Generic placeholder image

Current Metabolomics and Systems Biology (Discontinued)

Editor-in-Chief

ISSN (Print): 2666-3384
ISSN (Online): 2666-3392

Research Article

Qualitative and Quantitative Analysis of Resveratrol and Oxyresveratrol by Liquid Chromatography

Author(s): Rajeshree Khambadkar, Selvan Ravindran*, Digamber Singh Chahar, Srushti Utekar and Amlesh Tambe

Volume 7, Issue 1, 2020

Page: [24 - 31] Pages: 8

DOI: 10.2174/2213235X07666190328222836

Price: $65

Abstract

Introduction: Resveratrol and its monooxygenated metabolite oxyresveratrol were the subject matter of intense research due to their medicinal value. Absorption, distribution, metabolism and excretion are important to understand the bioavailability and pharmacokinetic profile of resveratrol and oxyresveratrol. Quantification of resveratrol and oxyresveratrol is essential for both in vitro and in vivo studies.

Methods: During in vitro drug metabolism studies, both qualitative and quantitative information are essential to understand the metabolic profile of resveratrol and oxyresveratrol. In the present study, a simple and stable method is outlined using high performance liquid chromatography to quantify both resveratrol and oxyresveratrol. This method is suitable to understand the metabolic stability, plasma stability, pharmacokinetics and toxicokinetics of resveratrol and oxyresveratrol.

Results: Generally, in vitro incubation studies are performed at high concentrations and in vivo studies are carried out at both high and low concentrations, therefore high performance liquid chromatography method is demonstrated as a suitable technique to quantify resveratrol and oxyresveratrol.

Conclusion: Retention time of resveratrol and oxyresveratrol from liquid chromatography qualitatively confirm its identity.

Keywords: Resveratrol, oxyresveratrol, liquid chromatography, metabolite, metabolism, qualitative analysis.

