trf.14010] [PMID: 28191640]
[19]
Kreil, T.R.; Wieser, A.; Berting, A.; Spruth, M.; Medek, C.; Pölsler, G.; Gaida, T.; Hämmerle, T.; Teschner, W.; Schwarz, H.P.; Barrett, P.N. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives. Transfusion, 2006, 46(7), 1143-1151.
[http://dx.doi.org/10.1111/j.1537-2995.2006.00864.x] [PMID: 16836561]
[20]
Yokoyama, T.; Murai, K.; Murozuka, T.; Wakisaka, A.; Tanifuji, M.; Fujii, N.; Tomono, T. Removal of small non-enveloped viruses by nanofiltration. Vox Sang., 2004, 86(4), 225-229.
[http://dx.doi.org/10.1111/j.0042-9007.2004.00515.x] [PMID: 15144526]
[21]
Bogedain, C.; Maass, G.; Hörer, M. Filtration method for separating viruses. US6479273B1, March 6 1997.
[22]
Chou, M.L.; Lin, L.T.; Devos, D.; Burnouf, T. Nanofiltration to remove microparticles and decrease the thrombogenicity of plasma: in vitro feasibility assessment. Transfusion, 2015, 55(10), 2433-2444.
[http://dx.doi.org/10.1111/trf.13162] [PMID: 25988671]
[23]
Chou, M.L. Dedicated, Virally-Inactivated, Platelet Lysates and platelet Microparticles in Regenerative Medicine And Neuroprotective Therapies. Dual PhD Thesis, University of Lille-Nord de France, Faculty of Medicine, Lille, France and Taipei Medical University, Graduate Institute of Medical Sciences, Taipei, Taiwan. December 8 2016.
[24]
Marques, B.F.; Roush, D.J.; Göklen, K.E. Virus filtration of high-concentration monoclonal antibody solutions. Biotechnol. Prog., 2009, 25(2), 483-491.
[http://dx.doi.org/10.1002/btpr.177] [PMID: 19353736]
[25]
Dishari, S.K.; Micklin, M.R.; Sung, K.J.; Zydney, A.L.; Venkiteshwaran, A.; Earley, J.N. Effects of solution conditions on virus retention by the Viresolve® NFP filter. Biotechnol. Prog., 2015, 31(5), 1280-1286.
[http://dx.doi.org/10.1002/btpr.2125] [PMID: 26081350]
[26]
Hongo-Hirasaki, T.; Komuro, M.; Ide, S. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N. Biotechnol. Prog., 2010, 26(4), 1080-1087.
[http://dx.doi.org/10.1002/btpr.415] [PMID: 20730765]
[27]
Strauss, D.; Goldstein, J.; Hongo-Hirasaki, T.; Yokoyama, Y.; Hirotomi, N.; Miyabayashi, T.; Vacante, D. Characterizing the impact of pressure on virus filtration processes and establishing design spaces to ensure effective parvovirus removal. Biotechnol. Prog., 2017, 33(5), 1294-1302.
[http://dx.doi.org/10.1002/btpr.2506] [PMID: 28556575]
[28]
Sofer, G.; Brorson, K.; Abujoub, A.; Aranha, H.; Burnouf, T.; Carter, J.; Jocham, U.E.; Jornitz, M.; Korneyeva, M.; Krishnan, M.; Marcus-Sekura, C.; Martin, J.; Morgan, M.; Prashad, M.; Robertson, G.A.; Rubino, M.; Shanks, M.; Shepherd, A.; Smith, T.; Sundaram, S.; Van Engelenburg, F.; Willkommen, H.; Wojciechowski, P.; Yoshinari, K.B. PDA Technical Report No. 41: Virus filtration. PDA J. Pharm. Sci. Technol., 2005, 59(2), 1-42.
[29]
Asper, M. Virus breakthrough after pressure release during virus retentive filtration, Parenteral Drug Association Virus and TSE Safety Forum. Barcelona, Spain, June 28-30, 2011.
[30]
Woods, M.A.; Zydney, A.L. Effects of a pressure release on virus retention with the Ultipor DV20 membrane. Biotechnol. Bioeng., 2014, 111(3), 545-551.
