In Vitro Antioxidant, Antithrombotic, Antiatherogenic and Antidiabetic Activities of Urtica dioica, Sideritis euboea and Cistus creticus Water Extracts and Investigation of Pasta Fortification with the Most Bioactive One

Author(s): Georgakopoulou Vasiliki, Dimou Charalampia, Karantonis Christos Haralabos*

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 10 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The present work evaluated the in vitro antioxidant, antithrombotic, antiatherogenic and antidiabetic activities of Urtica dioica, Sideritis euboea and Cistus creticus and investigated pasta fortification with the most bioactive one. The methods employed were total phenolic content (TPC) in mg of gallic acid equivalents per g of dried-herb, 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) free radical scavenging in mg of dried-herb, cupric reducing antioxidant capacity (CUPRAC) in micromol trolox equivalent per g of dried-herb, platelet aggregation inhibition (PAF-PAI); plasma oxidation inhibition (POxI); and alpha glucosidase inhibition (a-GaseI) all in mg of dried-herb. Pasta fortified with the most bioactive herb was also studied for the above activities.

Methods: Cistus creticus extract was more bioactive (p < 0.05) compared to Sideritis euboea and Urtica dioica in all but antithrombotic assay, where Sideritis euboea was superior to the others (TPC: 37.9 ± 0.56 versus 9.6 ± 0.83 and 5.4 ± 0.70; SA50-ABTS: 0.040 ± 0.001 versus 0.400 ± 0.010 and 0.520 ± 0.008; ACUPRAC: 860 ± 6.23 versus 170 ± 4.25 and 80 ± 3.63; IA50-PAF: 1.8 ± 0.14 versus 1.2 ± 0.10 and 5.2 ± 0.21; POxI: 0.095 ± 0.016 versus 0.216 ± 0.021 and 0.534 ± 0.029; IA50-aGase: 0.2 ± 0.01 versus 2.1 ± 0.16 and 1.7 ± 0.12).

Results: Fortified pasta with cistus creticus extract exhibited significantly higher levels (p < 0.05) in all assays compared to plain pasta (TPC: 0.392 ± 0.064 versus 0.137 ± 0.020; SA50-ABTS: 9.4 ± 0.2 versus 126.9 ± 2.7; ACUPRAC: 5.4 ± 0.5 versus 0.9 ± 0.1; IA50-PAF: 1.87 ± 0.04 versus 2.28 ± 0.06; POxI: 3.21 ± 0.18 versus 12.2 ± 0.73; IA50-aGase: 8.9 ± 1.1 versus 18.2 ± 0.9).

Conclusion: The current findings add to the mounting evidence on the potential health benefits to be derived from consuming pasta fortified with herbal extracts and indicate that Cistus creticus could form an ideal raw material towards the production of fortified pasta with increased nutritional value.

Keywords: Cistus creticus, Urtica dioica, Sideritis euobea, antioxidant, antithrombotic, antiatherogenic, antidiabetic, pasta

