Detection and Validation of Native Plants Traditionally Used as Medicine in Guatemala

Author(s): Armando Cáceres*, Sully M. Cruz

Journal Name: Current Traditional Medicine

Volume 5 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Guatemala as part of Mesoamerica, is a region of high biological and cultural diversity, where several cultures have flourished. Since 1976, a project started for the detection, validation, production, and utilization of medicinal species for primary health care. It included several ethnobotanical surveys conducted among ten Guatemalan ethnical groups. The objective of this paper is to summarize the ethnobotanical surveys conducted in the country and review the literature validating the use of the most promising native species. From these surveys, more than 650 plant species used for medicinal purposes were detected and cultivation activities were conducted for some of these species. Initially, in cooperation with the multidisciplinary teams in Guatemala, and later with other academic institutions in Brazil, Costa Rica, Italy, Mexico, Panama, Spain and United States, in vitro and in vivo validation activities were performed, such as biocidal, anti-inflammatory, spasmolytic, immunomodulatory, antioxidant and other activities. A comprehensive literature review of the most relevant species was performed. Based on the traditional utilization and preclinical or clinical evidence, several national and international projects were conducted. The most interesting results include anti-candida (Solanum nigrescens), antimicrobial (Tagetes lucida), immunomodulator (Phlebodium pseudoaureum), anti-protozoal (Neurolaena lobata), sedative (Valeriana prionophylla), anti-menopause (Piper hispidum) activities and others. With this information and the reviewed literature, specific formulas were prepared for the treatment of different pathologies, leading to several products registered as phytotherapic in Guatemala. Concise updated information is integrated into mini-reviews for 15 species in order to inform about the properties, chemistry and potential use of these species.

Keywords: Antimicrobial, immunomodulator, photoprotector, Solanum nigrescens, Phlebodium pseudoaureum, Neurolaena lobata, Piper hispidum, Valeriana prionophylla.

[1]
Conap. Guatemala y su Biodiversidad. Un enfoque histórico, cultural, biológico y económico. Guatemala, Conap, 2008.
[2]
Harlan JR. Agricultural origins: Centers and noncenters. Science 1971; 174: 468-74.
[3]
Conap. Biodiversidad Terrestre de Guatemala. Análisis de vacíos y estrategias para su conservación. Doc. técnico No. 73 (1-2010). Guatemala: TNCWWF- CI-CONAP, 2009.
[4]
Caceres A. Vademécum nacional de plantas medicinales. Guatemala: Ed. Universitaria 2009.
[5]
Fion M. Recopilación de las plantas medicinales, validadas farmacológicamente por estudiantes asesorados de farmacología y fisiología de la Facultad de Ciencias Químicas y Farmacia (BS Thesis) Guatemala: Universidad de San Carlos de Guatemala, 2003.
[6]
Martínez JV, Bernal HY, Cáceres A. Fundamentos de agrotecnología de cultivo de plantas medicinales iberoamericanas. Bogotá: CAB-CYTED 2000.
[7]
Cáceres A, Gupta MP, Ocampo RA, et al. Multidisciplinary development of phytotherapeutic products from native Central American plants. Acta Hortic 2006; (720): 149-55.
[8]
Cáceres A. From traditional uses of Mesoamerican medicinal plants to modern phytotherapy in Guatemala. Planta Med 2015; 81: 08.
[9]
Morley S. La civilización Maya. México: Fondo de Cultura Económica 1980.
[10]
Recinos A. (Trad) Popol Vuh Las Antiguas Historias de Quiché. 2nd ed. México: Fondo de Cultura Económica 1947.
[11]
Roys RL. Ethnobotany of the Maya. New Orleans: Tulane University 1931.
[12]
Thompson J. Historia y religión de los Mayas. México: Siglo XXI 1990.
[13]
Díaz del Castillo B. Historia verdadera de la conquista de la Nueva España. Madrid: Real Academia Española 2011.
[14]
Gómez-Pompa A. Las raíces de la etnobotánica mexicana.In: Guevara S Moreno-Casasola P, Rzedowski J, Comp Logros y perspectivas del conocimiento de los recursos vegetales de México en vísperas del siglo XXI. México: Instituto de Ecología 1933; pp. 26-37.