[http://dx.doi.org/10.1002/bit.25112] [PMID: 24018957]
[31]
LaCasse, D.; Lute, S.; Fiadeiro, M.; Basha, J.; Stork, M.; Brorson, K.; Godavarti, R.; Gallo, C. Mechanistic failure mode investigation and resolution of parvovirus retentive filters. Biotechnol. Prog., 2016, 32(4), 959-970.
[http://dx.doi.org/10.1002/btpr.2298] [PMID: 27160325]
[32]
Yamamoto, A.; Hongo-Hirasaki, T.; Uchi, U.; Hayashida, H.; Nagoya, F. Effect of hydrodynamic forces on virus removal capability of Planova™ filters. AIChE J., 2014, 60(6), 2286-2297.
[http://dx.doi.org/10.1002/aic.14392]
[33]
Dishari, S.K.; Venkiteshwaran, A.; Zydney, A.L. Probing effects of pressure release on virus capture during virus filtration using confocal microscopy. Biotechnol. Bioeng., 2015, 112(10), 2115-2122.
[http://dx.doi.org/10.1002/bit.25614] [PMID: 25898823]
[34]
Wieser, A.; Berting, A.; Medek, C.; Poelsler, G.; Kreil, T.R. The evolution of down-scale virus filtration equipment for virus clearance studies. Biotechnol. Bioeng., 2015, 112(3), 633-637.
[http://dx.doi.org/10.1002/bit.25452] [PMID: 25220795]
[35]
Slocum, A.; Burnham, M.; Genest, P.; Venkiteshwaran, A.; Chen, D.; Hughes, J. Impact of virus preparation quality on parvovirus filter performance. Biotechnol. Bioeng., 2013, 110(1), 229-239.
[http://dx.doi.org/10.1002/bit.24600] [PMID: 22766979]
[36]
Asher, D.; Mehta, U.; Leahy, A.; Mullin, L.; Doty, M.; Greenhalgh, P.; Katz, A.; Khan, N. Virus Preparation for Filter Validation. Genetic Engineering & Biotechnology News, 2012.
[http://dx.doi.org/10.1089/gen.32.14.18]
[37]
Remington, K.M. Filterability of virus stocks, Bioprocess International; Industry Yearbook, 2013, p. 59.
[38]
Roush, D.J.; Myrold, A.; Burnham, M.S.; And, J.V.; Hughes, J.V. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus. Biotechnol. Prog., 2015, 31(1), 135-144.
[http://dx.doi.org/10.1002/btpr.2020] [PMID: 25395156]
[39]
Burnham, M.; Schwartz, A.; Vyas, E.; Takahashi, E.; Nemitz, P.; Strauss, D.; Hirotomi, N.; Hughes, J. Advanced viral clearance study design. Total viral challenge approach to virus filtration. Bioprocess International., 2018, 52-57.
[40]
Ruppach, H. Log10 reduction factors in viral clearance studies. BioProcess. J., 2014, 12(4), 24-30.
[http://dx.doi.org/10.12665/J124.Ruppach]
[41]
Johnson, S.; Brorson, K.A.; Frey, D.D.; Dhar, A.K.; Cetlin, D.A. Characterization of non-infectious virus-like particle surrogates for viral clearance applications. Appl. Biochem. Biotechnol., 2017, 183(1), 318-331.
[http://dx.doi.org/10.1007/s12010-017-2447-y] [PMID: 28281181]
[42]
He, M.; Wang, J.; Chen, L.; Liu, J.; Zeng, P. The impact of emerging infectious diseases on Chinese blood safety. Transfus. Med. Rev., 2017, 31(2), 94-101.
[http://dx.doi.org/10.1016/j.tmrv.2016.10.002] [PMID: 27923518]
[43]
Kuehnert, M.J.; Epstein, J.S. Assuring blood safety and availability: Zika virus, the latest emerging infectious disease battlefront. Transfusion, 2016, 56(7), 1669-1672.
[http://dx.doi.org/10.1111/trf.13673] [PMID: 27389990]
[44]
Levi, J.E. Emerging infectious agents and blood safety in Latin America. Front. Med. (Lausanne), 2018, 5, 71.
[http://dx.doi.org/10.3389/fmed.2018.00071] [PMID: 29594126]
[45]
Geisler, C.; Jarvis, D.L. Adventitious viruses in insect cell lines used for recombinant protein expression. Protein Expr. Purif., 2018, 144, 25-32.