[1]
Armellini, R.; Peinado, I.; Pittia, P.; Scampicchio, M.; Heredia, A.; Andres, A. Effect of Saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chem., 2018, 254, 55-63.
[2]
Chillo, S.; Laverse, J.; Falcone, P.M.; Protopapa, A.; Del Nobile, M.A. Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. J. Cereal Sci., 2008, 47(2), 144-152.
[3]
Hirawan, R.; Ser, W.Y.; Arntfield, S.D.; Beta, T. Antioxidant properties of commercial, regular- and whole-wheat spaghetti. Food Chem., 2010, 119(1), 258-264.
[4]
Tian, J.; Liiu, Y.; Liu, Y.; Chen, K.; Lyu, S. Cellular and molecular mechanisms of diabetic atherosclerosis: Herbal medicines as a potential therapeutic approach. Oxid. Med. Cell. Longev., 2017, 20179080869
[5]
Liu, Q.; Li, J.; Hartstone-Rose, A.; Wang, J.; Li, J.; Janicki, J.S.; Fan, D. Chinese herbal compounds for the prevention and treatment of atherosclerosis: Experimental evidence and mechanisms. Evidence-based Complement. Altern. Med., 2015, 2015752610
[6]
Cheng, Y-C.; Sheen, J-M.; Hu, W.L.; Hung, Y-C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid. Med. Cell. Longev., 2017, 20178526438
[7]
Pollio, A.; Zarrelli, A.; Romanucci, V.; Mauro, A.D.; Barra, F.; Pinto, G.; Crescenzi, E.; Roscetto, E.; Palumbo, G. Polyphenolic profile and targeted bioactivity of methanolic extracts from Mediterranean ethnomedicinal plants on human cancer cell lines. Molecules, 2016, 21(4), art. no 395.
[8]
Di Fabio, G.; Romanucci, V.; Di Marino, C.; Pisanti, A. Gymnema sylvestre R. Br., an Indian medicinal herb: Traditional uses, chemical composition, and biological activity. Curr. Pharm. Biotechnol., 2015, 16(6), 506-516.
[9]
Di Fabio, G.; Romanucci, V.; Zarrelli, M.; Giordano, M.; Zarrelli, A. C-4 gem-dimethylated oleanes of Gymnema sylvestre and their pharmacological activities. Molecules, 2013, 18(12), 14892-14919.
[10]
Li, M.; Zhu, K-X.; Guo, X-N.; Brijs, K.; Zhou, H-M. Natural additives in wheat-based pasta and noodle products: Opportunities for enhanced nutritional and functional properties. Compr. Rev. Food Sci. Food Saf., 2014, 13(4), 347-357.
[11]
Pasqualone, A.; Punzi, R.; Trani, A.; Summo, C.; Paradiso, V.M.; Caponio, F.; Gambacorta, G. Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. Int. J. Food Sci. Technol., 2017, 52(9), 2078-2087.
[12]
Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in Fettuccini pasta properties. LWT - Food Sci. Technol., 2014, 58(2), 497-501.
[13]
Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Sci. Technol., 2014, 58(1), 102-108.
[14]
Jan, K.N.; Zarafshan, K.; Singh, S. Stinging nettle(Urtica dioica L.): A reservoir of nutrition and bioactive components with great functional potential. J. Food Meas. Charact., 2017, 11(2), 423-433.
[15]
Gabrieli, C.N.; Kefalas, P.G.; Kokkalou, E.L. Antioxidant activity of flavonoids from Sideritis raeseri. J. Ethnopharmacol., 2005, 96(3), 423-428.
[16]
Güvenç, A.; Okada, Y.; Akkol, E.K.; Duman, H.; Okuyama, T.; Çaliş, I. Investigations of anti-inflammatory, antinociceptive, antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem., 2010, 118(3), 686-692.
[17]
Gergis, V.; Spiliotis, V.; Poulos, C. Antimicrobial activity of essential oils from greek sideritis species. Pharmazie, 1990, 45(1), 70.
[18]
Ferrer-Gallego, P.P.; Laguna, E.; Crespo, M.B. Typification of six linnaean names in Cistus L.(Cistaceae). Taxon, 2013, 62(5), 1046-1049.
[19]
Omur Demirezer, L.; Guvenalp, Z.; Kuruuzum-Uz, A.; Kazaz, C. Labdane-type diterpenes from Cistus creticus. Chem. Nat. Compd., 2012, 48(2), 337-338.
[20]
Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 2009, 14(6), 2167-2180.
[21]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[22]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[23]
Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food Chem., 2004, 52(26), 7970-7981.
[24]