Graphical Abstract
[1]
Richard, T.; Pawlus, A.D.; Iglésias, M-L.; Pedrot, E.; Waffo-Teguo, P.; Mérillon, J-M.; Monti, J-P. Neuroprotective properties of resveratrol and derivatives. Ann. N. Y. Acad. Sci., 2011, 1215, 103-108.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05865.x] [PMID: 21261647]
[2]
Cho, S.; Namkoong, K.; Shin, M.; Park, J.; Yang, E.; Ihm, J.; Thu, V.T.; Kim, H.K.; Han, J. Cardiocascular protective effects and clinical applications of resveratrol. J. Med. Food, 2017, 20(4), 323-334.
[http://dx.doi.org/10.1089/jmf.2016.3856] [PMID: 28346848]
[3]
Wenzel, E.; Somoza, V. Metabolism and bioavailability of transresveratrol. Mol. Nutr. Food Res., 2005, 49(5), 472-481.
[http://dx.doi.org/10.1002/mnfr.200500010] [PMID: 15779070]
[4]
Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; Burke, M.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer, 2002, 86(5), 774-778.
[http://dx.doi.org/10.1038/sj.bjc.6600197] [PMID: 11875742]
[5]
Menet, M-C.; Marchal, J.; Dal-Pan, A.; Taghi, M.; Nivet-Antoine, V.; Dargère, D.; Laprévote, O.; Beaudeux, J-L.; Aujard, F.; Epelbaum, J.; Cottart, C-H. Resveratrol metabolism in a non-human primate, the grey mouse lemur (Microcebus murinus), using ultra-high-performance liquid chromatography-quadrupole time of flight. PLoS One, 2014, 9(3)e91932
[http://dx.doi.org/10.1371/journal.pone.0091932] [PMID: 24663435]
[6]
Hoshino, J.; Park, E-J.; Kondratyuk, T.P.; Marler, L.; Pezzuto, J.M.; van Breemen, R.B.; Mo, S.; Li, Y.; Cushman, M. Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J. Med. Chem., 2010, 53(13), 5033-5043.
[http://dx.doi.org/10.1021/jm100274c] [PMID: 20527891]
[7]
Sergides, C.; Chirilă, M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp. Ther. Med., 2016, 11(1), 164-170.
[http://dx.doi.org/10.3892/etm.2015.2895] [PMID: 26889234]
[8]
Scherzberg, M.C.; Kiehl, A.; Zivkovic, A.; Stark, H.; Stein, J.; Fürst, R.; Steinhilber, D.; Ulrich-Rückert, S. Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action. Toxicol. Appl. Pharmacol., 2015, 287(1), 67-76.
[http://dx.doi.org/10.1016/j.taap.2015.05.020] [PMID: 26044878]
[9]
Ravindran, S.; Basu, S.; Gorti, S.K.; Surve, P.; Sloka, N. Metabolic profile of glyburide in human liver microsomes using LC-DAD-Q-TRAP-MS/MS. Biomed. Chromatogr., 2013, 27(5), 575-582.
[http://dx.doi.org/10.1002/bmc.2830] [PMID: 23070832]
[10]
Surve, P.; Ravindran, S.; Acharjee, A.; Rastogi, H.; Basu, S.; Honrao, P. Metabolite characterization of anti-cancer agent gefitinib in human hepatocytes. Drug Metab. Lett., 2014, 7(2), 126-136.
[http://dx.doi.org/10.2174/1872312808666140317154110] [PMID: 24628403]
[11]
Ravindran, S.; Gorti, S.P.K.; Basu, S.; Surve, P.; Hon-rao, P. Differences and Similarities in the metabolism of glyburide for various species: Analysis by LC-DAD-Q-TRAP-MS/MS. J. Anal. Bioanal. Tech., 2013, 4(2), 1-7.
[http://dx.doi.org/10.4172/2155-9872.1000164]
[12]
Ravindran, S.; Jadhav, A.; Surve, P.; Lonsane, G.; Honrao, P.; Nanda, B. Technologies and strategies to characterize and quantitate metabolites in drug discovery and development. Biomed. Chromatogr., 2014, 28(11), 1547-1553.
[http://dx.doi.org/10.1002/bmc.3309] [PMID: 25175001]
[13]
Kulkarni, A.; Jasti, P.; Ravindran, S.; Shukla, S. Risk assessment of pesticide residues in selected chilli samples by chromatography and mass spectrometry. Indian J. Public Health, 2017, 8, 535-539.
[http://dx.doi.org/10.5958/0976-5506.2017.00395.3]
[14]
Sørensen, L.K. Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20(7), 1135-1143.
[http://dx.doi.org/10.1002/rcm.2425] [PMID: 16521163]
[15]
Suthar, J.K.; Rokade, R.; Pradhinidi, A.; Kambadkar, R.; Ravindran, S. Purification of nanoparticles by liquid chromatography for biomedical and engineering applications. Am. J. Anal. Chem., 2017, 8, 617-624.
[http://dx.doi.org/10.4236/ajac.2017.810044]
[16]