[http://dx.doi.org/10.1016/j.pep.2017.11.002] [PMID: 29133148]
[46]
Nims, R.W. Detection of adventitious viruses in biologicals--a rare occurrence. Dev. Biol. (Basel), 2006, 123, 153-164.
[PMID: 16566443]
[47]
Xie, Y.W.; Chan, P.K.; Szeto, C.K.; Kwok, S.Y.; Chu, I.M.; Chu, S.S.; Cheung, J.L.; Wong, S.W.; Ali, M.B.; Wong, B.L. Clearance of dengue virus in the plasma-derived therapeutic proteins. Transfusion, 2008, 48(7), 1342-1347.
[http://dx.doi.org/10.1111/j.1537-2995.2008.01647.x] [PMID: 18315529]
[48]
Yunoki, M.; Tanaka, H.; Takahashi, K.; Urayama, T.; Hattori, S.; Ideno, S.; Furuki, R.; Sakai, K.; Hagiwara, K.; Ikuta, K. Hepatitis E virus derived from different sources exhibits different behaviour in virus inactivation and/or removal studies with plasma derivatives. Biologicals, 2016, 44(5), 403-411.
[http://dx.doi.org/10.1016/j.biologicals.2016.05.004] [PMID: 27461242]
[49]
Blümel, J.; Musso, D.; Teitz, S.; Miyabayashi, T.; Boller, K.; Schnierle, B.S.; Baylis, S.A. Inactivation and removal of Zika virus during manufacture of plasma-derived medicinal products. Transfusion, 2017, 57(3pt2), 790-796.
[http://dx.doi.org/10.1111/trf.13873] [PMID: 27731495]
[50]
Cai, K.; Gröner, A.; Dichtelmüller, H.O.; Fabbrizzi, F.; Flechsig, E.; Gajardo, R.; von Hoegen, I.; Jorquera, J.I.; Kempf, C.; Kreil, T.R.; Lee, D.C.; Moscardini, M.; Pölsler, G.; Roth, N.J. Prion removal capacity of plasma protein manufacturing processes: a data collection from PPTA member companies. Transfusion, 2013, 53(9), 1894-1905.
[http://dx.doi.org/10.1111/trf.12050] [PMID: 23252676]
[51]
You, B.; Aubin, J.T.; Le-Hir, G.; Arzel, A.; Laude, H.; Flan, B. In vitro infectivity assay for prion titration for application to the evaluation of the prion removal capacity of biological products manufacturing processes. J. Virol. Methods, 2010, 164(1-2), 1-6.
[http://dx.doi.org/10.1016/j.jviromet.2009.10.010] [PMID: 19854223]
[52]
Yamaguchi, K.; Hamamoto, Y.; Manabe, S.I.; Yamamoto, N. Microparticle removability of the regenerated cellulose hollow fiber (BMM): An electron microscopic evaluation. J. Electron Microsc. (Tokyo), 1991, 40(5), 337-345.
[53]
Tsurumi, T.; Sato, T.; Osawa, N.; Hitaka, H. Structure and filtration performances of improved cuprammonium regenerated cellulose hollow fiber (improved BMM hollow fiber) for virus removal. Polym. J., 1990, 22, 1085-1100.
[http://dx.doi.org/10.1295/polymj.22.1085]
[54]
Hongo-Hirasaki, T.; Yamaguchi, K.; Yanagida, K.; Okuyama, K. Removal of small viruses (parvovirus) from IgG solution by virus removal filter Planova® 20N. J. Membr. Sci., 2006, 278, 3-9.
[http://dx.doi.org/10.1016/j.memsci.2005.10.057]
[55]
Yamaguchi, K.; Miyagawa, E.; Takahashi, H.; Miyazaki, T.; Ikeda, H. Electron microscopic estimation of removal of parvovirus B19 (HPVB19) by nanofiltration with a novel filter membrane. J. Membr. Sci., 2007, 298, 99-109.
[http://dx.doi.org/10.1016/j.memsci.2007.04.009]
[56]
Fallahianbijan, F.; Giglia, S.; Carbrello, C.; Zydney, A.L. Use of fluorescently-labeled nanoparticles to study pore morphology and virus capture in virus filtration membranes. J. Membr. Sci., 2017, 536, 52-58.