[15]
Hernández F. Historia natural de Nueva España. México: Ed. UNAM 1965.
[16]
Ximénez F. Historia natural del Reino de Guatemala. Guatemala: Ed. José de Pineda Ibarra 1967.
[17]
Fuentes y Guzmán FA. Recordación florida (II). Guatemala: Tipografía Nacional 1932.
[18]
Maldonado Polo Jl. “Flora de Guatemala” de José Mociño. Madrid: Ediciones Doce Calles-Consejo Superior de Investigaciones Científicas, 1996.
[19]
Blake SF. Native names and uses of some plants of eastern Guatemala and Honduras. Contrib US Natl Herb 1922; 24(4): 87-105.
[20]
Mejía JV. Geografía de la República de Guatemala. Guatemala: Tipografía Nacional 1927.
[21]
Rojas U. Elementos de Botánica General. Guatemala: Tipografía Nacional 1925-36.
[22]
Roque JM. Flora médicoguatemalteca, apuntes para la materia médica de Guatemala. Guatemala: Tipografía Nacional 1941.
[23]
Standley PC, Steyermark JA. Flora de Guatemala, Fieldiana: Bot 1946-52. 24: 1-6.
[24]
Standley PC, Williams LO. Flora of Guatemala. Fieldiana: Bot 1961-81. 24: 7-12.
[25]
Figueroa Marroquín H. Enfermedades de los conquistadores. San Salvador: Ministerio de Cultura 1955.
[26]
Guerra F. Maya medicine. Med Hist 1946; 8: 31-43.
[27]
Aguilar Girón J. Relación de algunos aspectos de la flora útil de Guatemala. Guatemala: Tipografía Nacional 1966.
[28]
Mellen G. El uso de las plantas medicinales en Guatemala. Guatem Indig 1974; 9: 102-48.
[29]
Instituto Indigenista Nacional Aspectos de la medicina popular en el área rural de Guatemala. Guatem Indig 1971; 6: 1-330.
[30]
Cáceres A, Sapper D. Estudios sobre medicina popular en Guatemala. Med Tradic 1977; 1: 59-68.
[31]
Cáceres A, Girón LM, Alvarado SR, Torres MF. Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of dermatomucosal diseases. J Ethnopharmacol 1987; 20: 223-37.
[32]
Cáceres A, Cano O, Samayoa B, Aguilar L. Plants used in Guatemala for the treatment of gastrointestinal disorders. 1. Screening of 84 plants against enterobacteria. J Ethnopharmacol 1990; 30: 55-73.
[33]
Cáceres A, Alvarez AV, Ovando AE, Samayoa B. Plants used in Guatemala for the treatment of respiratory diseases. 1. Screening of 68 plants against Gram-positive bacteria. J Ethnopharmacol 1991; 31: 193-208.
[34]
Girón LM, Freire AV, Alonzo A, Cáceres A. Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. J Ethnopharmacol 1991; 34: 173-87.
[35]
Cáceres A, Girón LM, Freire AV. Plantas de uso medicinal en Guatemala. 1. Detección etnobotánica y bibliográfica. Rev USAC 1990; 9: 55-77.
[36]
Girón LM, Cáceres A. Técnicas básicas para el cultivo y procesamiento de plantas medicinales. Guatemala: Cemat 1994.
[37]
Ronquillo FA, Melgar MF, Carrillo JE, Martínez AB. Especies vegetales de uso actual y potencial en alimentación y medicina de las zonas semiáridas del nororiente de Guatemala. Cuadernos DIGI 1988; pp. 5-88.
[38]
Instituto de Ciencia y Tecnología Agrícola Informe de recursos filogenéticos. Guatemala: ICTA 1991-3.
[39]
Comerford SC. Medicinal plants of two Mayan healers from San Andrés, Petén, Guatemala. Econ Bot 1996; 50: 327-36.
[40]
Nicolas JP. Plantes médicinales des mayas K’iché du Guatemala. Paris: Ibis Press 1999.
