Electron-Microscopic Investigation of the Distribution of Titanium Dioxide (rutile) Nanoparticles in the Rats’ Small Intestine Mucosa, Liver, and Spleen

Author(s): Olga D. Hendrickson, Tatyana A. Platonova, Svetlana M. Pridvorova, Anatoly V. Zherdev, Ivan V. Gmoshinsky, Lyudmila S. Vasilevskaya, Аntonina А. Shumakova, Sergey А. Hotimchenko, Boris B. Dzantiev*

Journal Name: Current Nanoscience

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Titanium dioxide (TiO2) is currently one of the most widely known nanomaterials produced for different purposes. The adverse effects of nano-dispersed TiO2 cause a serious concern about human health problems related to the intake of TiO2 nanoparticles (TiO2 NPs). The investigation of TiO2 NPs’ penetration through the gut epithelium into secondary organs and the relevant biological effects has an undoubted importance when assessing the potential risk of using TiO2 NPs.

Objective: In the current study, we investigated the effect of rutile TiO2 NPs on tissues of the small intestine, liver, and spleen. For this purpose, we used a physiological model that simulates the single administration of TiO2 NPs directly into the intestinal lumen of an experimental animal.

Methods: Suspensions TiO2 NPs were administered via an isolated loop of the small intestine at a single dose of 250 mg/kg of body weight. TiO2 NPs were detected in rats’ tissues by transmission electron microscopy.

Results: TiO2 NPs were found in tissues of the small intestine mucosa, liver, and spleen. The administration of TiO2 NPs resulted in different changes in the cellular ultrastructures: hyperplasia of the smooth endoplasmic reticulum, an increase in the size of the mitochondria, the emergence of local extensions into the perinuclear space, and the appearance of myelin-like structures.

Conclusion: The ultrastructural changes found in the individual cells of the small intestine, liver, and spleen indicated intracellular pathology, induced by the high doses of the TiO2 NPs. The spleen tissue appeared to be the most sensitive to the effect of TiO2 NPs.

Keywords: Titanium dioxide nanoparticles, detection, transmission electron microscopy, small intestine, liver, spleen.