[http://dx.doi.org/10.1016/j.memsci.2017.04.066]
[57]
Kosiol, P.; Hansmanna, B.M.U.; Thoma, V. Determination of pore size distributions of virus filtration membranes using gold nanoparticles and their correlation with virus retention. J. Membr. Sci., 2017, 533, 289-301.
[http://dx.doi.org/10.1016/j.memsci.2017.03.043]
[58]
Nazem-Bokaee, H.; Fallahianbijan, F.; Chen, D.; O’Donnell, S.M.; Carbrello, C.; Giglia, S.; Bell, D.; Zydney, A.L. Probing pore structure of virus filters using scanning electron microscopy with gold nanoparticles. J. Membr. Sci., 2018, 552, 144-152.
[http://dx.doi.org/10.1016/j.memsci.2018.01.069]
[59]
Kerr, A.; Nims, R. Adventitious viruses detected in biopharmaceutical bulk harvest samples over a 10 year period. PDA J. Pharm. Sci. Technol., 2010, 64(5), 481-485.
[PMID: 21502056]
[60]
Aranha, H. Virus safety of biopharmaceuticals - Absence of evidence is not evidence of absence; Contract Pharma, 2011, pp. 82-87.
[61]
Moody, M.; Alves, W.; Varghese, J.; Khan, F. Mouse Minute Virus (MMV) contamination-a case study: Detection, root cause determination, and corrective actions. PDA J. Pharm. Sci. Technol., 2011, 65(6), 580-588.
[http://dx.doi.org/10.5731/pdajpst.2011.00824] [PMID: 22294580]
[62]
Manzke, A.; Kleindienst, B. Virus Risk Mitigation in Cell Culture Media. Biopharm International., 2016, 20-25.
[63]
Roush, D.J. Integrated viral clearance strategies-reflecting on the present, projecting to the future. Curr. Opin. Biotechnol., 2018, 53, 137-143.
[http://dx.doi.org/10.1016/j.copbio.2018.01.003] [PMID: 29367164]
[64]
Carbrello, C.; Nhiem, D.; Priest, M.; Mann, K.; Greenhalgh, P. Supplement: Upstream Virus Safety: Protect Your Bioreactor by Media Filtration. Genetic Engineering & Biotechnology. News, 2017.
[65]
Mann, K.; Royce, J.; Carbrello, C.; Smith, R.; Zhu, R.; Zeng, Y.; Leahy, A.; Priest, M.; Raman, V.; Harrington, J.; Bliss, S.; Bryant, W.; Nguyen, N.; DeCesaro, D.; Perreault, J.; Goddard, P.; Orlando, J.; Rautio, K. Protection of bioreactor culture from virus contamination by use of a virus barrier filter. BMC Proc., 2015, 9(Suppl. 9), 22.
[http://dx.doi.org/10.1186/1753-6561-9-S9-P22]
[66]
Pollock, J.; Coffman, J.; Ho, S.V.; Farid, S.S. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture. Biotechnol. Prog., 2017, 33(4), 854-866.
[http://dx.doi.org/10.1002/btpr.2492] [PMID: 28480535]
[67]
Johnson, S.A.; Brown, M.R.; Lute, S.C.; Brorson, K.A. Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnol. Bioeng., 2017, 114(1), 21-32.
[http://dx.doi.org/10.1002/bit.26060] [PMID: 27474890]
[68]
Dichtelmüller, H.O.; Biesert, L.; Fabbrizzi, F.; Gajardo, R.; Gröner, A.; von Hoegen, I.; Jorquera, J.I.; Kempf, C.; Kreil, T.R.; Pifat, D.; Osheroff, W.; Poelsler, G. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics Association member companies. Transfusion, 2009, 49(9), 1931-1943.
[http://dx.doi.org/10.1111/j.1537-2995.2009.02222.x] [PMID: 19497061]
[69]
Gröner, A.; Broumis, C.; Fang, R.; Nowak, T.; Popp, B.; Schäfer, W.; Roth, N.J. Effective inactivation of a wide range of viruses by pasteurization. Transfusion, 2018, 58(1), 41-51.
[http://dx.doi.org/10.1111/trf.14390] [PMID: 29148053]
[70]
Dichtelmüller, H.; Rudnick, D.; Kloft, M. Inactivation of lipid enveloped viruses by octanoic Acid treatment of immunoglobulin solution. Biologicals, 2002, 30(2), 135-142.