Karantonis, H.C.; Antonopoulou, S.; Perrea, D.N.; Sokolis, D.P.; Theocharis, S.E.; Kavantzas, N.; Iliopoulos, D.G.; Demopoulos, C.A. In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr. Metab. Cardiovasc. Dis., 2006, 16(3), 174-185.
[25]
Schnitzer, E.; Pinchuk, I.; Bor, A.; Fainaru, M.; Samuni, A.M.; Lichtenberg, D. Lipid oxidation in unfractionated serum and plasma. Chem. Phys. Lipids, 1998, 92(2), 151-170.
[26]
Vinholes, J.; Grosso, C.; Andrade, P.B.; Gil-Izquierdo, A.; Valentão, P.; Pinho, P.G.D.; Ferreres, F. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chem., 2011, 129(2), 454-462.
[27]
Kavtaradze, N.S.; Alaniya, M.D. Anthocyan glucosides from Urtica dioica. Chem. Nat. Compd., 2003, 39(3), 315.
[28]
Obertreis, B.; Giller, K.; Teucher, T.; Behnke, B.; Schmitz, H. Antiphlogistic effects of Urtica dioica folia extract in comparison to caffeic malic acid antiphlogistische effekte von extractum Urticae dioicae Foliorum im Vergleich zu kaffeoylapfelsaure. Arzneimittel-Forschung. Drug Res., 1996, 46(1), 52-56.
[29]
Sajfrtová, M.; Sovová, H.; Opletal, L.; Bártlová, M. Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots. J. Supercrit. Fluids, 2005, 35(2), 111-118.
[30]
Toldy, A.; Stadler, K.; Sasvári, M.; Jakus, J.; Jung, K.J.; Chung, H.Y.; Berkes, I.; Nyakas, C.; Radák, Z. The effect of exercise and nettle supplementation on oxidative stress markers in the rat brain. Brain Res. Bull., 2005, 65(6), 487-493.
[31]
Kataki, M.S.; Murugamani, V.; Rajkumari, A.; Mehra, P.S.; Awasthi, D.; Yadav, R.S. Antioxidant, hepatoprotective, and anthelmintic activities of methanol extract of Urtica dioica L. leaves. Pharm. Crop., 2012, 3(6), 38-46.
[32]
Güder, A.; Korkmaz, H. Evaluation of in-vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr. and their mixture. Iran. J. Pharm. Res., 2012, 11(3), 913-923.
[33]
Baeuerle, P.A.; Henkel, T. Function and Activation of NF-KB in the Immune System. Annu. Rev. Immunol., 1994, 12, 141-179.
[34]
Roschek, Jr B.; Fink, R.C.; McMichael, M.; Alberte, R.S. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phyther. Res., 2009, 23(7), 920-926.
[35]
Stavric, B. Quercetin in our diet: From potent mutagen to probable anticarcinogen. Clin. Biochem., 1994, 27(4), 245-248.
[36]
Simões-Pires, C.A.; Hmicha, B.; Marston, A.; Hostettmann, K. A TLC bioautographic method for the detection of α- and β-glucosidase inhibitors in plant extracts. Phytochem. Anal., 2009, 20(6), 511-515.
[37]
Das, M.; Sarma, B.P.; Khan, A.K.A.; Mosihuzzaman, M.; Nahar, N.; Ali, L.; Bhoumik, A.; Rokeya, B. The antidiabetic and antilipidemic activity of aqueous extract of Urtica dioica L. on type2 diabetic model rats. J. Biosci., 2009, 17(1), 1-6.
[38]
Farzami, B.; Ahmadvand, D.; Vardasbi, S.; Majin, F.J.; Khaghani, S. Induction of insulin secretion by a component of urtica dioica leave extract in perifused islets of langerhans and its in vivo effects in normal and streptozotocin diabetic rats. J. Ethnopharmacol., 2003, 89(1), 47-53.
[39]
Triantaphyllou, K.; Blekas, G.; Boskou, D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutr., 2001, 52(4), 313-317.
[40]
Tunalier, Z.; Kosar, M.; Ozturk, N.; Baser, K.H.C.; Duman, H.; Kirimer, N. Antioxidant properties and phenolic composition of sideritis species. Chem. Nat. Compd., 2004, 40(3), 206-210.
[41]
Danesi, F.; Saha, S.; Kroon, P.A.; Glibetić, M.; Konić-Ristić, A.; D’Antuono, L.F.; Bordoni, A. Bioactive-rich sideritis scardica tea (mountain tea) is as potent as Camellia sinensis tea at inducing cellular antioxidant defences and preventing oxidative stress. J. Sci. Food Agric., 2013, 93(14), 3558-3564.
[42]
Charami, M-T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleies, C. Antioxidant and antiinflammatory activities of sideritis perfoliata subsp. Perfoliata (Lamiaceae). Phyther. Res., 2008, 22(4), 450-454.
[43]
Romanucci, V.; Di Fabio, G.; D’Alonzo, D.; Guaragna, A.; Scapagnini, G.; Zarrelli, A. Traditional uses, chemical composition and biological activities of sideritis Raeseri boiss. Heldr. J. Sci. Food Agric., 2017, 97(2), 373-383.
[44]
Stagos, D.; Portesis, N.; Spanou, C.; Mossialos, D.; Aligiannis, N.; Chaita, E.; Panagoulis, C.; Reri, E.; Skaltsounis, L.; Tsatsakis, A.M.; Kouretas, D. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from greek domestic Lamiaceae species. Food Chem. Toxicol., 2012, 50(11), 4115-4124.
[45]
Shen, C.; Zhang, Y. Antimicrobial resistance of commensal bacteria from the environment. In: Food Microbiology Laboratory for the Food Science Student; Publishing: Cham, 2017; pp. 87-89.
[46]
Karantonis, H.C.; Zabetakis, I.; Nomikos, T.; Demopoulos, C.A. Antiatherogenic properties of lipid minor constituents from seed oils. J. Sci. Food Agric., 2003, 83(12), 1192-1204.
[47]
González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Nrf2-dependent neuroprotective activity of diterpenoids isolated from Sideritis spp. J. Ethnopharmacol., 2013, 147(3), 645-652.
[48]
González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Kaurane diterpenes from sideritis spp. exert a cytoprotective effect against oxidative injury that is associated with modulation of the Nrf2 system. Phytochemistry, 2013, 93, 116-123.
[49]
Scapagnini, G.; Sonya, V.; Nader, A.G.; Calogero, C.; Zella, D.; Fabio, G. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol. Neurobiol., 2011, 44(2), 192-201.
[50]
Harrison, D.G.; Gongora, M.C. Oxidative stress and hypertension. Med. Clin. North Am., 2009, 93(3), 621-635.
[51]
Strobel, N.A.; Fassett, R.G.; Marsh, S.A.; Coombes, J.S. Oxidative stress biomarkers as predictors of cardiovascular disease. Int. J. Cardiol., 2011, 147(2), 191-201.
[52]
Demetzos, C.; Mitaku, S.; Hottellier, F.; Harvala, A. Polyphenolic glycosides from Cistus creticus L. leaves. Ann. Pharm. Fr., 1989, 47(5), 314-318.
[53]
Vogt, T.; Proksch, P.; Gülz, P-G. Epicuticular flavonoid aglycones in the genus cistus, Cistaceae. J. Plant Physiol., 1987, 131(1-2), 25-36.
[54]
Demetzos, C.; Katerinopoulos, H.; Kouvarakis, A.; Stratigakis, N.; Loukis, A.; Ekonomakis, C.; Spiliotis, V.; Tsaknis, J. Composition and antimicrobial activity of the essential oil of Cistus creticus Subsp. Eriocephalus. Planta Med., 1997, 63(5), 477-479.
[55]
Rauwald, H.W.; Hutschenreuther, A.; Birkemeyer, C.; Grötzinger, K.; Straubinger, R.K. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro. Pharmazie, 2010, 65(4), 290-295.
[56]
Atsalakis, E.; Chinou, I.; Makropoulou, M.; Karabournioti, S.; Graikou, K. Evaluation of phenolic compounds in Cistus creticus bee pollen from Greece. Antioxidant and antimicrobial properties. Nat. Prod. Commun., 2017, 12(11), 1813-1816.
[57]
Skorić, M.; Todorović, S.; Gligorijević, N.; Janković, R.; Živković, S.; Ristić, M.; Radulović, S. Cytotoxic activity of ethanol extracts of in vitro grown Cistus creticus Subsp. Creticus L. on human cancer cell lines. Ind. Crops Prod., 2012, 38(1), 153-159.
[58]
Feliciano, R.; Istas, G.; Heiss, C.; Rodriguez-Mateos, A. Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry. Molecules, 2016, 21, 1120.
[59]
Bonetti, G.; Tedeschi, P.; Meca, G.; Bertelli, D.; Mañes, J.; Brandolini, V.; Maietti, A. In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products. Food Funct., 2016, 7(10), 4222-4230.
[60]
Stanoeva, J.P.; Bagashovska, D.; Stefova, M. Characterization of urinary bioactive phenolic metabolites excreted after consumption of a cup of mountain tea (Sideritis scardica) using liquid chromatography - tandem mass spectrometry. Macedonian J. Chemic. Engin., 2012, 31(2), 229-243.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 10
Year: 2019
Published on: 28 March, 2019
Page: [874 - 880]
Pages: 7
DOI: 10.2174/1389201020666190328114343
Price: $65

Article Metrics

PDF: 24
HTML: 2
EPUB: 1
PRC: 1