[41]
Kufer J, Förther H, Pöll E, Heinrich M. Historical and modern medicinal plants uses-the example of the Ch’orti’ Maya and Ladinos in Eastern Guatemala. J Pharm Pharmacol 2005; 57: 1127-52.
[42]
MacVean AL. Plantas útiles de Petén, Guatemala. Guatemala: Universidad del Valle 2003.
[43]
Michel JL, Mahady GB, Véliz M, et al. Symptoms, attitudes and treatment choices surrounding menopaused use among the Q’eqchi Mayan of Livingston, Guatemala. J Ethnopharmacol 2006; 63: 732-42.
[44]
Cates RG, Thompson A, Brabazon H, et al. Activities of Guatemalan medicinal plants against cancer cell lines and selected microbes: Evidence for their conservation. J Med Plants Res 2013; 8: 1040-50.
[45]
Cruz EC, Andrade-Cetto A. Ethnopharmacological field study of the plants used to treat type 2 diabetes among the Cakchiquels in Guatemala. J Ethnopharmacol 2015; 159: 238-44.
[46]
Hitziger M, Heinrich M, Edwards P, et al. Maya phytomedicine in Guatemala - Can cooperative research change ethnopharmacological paradigms? J Ethnopharmacol 2016; 186: 61-72.
[47]
Cáceres A, Girón LM, Martínez AM. Diuretic activity of plants used for the treatment of urinary ailments in Guatemala. J Ethnopharmacol 1987; 19: 233-45.
[48]
Cáceres A, Jauregui E, Herrera D, Logemann H. Plants used in Guatemala for the treatment of dermatomucosal infections. 1. Screening of 38 plant extracts for anticandidal activity. J Ethnopharmacol 1991; 33: 277-83.
[49]
Girón LM, Aguilar GA, Cáceres A, Arroyo GL. Anti-candidal activity of plants used for the treatment of vaginitis in Guatemala and clinical trial of a Solanum nigrescens preparation. J Ethnopharmacol 1988; 22: 307-13.
[50]
Cáceres A, López BR, Girón MA, Logemann H. Plants used in Guatemala for the treatment of dermatophytic infections. 1. Screening for antimycotic activity of 44 plant extracts. J Ethnopharmacol 1991; 31: 263-76.
[51]
Svetaz L, Zuljan F, Derita M, et al. Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J Ethnopharmacol 2010; 127: 137-58.
[52]
Cáceres A, Menéndez H, Méndez E, et al. Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases. J Ethnopharmacol 1995; 48: 85-8.
[53]
Villar R, Calleja JM, Morales C, Cáceres A. Screening of 17 Guatemalan medicinal plants for platelet antiaggregant activity. Phytother Res 1997; 11: 441-5.
[54]
Cáceres A, López B, González S, et al. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants. J Ethnopharmacol 1998; 62: 195-202.
[55]
Calderón AI, Romero LI, Ortega-Barría E, et al. Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Pharm Biol 2010; 48: 545-53.
[56]
Morales C, Gómez-Serranillos MP, Iglesias I, et al. Preliminary screening of five ethnomedicinal plants of Guatemala. Il Farmaco 2001; 56: 523-6.
[57]
Morales-Cifuentes C, Gómez-Serranillos Iglesias I, et al. Neuropharmacological profile of ethnomedicinal plants of Guatemala. J Ethnopharmacol 2002; 79: 395.
[58]
Calderón AI, Vázquez Y, Solis PN, et al. Screening of Latin American plants for cytotoxicity activity. Pharm Biol 2006; 44: 130-40.
[59]
Michel JL, Chen Y, Zhang H, et al. Estrogenic and serotonergic butenolides from leaves of Piper hispidum Swingle (Piperaceae). J Ethnopharmacol 2010; 129: 220-6.
[60]
Cáceres A, Lange K, Cruz SM, et al. Assessment of antioxidant activity of 24 native plants used in Guatemala for their potential application in natural product industry. Acta Hortic 2012; (964): 85-92.
[61]
Coe FG, Anderson GJ. Snakebite ethnopharmacology of eastern Nicaragua. J Ethnopharmacol 2005; 96: 303-23.
[62]
Vilar DA, Vilar MSA, Moura TFA, et al. Traditional uses, chemical composition, and biological activities of Bixa orellana L: A review. Sci Wld J 2014; p. 857292.