[http://dx.doi.org/10.1006/biol.2002.0332] [PMID: 12127315]
[71]
Trapp, A.; Faude, A.; Hörold, N.; Schubert, S.; Faust, S.; Grob, T.; Schmidt, S. Multiple functions of caprylic acid-induced impurity precipitation for process intensification in monoclonal antibody purification. J. Biotechnol., 2018, 279, 13-21.
[http://dx.doi.org/10.1016/j.jbiotec.2018.05.001] [PMID: 29729310]
[72]
Korneyeva, M.; Hotta, J.; Lebing, W.; Rosenthal, R.S.; Franks, L.; Petteway, S.R., Jr Enveloped virus inactivation by caprylate: a robust alternative to solvent-detergent treatment in plasma derived intermediates. Biologicals, 2002, 30(2), 153-162.
[http://dx.doi.org/10.1006/biol.2002.0334] [PMID: 12127317]
[73]
Mattila, J.; Clark, M.; Liu, S.; Pieracci, J.; Gervais, T.R.; Wilson, E.; Galperina, O.; Li, X.; Roush, D.; Zoeller, K.; Brough, H.; Simpson-Platre, C. Retrospective evaluation of low-pH viral inactivation and viral filtration data from a multiple company collaboration. PDA J. Pharm. Sci. Technol., 2016, 70(3), 293-299.
[http://dx.doi.org/10.5731/pdajpst.2016.006478] [PMID: 27020645]
[74]
Uemura, Y.; Yang, Y.H.; Heldebrant, C.M.; Takechi, K.; Yokoyama, K. Inactivation and elimination of viruses during preparation of human intravenous immunoglobulin. Vox Sang., 1994, 67(3), 246-254.
[http://dx.doi.org/10.1159/000462608] [PMID: 7863623]
[75]
Dichtelmüller, H.O.; Biesert, L.; Fabbrizzi, F.; Falbo, A.; Flechsig, E.; Gröner, A.; von Hoegen, I.; Kempf, C.; Kreil, T.R.; Lee, D.C.; Pölsler, G.; Roth, N.J. Contribution to safety of immunoglobulin and albumin from virus partitioning and inactivation by cold ethanol fractionation: a data collection from Plasma Protein Therapeutics Association member companies. Transfusion, 2011, 51(7), 1412-1430.
[http://dx.doi.org/10.1111/j.1537-2995.2010.03003.x] [PMID: 21251002]
[76]
Cameron-Smith, R.; Miloradovic, L.; Cheyne, I.; Healy, K. The removal of viruses during the purification of equine antisera using filtration aids Hyflo Super-Cel and Fulmon Super A. Biologicals, 2000, 28(3), 169-174.
[http://dx.doi.org/10.1006/biol.2000.0254] [PMID: 10964443]
[77]
Roberts, P.L. Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps. Biotechnol. Prog., 2014, 30(6), 1341-1347.
[http://dx.doi.org/10.1002/btpr.1984] [PMID: 25181429]
[78]
Burnouf, T. Chromatographic removal of viruses from plasma derivatives. Dev. Biol. Stand., 1993, 81, 199-209.