Goswami, L.; Kim, K.H.; Deep, A.; Das, P.; Bhattacharya, S.S.; Kumar, S.; Adelodun, A.A. Engineered nano particles: Nature, behavior, and effect on the environment. J. Environ. Manage., 2017, 196, 297-315.
[http://dx.doi.org/10.1016/j.jenvman.2017.01.011] [PMID: 28301814]
Li, K.; Jiao, T.; Xing, R.; Zou, G.; Zhou, J.; Zhang, L.; Peng, Q. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater., 2018, 61, 728-736.
Liu, Y.; Hou, C.; Jiao, T.; Song, J.; Zhang, X.; Xing, R.; Zhou, J.; Zhang, L.; Peng, Q. Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials (Basel), 2018, 8(1), 35.
[http://dx.doi.org/10.3390/nano8010035] [PMID: 29320426]
Chau, Y-F.; Jiang, Z-H.; Li, H-Y.; Lin, G-M.; Wu, F-L.; Lin, W-H. Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. PIER B, 2011, 28, 183-199.
Chau, Y-F.C.; Lim, C.M.; Chiang, C-Y.; Voo, N.Y.; Idris, N.S.M.; Chai, S.U. Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application. J. Nanopart. Res., 2016, 18, 88.
Chau, Y-F.; Hu, C-C.; Jheng, C-Y.; Tsai, Y-T.; Hsieh, L-Z.; Yang, W.; Chiang, C-Y.; Sun, Y-S.; Lee, C-M. Numerical investigation of surface plasmon resonance effects on photocatalytic activities using silver nanobeads photodeposited onto a titanium dioxide layer. Opt. Commun., 2014, 331, 223-228.
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
Ding, Y.; Kuhlbusch, T.A.J.; Van Tongeren, M.; Jiménez, A.S.; Tuinman, I.; Chen, R.; Alvarez, I.L.; Mikolajczyk, U.; Nickel, C.; Meyer, J.; Kaminski, H.; Wohlleben, W.; Stahlmecke, B.; Clavaguera, S.; Riediker, M. Airborne engineered nanomaterials in the workplace-a review of release and worker exposure during nanomaterial production and handling processes. J. Hazard. Mater., 2017, 322(Pt A), 17-28.
[http://dx.doi.org/10.1016/j.jhazmat.2016.04.075] [PMID: 27181990]
Grande, F.; Tucci, P. Titanium dioxide nanoparticles: A risk for human health? Mini Rev. Med. Chem., 2016, 16(9), 762-769.
[http://dx.doi.org/10.2174/1389557516666160321114341] [PMID: 26996620]
Shakeel, M.; Jabeen, F.; Shabbir, S.; Asghar, M.S.; Khan, M.S.; Chaudhry, A.S. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: A review. Biol. Trace Elem. Res., 2016, 172(1), 1-36.
[http://dx.doi.org/10.1007/s12011-015-0550-x] [PMID: 26554951]
Contado, C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem., 2015, 3, 48.
[http://dx.doi.org/10.3389/fchem.2015.00048] [PMID: 26301216]
Wang, J.; Zhou, G.; Chen, C.; Yu, H.; Wang, T.; Ma, Y.; Jia, G.; Gao, Y.; Li, B.; Sun, J.; Li, Y.; Jiao, F.; Zhao, Y.; Chai, Z. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett., 2007, 168(2), 176-185.
[http://dx.doi.org/10.1016/j.toxlet.2006.12.001] [PMID: 17197136]
Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol., 2013, 10, 15.
[http://dx.doi.org/10.1186/1743-8977-10-15] [PMID: 23587290]
Iavicoli, I.; Leso, V.; Fontana, L.; Bergamaschi, A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(5), 481-508.
[PMID: 21744743]
De Matteis, V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics, 2017, 5(4), E29
[http://dx.doi.org/10.3390/toxics5040029] [PMID: 29051461]
Czajka, M.; Sawicki, K.; Sikorska, K.; Popek, S.; Kruszewski, M.; Kapka-Skrzypczak, L. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicol. In Vitro, 2015, 29(5), 1042-1052.
[http://dx.doi.org/10.1016/j.tiv.2015.04.004] [PMID: 25900359]
Rollerova, E.; Tulinska, J.; Liskova, A.; Kuricova, M.; Kovriznych, J.; Mlynarcikova, A.; Kiss, A.; Scsukova, S. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development. Endocr. Regul., 2015, 49(2), 97-112.
[http://dx.doi.org/10.4149/endo_2015_02_97] [PMID: 25960011]
Zhang, L.; Xie, X.; Zhou, Y.; Yu, D.; Deng, Y.; Ouyang, J.; Yang, B.; Luo, D.; Zhang, D.; Kuang, H. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. Int. J. Nanomedicine, 2018, 13, 777-789.