Ravindran, S.; Suthar, J.K.; Rokade, R.; Deshpande, P.; Singh, P.; Pratinidhi, A.; Khambadkhar, R.; Utekar, S. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr. Drug Metab., 2018, 19(4), 327-334.
[http://dx.doi.org/10.2174/1389200219666180305154119] [PMID: 29512450]
[17]
Brown, L.; Kroon, P.A.; Das, D.K.; Das, S.; Tosaki, A.; Chan, V.; Singer, M.V.; Feick, P. The biological responses to resveratrol and other polyphenols from alcoholic beverages. Alcohol. Clin. Exp. Res., 2009, 33, 1515-1523.
[http://dx.doi.org/10.1111/j.1530-0277.2009.00989.x]
[18]
Singh, G.; Pai, R.S.; Pandit, V. Development and validation of a HPLC method for the determination of trans-resveratrol in spiked human plasma. J. Adv. Pharm. Technol. Res., 2016, 28, 130-136.
[19]
Boocock, D.J.; Patel, K.R.; Faust, G.E.S.; Normolle, D.P.; Marczylo, T.H.; Crowell, J.A.; Brenner, D.E.; Booth, T.D.; Gescher, A.; Steward, W.P.J. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(2), 182-187.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.017] [PMID: 17097357]
[20]
Bode, L.M.; Bunzel, D.; Huch, M.; Cho, G-S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C.M.; Kulling, S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr., 2013, 97(2), 295-309.
[http://dx.doi.org/10.3945/ajcn.112.049379] [PMID: 23283496]
[21]
Das, S.; Ng, K-Y. Quantification of trans-resveratrol in rat plasma by a simple and sensitive high performance liquid chromatography method and its application in preclinical study. J. Liq. Chromatogr. Relat. Technol., 2011, 34, 1399-1414.
[http://dx.doi.org/10.1080/10826076.2011.572215]
[22]
Sun, X.; Peng, B.; Yan, W. Measurement and correlation of solubility of trans-resveratrol in 11 solvents at T = (278.2, 288.2, 298.2, 308.2, and 318.2). K. J. Chem. Thermodynamics., 2008, 40, 735-738.
[http://dx.doi.org/10.1016/j.jct.2007.10.006]
[23]
Korsholm, A.S.; Kjær, T.N.; Ornstrup, M.J.; Pedersen, S.B. Comprehensive metabolomic analysis in blood, urine, fat and muscle in men with metabolic syndrome: A randomized, placebo-controlled clinical trial on the effects of resveratrol after four months treatment. Int. J. Mol. Sci., 2017, 18(3), 554.
[http://dx.doi.org/10.3390/ijms18030554] [PMID: 28273841]
[24]
Piver, B.; Fer, M.; Vitrac, X.; Merillon, J-M.; Dreano, Y.; Berthou, F.; Lucas, D. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem. Pharmacol., 2004, 68(4), 773-782.
[http://dx.doi.org/10.1016/j.bcp.2004.05.008] [PMID: 15276085]
[25]
Vangala, S.; Pinjari, J.; Patole, P.; Ravindran, S.; Gangal, R.; Wangikar, P.; Basu, S.; Ahmed, T.; Rastogi, H. Translational drug discovery research: Integration of medicinal chemistry, computational modeling, pharmacology, ADME and toxicology. Encyclopedia of Drug Metabolism and Interactions; Wiley, 2012, pp. 1-54.
[26]
Ravindran, S.; Rokade, R.; Suthar, J.; Singh, P.; Desh-pande, P.; Khambadkar, R.; Utekar, S. In Vitro biotransformation in drug discovery.Drug Discovery – Concepts to Market;; Bopar-alla, V., Ed.; InTech Open, . , 2018, pp. 1-13.
[http://dx.doi.org/10.5772/intechopen.73173]
[27]
Martins, I.C.F.; Raposo, N.R.B.; Mockdesi, H.R.; Po-lonini, H.C.; De Oliveira, F.A.; Fabri, G.M.C. das Gracas Afonso Miranda Chaves M. Delivering resveratrol in the buccal mucosa using mucoadhesive tablets: A potential treatment strategy for inflammatory oral lesions. Curr. Drug Deliv., 2018, 15, 254-259.
[http://dx.doi.org/10.2174/1567201814666170726102558] [PMID: 28745229]
[28]
Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr. Pharm. Des., 2013, 19(34), 6064-6093.
[http://dx.doi.org/10.2174/13816128113199990407] [PMID: 23448440]
[29]
Vaidya, A.; Kale, V.; Poonawala, M.; Ghode, S. Mesenchymal stromal cells enhance the hematopoietic stem cell-supportive activity of resveratrol. Regen. Med., 2018, 13(4), 409-425.
[http://dx.doi.org/10.2217/rme-2017-0143] [PMID: 29742966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy