Aggregation-induced Emission-active Fluorescent Nanodot as a Potential Photosensitizer for Photodynamic Anticancer Therapy

Author(s): Ying Zhang, Huigang Chen, Qingxia Wang, Jing Sun*.

Journal Name: Current Nanoscience

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Photodynamic therapy (PDT) has become a very promising and effective strategy for the treatment of cancers and other malignant diseases. In recent years, photosensitizers (PS) with aggregation-induced emission (AIE) property have attracted great attention.

Objective: A high-performance AIE-active PS, E- 1-allyl-3-(2-(5-(4-(diphenylamino)phenyl) thiophene- 2-yl)vinyl)quinoxalin-2 (1H)-one (SJ-1), was synthesized and its PDT effect was preliminarily tested in vitro.

Methods: SJ-1 was designed using a quinoxalinone scaffold as the core chromophore. It could selfassembled into AIE-active nanoparticles with a mean size of 155 nm in aqueous medium and show maximum emission at 633 nm.

Results: SJ-1 nanoparticles at a concentration of 20 µM showed effective reactive oxygen species (ROS) production and could induce almost 90% decrease of cell viability under laser irradiation in Hela and HT-29 cells, with negligible dark toxicity.

Conclusion: In vitro results indicated that SJ-1 may be a potential PS for PDT.

Keywords: SJ-1, nanoparticles, photosensitizer, ROS, AIE, PDT.

[1]
Yang, L.; Wei, Y.; Xing, D.; Chen, Q. Increasing the efficiency of photodynamic therapy by improved light delivery and oxygen supply using an anticoagulant in a solid tumor model. Lasers Surg. Med., 2010, 42(7), 671-679.
[2]
Reczek, C.R.; Chandel, N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol., 2015, 33, 8-13.
[3]
Sena, L.A.; Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell, 2012, 48(2), 158-167.
[4]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[5]
Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 2016, 45(23), 6597-6626.
[6]
Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat., 2004, 7(2), 97-110.
[7]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[8]
Ramanathan, B.; Jan, K.Y.; Chen, C.H.; Hour, T.C.; Yu, H.J.; Pu, Y.S. Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res., 2005, 65(18), 8455-8460.
[9]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[10]
Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev., 2013, 42(12), 5323-5351.
[11]
Hu, F.; Xu, S.; Liu, B. Photosensitizers with aggregation-induced emission: Materials and biomedical applications. Adv. Mater., 2018, 30(45) e1801350
[12]
Zhang, J.; Chen, W.; Chen, R.; Liu, X.K.; Xiong, Y.; Kershaw, S.V.; Rogach, A.L.; Adachi, C.; Zhang, X.; Lee, C.S. Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chem. Commun. (Camb.), 2016, 52(79), 11744-11747.
[13]
Wang, Y.F.; Zhang, T.; Liang, X.J. Aggregation-induced emission: Lighting up cells, revealing life! Small, 2016, 12(47), 6451-6477.
[14]
Hong, Y.; Lam, J.W.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev., 2011, 40(11), 5361-5388.
[15]
Mei, J.; Leung, N.L.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev., 2015, 115(21), 11718-11940.
[16]
Avci, P.; Erdem, S.S.; Hamblin, M.R. Photodynamic therapy: One step ahead with self-assembled nanoparticles. J. Biomed. Nanotechnol., 2014, 10(9), 1937-1952.
[17]
Ren, H.; Liu, J.; Su, F.; Ge, S.; Yuan, A.; Dai, W.; Wu, J.; Hu, Y. Relighting photosensitizers by synergistic integration of albumin and perfluorocarbon for enhanced photodynamic therapy. ACS Appl. Mater. Interfaces, 2017, 9(4), 3463-3473.
[18]
Anderski, J.; Mahlert, L.; Sun, J.; Birnbaum, W.; Mulac, D.; Schreiber, S.; Herrmann, F.; Kuckling, D.; Langer, K. Light-responsive nanoparticles based on new polycarbonate polymers as innovative drug delivery systems for photosensitizers in PDT. Int. J. Pharm., 2018, 557, 182-191.
[19]
Guan, Q.; Li, Y.A.; Li, W.Y.; Dong, Y.B. Photodynamic therapy based on nanoscale metal-organic frameworks: From material design to cancer nanotherapeutics. Chem. Asian J., 2018, 13(21), 3122-3149.
[20]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[21]
Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine, 2015, 11(5), 1117-1132.
[22]
Ying, M.; Chen, G.; Lu, W. Recent advances and strategies in tumor vasculature targeted nano-drug delivery systems. Curr. Pharm. Des., 2015, 21(22), 3066-3075.
[23]
Huang, P.; Wang, D.; Su, Y.; Huang, W.; Zhou, Y.; Cui, D.; Zhu, X.; Yan, D. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc., 2014, 136(33), 11748-1156.
[24]
Shi, L.; Hu, W.; Wu, J.; Zhou, H.; Zhou, H.; Li, X. Quinoxalinone as a privileged platform in drug development. Mini Rev. Med. Chem., 2018, 18(5), 392-413.
[25]
Burganov, T.I.; Katsyuba, S.A.; Sharipova, S.M.; Kalinin, A.A.; Monari, A.; Assfeld, X. Novel quinoxalinone-based push-pull chromophores with highly sensitive emission and absorption properties towards small structural modifications. Phys. Chem. Chem. Phys., 2018, 20(33), 21515-21527.
[26]
Shi, L.; Zhou, J.; Wu, J.; Cao, J.; Shen, Y.; Zhou, H.; Li, X. Quinoxalinone (Part II). Discovery of (Z)-3-(2-(pyridin-4-yl)vinyl)quinoxalinone derivates as potent VEGFR-2 kinase inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1840-1852.
[27]
Rivera Fernandez, N.; Mondragon Castelan, M.; Gonzalez Pozos, S.; Ramirez Flores, C.J.; Mondragon Gonzalez, R.; Gomez de Leon, C.T.; Castro Elizalde, K.N.; Marrero Ponce, Y.; Aran, V.J.; Martins Alho, M.A.; Mondragon Flores, R. A new type of quinoxalinone derivatives affects viability, invasion, and intracellular growth of Toxoplasma gondii tachyzoites in vitro. Parasitol. Res., 2016, 115(5), 2081-2096.
[28]
Yang, Y.; Zhang, S.; Wu, B.; Ma, M.; Chen, X.; Qin, X.; He, M.; Hussain, S.; Jing, C.; Ma, B.; Zhu, C. An efficient synthesis of quinoxalinone derivatives as potent inhibitors of aldose reductase. ChemMedChem, 2012, 7(5), 823-835.
[29]
Li, Q.; Li, Z. The strong light-emission materials in the aggregated state: What happens from a single molecule to the collective group. Adv. Sci. (Weinh.), 2017, 4(7) 1600484
[30]
Han, G.; Kim, D.; Park, Y.; Bouffard, J.; Kim, Y. Excimers beyond pyrene: A far-red optical proximity reporter and its application to the label-free detection of DNA. Angew. Chem. Int. Ed., 2015, 54(13), 3912-3916.
[31]
Li, K.T.; Chen, Q.; Wang, D.W.; Duan, Q.Q.; Tian, S.; He, J.W.; Ou, Y.S.; Bai, D.Q. Mitochondrial pathway and endoplasmic reticulum stress participate in the photosensitizing effectiveness of AE-PDT in MG63 cells. Cancer Med., 2016, 5(11), 3186-3193.
[32]
Zhu, X.; Wang, H.; Zheng, L.; Zhong, Z.; Li, X.; Zhao, J.; Kou, J.; Jiang, Y.; Zheng, X.; Liu, Z.; Li, H.; Cao, W.; Tian, Y.; Wang, Y.; Yang, L. Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway. Int. J. Nanomedicine, 2015, 10, 3719-3736.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [112 - 120]
Pages: 9
DOI: 10.2174/1573413715666190328182406
Price: $65

Article Metrics

PDF: 18
HTML: 1