[http://dx.doi.org/10.2147/IJN.S152400] [PMID: 29440900]
Horváth, T.; Papp, A.; Igaz, N.; Kovács, D.; Kozma, G.; Trenka, V.; Tiszlavicz, L.; Rázga, Z.; Kónya, Z.; Kiricsi, M.; Vezér, T. Pulmonary impact of titanium dioxide nanorods: examination of nanorod-exposed rat lungs and human alveolar cells. Int. J. Nanomedicine, 2018, 13, 7061-7077.
[http://dx.doi.org/10.2147/IJN.S179159] [PMID: 30464459]
Bu, Q.; Yan, G.; Deng, P.; Peng, F.; Lin, H.; Xu, Y.; Cao, Z.; Zhou, T.; Xue, A.; Wang, Y.; Cen, X.; Zhao, Y.L. NMR-based metabolomic study of the sub-acute toxicity of titanium dioxide NPs in rats after oral administration. Nanotechnology, 2010, 21, 105-125.
Nabela, I. El-Sharkawy, Salah, M.; Ehsan, H.A.-Z. Toxic impact of titanium dioxide (TiO2) in mail albino rats with special reference to its effect on reproductive system. J. Am. Sci., 2010, 6, 865-872.
Hendrickson, O.D.; Pridvorova, S.M.; Zherdev, A.V.; Klochkov, S.G.; Novikova, O.V.; Shevtsova, E.F.; Bachurin, S.O.; Dzantiev, B.B. Size-dependent differences in biodistribution of titanium dioxide nanoparticles after sub-acute intragastric administrations to rats. Curr. Nanosci., 2016, 12, 228-236.
Vandebriel, R.J.; Vermeulen, J.P.; van Engelen, L.B.; de Jong, B.; Verhagen, L.M.; de la Fonteyne-Blankestijn, L.J.; Hoonakker, M.E.; de Jong, W.H. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part. Fibre Toxicol., 2018, 15(1), 9.
[http://dx.doi.org/10.1186/s12989-018-0245-5] [PMID: 29382351]
Warheit, D.B.; Webb, T.R.; Reed, K.L.; Frerichs, S.; Sayes, C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology, 2007, 230(1), 90-104.
[http://dx.doi.org/10.1016/j.tox.2006.11.002] [PMID: 17196727]
Wang, J.; Fan, Y. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int. J. Mol. Sci., 2014, 15(12), 22258-22278.
[http://dx.doi.org/10.3390/ijms151222258] [PMID: 25479073]
Onishchenko, G.E.; Erokhina, M.V.; Abramchuk, S.S.; Shaitan, K.V.; Raspopov, R.V.; Smirnov, V.V.; Vasilevskaya, L.S.; Gmoshinsky, I.V.; Kirpichnikov, M.P.; Tutelyan, V.A. Effect of titanium dioxide NPs on the state of the mucous membrane of the small intestine of rats. Bull. Exp. Biol. Med., 2012, 153, 231-237.
Buzulukov, Yu.P.; Gmoshinski, I.V.; Raspopov, R.V.; Dyomin, V.F.; Solov’yov, V.Y.; Shafeev, G.A.; Khotimchenko, S.A. ADME studies of some inorganic NPs after intragastric administration to rats using radioactive tracers. Meditsinskaia Radiologiia (Moscow), 2012, 57, 5-12.
Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123(11), 1939-1951.
[http://dx.doi.org/10.1093/jn/123.11.1939] [PMID: 8229312]
Platonova, T.A.; Pridvorova, S.M.; Zherdev, A.V.; Vasilevskaya, L.S.; Arianova, E.A.; Gmoshinski, I.V.; Hotimchenko, S.A.; Dzantiev, B.B. Identification of silver NPs in the tissues of the mucous membrane of the small intestine, liver and spleen of rats by transmission electron microscopy. Bull. Exp. Biol. Med., 2013, 155, 204-209.
Platonova, T.A.; Pridvorova, S.M.; Zherdev, A.V.; Gmoshinskii, I.V.; Vasilevskaya, L.S.; Dzantiev, B.B. Detection of gold nanoparticles in rat organs by transmission electron microscopy. Bull. Exp. Biol. Med., 2016, 160(6), 817-822.
[http://dx.doi.org/10.1007/s10517-016-3318-1] [PMID: 27165067]
Geraets, L.; Oomen, A.G.; Krystek, P.; Jacobsen, N.R.; Wallin, H.; Laurentie, M.; Verharen, H.W.; Brandon, E.F.; de Jong, W.H. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre Toxicol., 2014, 11, 30.
[http://dx.doi.org/10.1186/1743-8977-11-30] [PMID: 24993397]
Kreyling, W.G.; Holzwarth, U.; Schleh, C.; Kozempel, J.; Wenk, A.; Haberl, N.; Hirn, S.; Schäffler, M.; Lipka, J.; Semmler-Behnke, M.; Gibson, N. Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology, 2017, 11(4), 443-453.
[http://dx.doi.org/10.1080/17435390.2017.1306893] [PMID: 28290734]
Walker, W.A. Pathophysiology of intestinal uptake and absorption of antigens in food allergy. Ann. Allergy, 1987, 59(5 Pt 2), 7-16.
[PMID: 3318588]
Walker, R.I.; Owen, R.L. Intestinal barriers to bacteria and their toxins. Annu. Rev. Med., 1990, 41, 393-400.
[http://dx.doi.org/10.1146/annurev.me.41.020190.002141] [PMID: 2184739]
Kimm, M.H.; Curtis, G.H.; Hardin, J.A.; Gall, D.G. Transport of bovine serum albumin across rat jejunum: role of the enteric nervous system. Am. J. Physiol., 1994, 266(2 Pt 1), G186-G193.
[PMID: 8141290]
Bai, S.P.; Lu, L.; Luo, X.G.; Liu, B. Kinetics of manganese absorption in ligated small intestinal segments of broilers. Poult. Sci., 2008, 87(12), 2596-2604.
[http://dx.doi.org/10.3382/ps.2008-00117] [PMID: 19038816]
Walker, W.A.; Cornell, R.; Davenport, L.M.; Isselbacher, K.J. Macromolecular absorption. Mechanism of horseradish peroxidase uptake and transport in adult and neonatal rat intestine. J. Cell Biol., 1972, 54(2), 195-205.
[http://dx.doi.org/10.1083/jcb.54.2.195] [PMID: 5040858]
Ghadially, F.N. Ultrastructural pathology of the cell and matrix: A text and atlas of physiological and pathological alterations in the fine structure of cellular and extracellular components; Butterworth-Heinemann: London, Boston, 1988.
Cheville, N.F. Ultrastructural pathology: An introduction to interpretation; Wiley-Blackwell: Ames, Iowa, 1994.
Bezborodkina, N.N.; Okovitiy, N.N.; Kudryavtseva, M.V. Morphometry of mitochondrial apparatus of hepatocytes in normal and cyrrotically changed liver of rats. Cytology (Moscow), 2008, 50, 228-236.
Welt, K.; Weiss, J.; Martin, R.; Dettmer, D.; Hermsdorf, T.; Asayama, K.; Meister, S.; Fitzl, G. Ultrastructural, immunohistochemical and biochemical investigations of the rat liver exposed to experimental diabetes und acute hypoxia with and without application of Ginkgo extract. Exp. Toxicol. Pathol., 2004, 55(5), 331-345.
[http://dx.doi.org/10.1078/0940-2993-00337] [PMID: 15088635]
Karbowski, M.; Kurono, C.; Nishizawa, Y.; Horie, Y.; Soji, T.; Wakabayashi, T. Induction of megamitochondria by some chemicals inducing oxidative stress in primary cultured rat hepatocytes. Biochim. Biophys. Acta, 1997, 1349(3), 242-250.
[http://dx.doi.org/10.1016/S0005-2760(97)00140-9] [PMID: 9434138]
Knabe, W.; Kuhn, H.J. Morphogenesis of megamitochondria in the retinal cone inner segments of Tupaia belangeri (Scandentia). Cell Tissue Res., 1996, 285(1), 1-9.
[http://dx.doi.org/10.1007/s004410050614] [PMID: 8766852]
Mogilnaya, O.; Puzyr, A.; Baron, A.; Bondar, V. Hematological parameters and the state of liver cells of rats after oral administration of aflatoxin b1 alone and together with nanodiamonds. Nanoscale Res. Lett., 2010, 5(5), 908-912.
[http://dx.doi.org/10.1007/s11671-010-9571-8] [PMID: 20672086]
Raspopov, R.V.; Buzulukov, IuP.; Marchenkov, N.S.; Solov’ev, V.Iu.; Demin, V.F.; Kalistratova, V.S.; Gmoshinskiĭ, I.V.; Khotimchenko, S.A. [The bioavailability of zinc oxide nanoparticles. Study using methods of radionuclide indicators]. Vopr. Pitan., 2010, 79(6), 14-18.
[PMID: 21395099]
Buzulukov, IuP.; Arianova, E.A.; Demin, V.F.; Safenkova, I.V.; Gmoshinskiĭ, I.V.; Tutel’ian, V.A. [Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats by neutron activation analysis]. Izv. Akad. Nauk Ser. Biol., 2014, 3(3), 286-295.
[http://dx.doi.org/10.1134/S1062359014030042] [PMID: 25731040]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 25 March, 2020
Page: [268 - 279]
Pages: 12
DOI: 10.2174/1573413715666190328181854
Price: $65

Article Metrics

PDF: 11
PRC: 1