[63]
Shilpi JA, Taufiq-Ur-Rahman M, Uddin SJ, et al. Preliminary pharmacological screening of Bixa orellana leaves. J Ethnopharmacol 2006; 108: 264-71.
[64]
Morales M, Galdón MC, López I, et al. In vitro antimicrobial action of Bixa orellana L. Int J Phytocosm Nat Ingred 2016; 3: 3.
[65]
Freixa B, Vila R, Vargas L, et al. Screening for antifungal activity of nineteen Latin American plants. Phytother Res 1998; 12: 427-30.
[66]
Fleischer TC, Ameade EPK, Mensah MLK, Sawer IK. Antimicrobial activity of the leaves and seeds of Bixa orellana. Fitoterapia 2003; 74: 136-8.
[67]
Tamil Selvi A, Dinesh MG, Satyan RS, et al. Leaf and seed extracts of Bixa orellana L. exert anti-microbial activity against bacterial pathogens. J Appl Pharm Sci 2011; 1: 116-20.
[68]
Gómez-Barrio A, Martínez-Grueiro MM, Montero D, et al. In vitro antiparasitic activity of plant extracts from Panama. Pharm Biol 2004; 42: 332-7.
[69]
Alonso JR. Tratado de fitofármacos y nutracéuticos. Rosario: Editorial Corpus 2004.
[70]
Quanico JP, Amor EC, Perez GG. Analgesic and hypo-glycemic activities of Bixa orellana, Kyllinga monocephala and Luffa acutangula. Philipp J Sci 2008; 137: 69-76.
[71]
Mans DRA, Toelsie JR, Jagernath Z, et al. Assessment of eight popularly used plant-derived preparations for their spasmolytic potential using the isolated guinea pig ileum. Pharm Biol 2004; 6: 422-9.
[72]
Zuraini A, Somchit MN, Abdul Hamid R, et al. Inhibition of acute and chronic inflammation by Bixa orellana leaves extract. Planta Med 2007; 73(09)
[http://dx.doi.org/10.1055/s-2007-986858]
[73]
Keong YY, Arifa AK, Sukardi S, et al. Bixa orellana leaves extract inhibits bradykinin-induced inflammation through suppression on nitric oxide production. Med Princ Pract 2011; 20: 142-6.
[74]
Yong YK, Zakari ZA, Kadir AA, et al. Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Comp Alter Med 2013; 13: 32.
[75]
Radhika B, Begum N, Srisailam K, Reddy VM. Diuretic activity of Bixa orellana Linn. leaf extracts. Indian J Nat Prod Resour 2010; 1: 353-5.
[76]
Zegarra L, Vaisberg A, Loza C, et al. Double-blind randomized placebo-controlled study of Bixa orellana in patients with lower urinary tract symptoms associated to benign prostatic hyperplasia. Int Braz J Urol 2007; 33: 493-501.
[77]
Stohs SJ. Safety and efficacy of Bixa orellana (achiote, annatto) leaf extracts. Phytother Res 2014; 28: 956-60.
[78]
Morton JF. Atlas of medicinal plants of Middle America. Springfield: Charles C. Thomas 1981.
[79]
Freixa B, Villa R, Bighelli A, et al. Alphitolic acid: an unusual triterpenoid from leaves of Bixa orellana and evaluation of its antifungal activity. 50th Ann Cong Soc Med Plant Res. Barcelona. 2002.
[80]
Morton JF. Fruits of warm climates. Greensboro: Media Inc. 1987.
[81]
Cáceres A, Fletes L, Aguilar L, et al. Plants used in Guatemala for the treatment of gastrointestinal disorders. 3. Confirmation of activity against enterobacteria of 16 plants. J Ethnopharmacol 1993; 38: 31-8.
[82]
Cáceres A, Figueroa L, Taracena AM, Samayoa B. Plants used in Guatemala for the treatment of respiratory diseases. 2. Evaluation of activity of 16 plants against Gram-positive bacteria. J Ethnopharmacol 1993; 39: 77-82.