[PMID: 8174804]
[79]
Planova™ 15N, 20N &35N Virus Removal Filters. Availabe from: https://planova.ak-bio.com/products_services/virus-removal/planova-n/ (Accessed on: December 28, 2018)
[80]
2018. Planova™ BioEX Virus Removal Filters. Availabe from: https://planova.ak-bio.com/products_services/virus-removal/planova-bioex/
[82]
Viresolve NFP Cartridge Filters. Availabe from: https://www.merckmillipore.com/JP/en/product/Viresolve-NFP-Cartridge-Filters,MM_NF-C7474 (Accessed on: December 28, 2018)
[84]
Pall Mini Kleenpak™ Capsules with Pegasus™ Prime Virus Removal Filter Membrane. Availabe from: https://shop.pall.com/us/en/biotech/pall-mini-kleenpak-capsules-with-pegasus-prime-virus-removal-filter-membrane-zidiqdrt4mq (Accessed on: December 28, 2018)
[85]
[86]
Ultipor® VF Grade DV20 Virus Removal Filter Cartridges. Availabe from: https://shop.pall.com/us/en/biotech/viral-clearance/ filters-for-specialist-applications/ultipor-vf-grade-dv20-virus-removal-filter-cartridges-zidgri78ma4 (Accessed on: December 28, 2018)
[87]
Ultipor® VF Grade DV50 Virus Removal Filter Cartridges. Availabe from: https://shop.pall.com/us/en/biotech/viral-clearance/ filters-for-specialist-applications/ultipor-vf-grade-dv50-virus-removal-filter-cartridges-zidgri78ldt (Accessed on: December 28, 2018)
[88]
Virosart® HC T-Style MaxiCaps® and Cartridges. Availabe from: https://www.sartorius.com/_ui/images/h9e/h35/8878610219038.pdf (Accessed on: December 28, 2018)
[89]
Virosart® CPV MaxiCaps® and Cartridges. Availabe from: https://www.sartorius.com/_ui/images/h5a/h09/8881615044638.pdf (Accessed on: December 28, 2018)
[90]
Virosart® HF Mid-Scale Modules. Availabe from: http://www.sartorius-sd.com.ua/files/Virosart_HF_Mid_scale.pdf (Accessed on: December 28, 2018)
[91]
Parkkinen, J.; Rahola, A.; von Bonsdorff, L.; Tölö, H.; Törmä, E. A modified caprylic acid method for manufacturing immunoglobulin G from human plasma with high yield and efficient virus clearance. Vox Sang., 2006, 90(2), 97-104.
[http://dx.doi.org/10.1111/j.1423-0410.2005.00731.x] [PMID: 16430667]
[92]
Terpstra, F.G.; Parkkinen, J.; Tölö, H.; Koenderman, A.H.; Ter Hart, H.G.; von Bonsdorff, L.; Törmä, E.; van Engelenburg, F.A. Viral safety of Nanogam, a new 15 nm-filtered liquid immunoglobulin product. Vox Sang., 2006, 90(1), 21-32.
[http://dx.doi.org/10.1111/j.1423-0410.2005.00710.x] [PMID: 16359352]
[93]
Kempf, C.; Stucki, M.; Boschetti, N. Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals, 2007, 35(1), 35-42.
[http://dx.doi.org/10.1016/j.biologicals.2006.01.002] [PMID: 16581263]
[94]
Teschner, W.; Butterweck, H.A.; Auer, W.; Muchitsch, E.M.; Weber, A.; Liu, S.L.; Wah, P.S.; Schwarz, H.P. A new liquid, intravenous immunoglobulin product (IGIV 10%) highly purified by a state-of-the-art process. Vox Sang., 2007, 92(1), 42-55.
[http://dx.doi.org/10.1111/j.1423-0410.2006.00846.x] [PMID: 17181590]
[95]
Poelsler, G.; Berting, A.; Kindermann, J.; Spruth, M.; Hämmerle, T.; Teschner, W.; Schwarz, H.P.; Kreil, T.R. A new liquid intravenous immunoglobulin with three dedicated virus reduction steps: virus and prion reduction capacity. Vox Sang., 2008, 94(3), 184-192.
[http://dx.doi.org/10.1111/j.1423-0410.2007.01016.x] [PMID: 18167162]
[96]
Stucki, M.; Boschetti, N.; Schäfer, W.; Hostettler, T.; Käsermann, F.; Nowak, T.; Gröner, A.; Kempf, C. Investigations of prion and virus safety of a new liquid IVIG product. Biologicals, 2008, 36(4), 239-247.
[http://dx.doi.org/10.1016/j.biologicals.2008.01.004] [PMID: 18337119]
[97]
Soluk, L.; Price, H.; Sinclair, C.; Atalla-Mikhail, D.; Genereux, M. Pathogen safety of intravenous Rh immunoglobulin liquid and other immune globulin products: enhanced nanofiltration and manufacturing process overview. Am. J. Ther., 2008, 15(5), 435-443.
[http://dx.doi.org/10.1097/MJT.0b013e318160c1b7] [PMID: 18806519]
[98]
Koenderman, A.H.; ter Hart, H.G.; Prins-de Nijs, I.M.; Bloem, J.; Stoffers, S.; Kempers, A.; Derksen, G.J.; Al, B.; Dekker, L.; Over, J. Virus safety of plasma products using 20 nm instead of 15 nm filtration as virus removing step. Biologicals, 2012, 40(6), 473-481.
[http://dx.doi.org/10.1016/j.biologicals.2012.07.010] [PMID: 22901944]
[99]
Jorquera, J.I. Flebogamma 5% DIF development: rationale for a new option in intravenous immunoglobulin therapy. Clin. Exp. Immunol., 2009, 157(Suppl. 1), 17-21.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03953.x] [PMID: 19630865]
[100]
Caballero, S.; Nieto, S.; Gajardo, R.; Jorquera, J.I. Viral safety characteristics of Flebogamma DIF, a new pasteurized, solvent-detergent treated and Planova 20 nm nanofiltered intravenous immunoglobulin. Biologicals, 2010, 38(4), 486-493.
[http://dx.doi.org/10.1016/j.biologicals.2010.02.008] [PMID: 20350815]
[101]
Bolton, G.R.; Basha, J.; Lacasse, D.P. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters. Biotechnol. Prog., 2010, 26(6), 1671-1677.
[http://dx.doi.org/10.1002/btpr.494] [PMID: 20859931]
[102]
Brown, A.; Bechtel, C.; Bill, J.; Liu, H.; Liu, J.; McDonald, D.; Pai, S.; Radhamohan, A.; Renslow, R.; Thayer, B.; Yohe, S.; Dowd, C. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration. Biotechnol. Bioeng., 2010, 106(4), 627-637.
[http://dx.doi.org/10.1002/bit.22729] [PMID: 20229510]
[103]
Tomokiyo, K.; Yano, H.; Imamura, M.; Nakano, Y.; Nakagaki, T.; Ogata, Y.; Terano, T.; Miyamoto, S.; Funatsu, A. Large-scale production and properties of human plasma-derived activated Factor VII concentrate. Vox Sang., 2003, 84(1), 54-64.
[http://dx.doi.org/10.1046/j.1423-0410.2003.00247.x] [PMID: 12542734]
[104]
Seimetz, D.; Lindhofer, H.; Bokemeyer, C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat. Rev., 2010, 36(6), 458-467.
[http://dx.doi.org/10.1016/j.ctrv.2010.03.001] [PMID: 20347527]
[105]
Furuya, K.; Murai, K.; Yokoyama, T.; Maeno, H.; Takeda, Y.; Murozuka, T.; Wakisaka, A.; Tanifuji, M.; Tomono, T. Implementation of a 20-nm pore-size filter in the plasma-derived factor VIII manufacturing process. Vox Sang., 2006, 91(2), 119-125.
[http://dx.doi.org/10.1111/j.1423-0410.2006.00792.x] [PMID: 16907872]
[106]
LaCasse, D.; Genest, P.; Pizzelli, K.; Greenhalgh, P.; Mullin, L.; Slocum, A. Impact of Process Interruption on Virus Retention of Small-Virus Filters. Bioprocess International., 2013, 34-44.
[107]
McCue, J.; Osborne, D.; Dumont, J.; Peters, R.; Mei, B.; Pierce, G.F.; Kobayashi, K.; Euwart, D. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein. Haemophilia, 2014, 20(4), e327-e335.
[http://dx.doi.org/10.1111/hae.12451] [PMID: 24811361]
[108]
McCue, J.; Kshirsagar, R.; Selvitelli, K.; Lu, Q.; Zhang, M.; Mei, B.; Peters, R.; Pierce, G.F.; Dumont, J.; Raso, S.; Reichert, H. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein. Biologicals, 2015, 43(4), 213-219.
[http://dx.doi.org/10.1016/j.biologicals.2015.05.012] [PMID: 26094124]
[109]
Lee, S.Y.; Min, H.K.; Lee, S.H.; Shin, H.J.; Lee, W.Y.; Cho, Y.G.; Kwok, S.K.; Ju, J.H.; Cho, M.L.; Park, S.H. IL-1 receptor antagonist (IL-1Ra)-Fc ameliorate autoimmune arthritis by regulation of the Th17 cells/Treg balance and arthrogenic cytokine activation. Immunol. Lett., 2016, 172, 56-66.
[http://dx.doi.org/10.1016/j.imlet.2016.02.011] [PMID: 26903194]
[110]
Kim, I.S.; Choi, Y.W.; Kang, Y.; Sung, H.M.; Sohn, K.W.; Kim, Y.S. Improvement of virus safety of an antihemophilc factor IX by virus filtration process. J. Microbiol. Biotechnol., 2008, 18(7), 1317-1325.
[PMID: 18667862]
[111]
Roberts, P.L.; Feldman, P.; Crombie, D.; Walker, C.; Lowery, K. Virus removal from factor IX by filtration: validation of the integrity test and effect of manufacturing process conditions. Biologicals, 2010, 38(2), 303-310.
[http://dx.doi.org/10.1016/j.biologicals.2009.12.006] [PMID: 20089418]
[112]
Kelley, B.; Jankowski, M.; Booth, J. An improved manufacturing process for Xyntha/ReFacto AF. Haemophilia, 2010, 16(5), 717-725.
[http://dx.doi.org/10.1111/j.1365-2516.2009.02160.x] [PMID: 20041957]
[113]
Casademunt, E.; Martinelle, K.; Jernberg, M.; Winge, S.; Tiemeyer, M.; Biesert, L.; Knaub, S.; Walter, O.; Schröder, C. The first recombinant human coagulation factor VIII of human origin: human cell line and manufacturing characteristics. Eur. J. Haematol., 2012, 89(2), 165-176.
[http://dx.doi.org/10.1111/j.1600-0609.2012.01804.x] [PMID: 22690791]
[114]
Ahmadian, H.; Hansen, E.B.; Faber, J.H.; Sejergaard, L.; Karlsson, J.; Bolt, G.; Hansen, J.J.; Thim, L. Molecular design and downstream processing of turoctocog alfa (NovoEight), a B-domain truncated factor VIII molecule. Blood Coagul. Fibrinolysis, 2016, 27(5), 568-575.
[http://dx.doi.org/10.1097/MBC.0000000000000477] [PMID: 26761578]
[115]
Aizawa, P.; Winge, S.; Karlsson, G. Large-scale preparation of thrombin from human plasma. Thromb. Res., 2008, 122(4), 560-567.
[http://dx.doi.org/10.1016/j.thromres.2007.12.027] [PMID: 18329699]
[116]
Cai, K.; Osheroff, W.P.; Buczynski, G.; Hotta, J.; Lang, J.; Elliott, E.; Lee, D.C.; Roth, N.J. Characterization of Thrombate III®, a pasteurized and nanofiltered therapeutic human antithrombin concentrate. Biologicals, 2014, 42(3), 133-138.
[http://dx.doi.org/10.1016/j.biologicals.2014.01.001] [PMID: 24477183]
[117]
Levy, J.H.; Welsby, I.; Goodnough, L.T. Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy. Transfusion, 2014, 54(5), 1389-1405.
[http://dx.doi.org/10.1111/trf.12431] [PMID: 24117955]
[118]
Terpstra, F.G.; Kleijn, M.; Koenderman, A.H.; Over, J.; van Engelenburg, F.A.; Schuitemaker, H.; van ’t Wout, A.B. Viral safety of C1-inhibitor NF. Biologicals, 2007, 35(3), 173-181.
[http://dx.doi.org/10.1016/j.biologicals.2006.08.005] [PMID: 17071103]
[119]
Gröner, A.; Nowak, T.; Schäfer, W. Pathogen safety of human C1 esterase inhibitor concentrate. Transfusion, 2012, 52(10), 2104-2112.
[http://dx.doi.org/10.1111/j.1537-2995.2012.03590.x] [PMID: 22413956]
[120]
Sørensen, B.; Spahn, D.R.; Innerhofer, P.; Spannagl, M.; Rossaint, R. Clinical review: Prothrombin complex concentrates--evaluation of safety and thrombogenicity. Crit. Care, 2011, 15(1), 201.
[http://dx.doi.org/10.1186/cc9311] [PMID: 21345266]
[121]
Laursen, I.; Houen, G.; Højrup, P.; Brouwer, N.; Krogsøe, L.B.; Blou, L.; Hansen, P.R. Second-generation nanofiltered plasma-derived mannan-binding lectin product: process and characteristics. Vox Sang., 2007, 92(4), 338-350.
[http://dx.doi.org/10.1111/j.1423-0410.2007.00901.x] [PMID: 17456158]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2020
Page: [413 - 424]
Pages: 12
DOI: 10.2174/1573413715666190328223130

Article Metrics

PDF: 27
HTML: 6
PRC: 1