[83]
Andrade BS, Matias R Corrêa, et al. Phytochemistry, antioxidant potential and antifungal of Byrsonima crassifolia on soil phytopathogens control. Braz J Biol 2018; 78: 140-6.
[84]
Martínez-Vázquez M, González-Esquinca AR, Cazares Luna L, et al. Antimicrobial activity of Byrsonima crassifolia (L.) HBK. J Ethnopharmacol 1999; 66: 79-82.
[85]
Gonzalez González JM. Efecto terapéutico del extracto de Byrsonima crassifolia (nance) sobre candidiasis oral (Tesis), Fac Odontología. USAC 1993.
[86]
Bejar E, Amarquaye A, Che CT, et al. Constituents of Byrsonima crassifolia and their spasmogenic activity. Int J Pharmacol 1995; 33: 25-32.
[87]
Geiss F, Heinrich M, Hunkler D, Rimpler H. Proantho-cyanidins with (+)-epicatechin units from Byrsonima crassifolia bark. Phytochemistry 1995; 39: 635-43.
[88]
Kuhnt M, Heinrich M, Rimpler H. Lowland Mixe indian (Mexico) medicinal plants: Phytochemical investigation of Hyptis verticillata and further evaluation of the Ethno-pharmacopoeia. Planta Med (Suppl) 1992; 58: A 643-4.
[89]
Maldini M, Sosa S, Montoro P, et al. Screening of the topical anti-inflammatory activity of the bark of Acacia cornigera Willdenow, Byrsonima crassifolia Kunth, Sweetia panamensis Yakovlev and the leaves of Sphagneticola trilobata Hitchcock. J Ethnopharmacol 2009; 122: 430-3.
[90]
Muñiz A, Perez R. Wound healing effect and flavonoid contents of three selected Byrsonima species. Food Environ 2013; 170: 241-51.
[91]
Herrera-Ruiz M, Zamilpa A, González-Cortazar M, et al. Antidepressant effect and pharmacological evaluation of standardized extract of flavonoids from Byrsonima crassifolia. Phytomedicine 2011; 18: 1255-61.
[92]
Souza RO, Alves GAD, Forte ALSA, et al. Byrsonima crassifolia extract and fraction prevent UVB-induced oxidative stress in keratinocytes cultures and increase antio-xidant activity in skin. Ind Crops Prod 2017; 108: 485-94.
[93]
Pompeu DR, Rogez H, Monteiro KM, et al. Capacidade antioxidante e triage farmacológica de extratos brutos de folhas de Byrsonima crassifolia e de Inga edulis. Acta Amazon 2012; 42: 165-72.
[94]
Maldini M, Montoro P, Pizza C. Phenolic compounds from Byrsonima crassifolia L. bark: Phytochemical investigation and quantitative analysis by LC-ESI MS/MS. J Pharm Biomed Anal 2011; 56: 1-6.
[95]
Béjar E, Malone MH. Pharmacological and chemical screening of Byrsonima crassifolia, a medicinal tree from Mexico. Part I. J Ethnopharmacol 1993; 39: 141-58.
[96]
Rastrelli L, de Tommasi N, Berger I, et al. Glycolipids from Byrsonima crassifolia. Phytochemistry 1996; 45: 647-50.
[97]
Geilfus F. El árbol al servicio del agricultor. Santo Domingo: ENDA-Caribe/CATIE 1989.
[98]
Tramil Farmacopea vegetal caribeña 3a edición. Mérida, Yucatán: CICY 2014.
[99]
Kumar NS, Simon N. In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. J Pharmacog Phytochem 2016; 5: 131-3.
[100]
Akharaiyi FC, Boboye B, Adetuyi FC. Antibacterial, phytochemical and antioxidant activities of the leaf extract of Gliricidia sepium and Spathodea campanulata. Wld App Sci J 2012; 16: 523-30.
[101]
Rahalison L, Hamburger M, Hostettmann K, et al. Screening for antifungal activity of Panamanian plants. Int J Pharmacol 1993; 31: 68-76.
[102]
Krishnappa K, Dhanasekaran S, Elumalai K. Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.) (Leguminosae) against the malaria vector, Anopheles stephensi Liston (Cuclicidae: Siptera). Asian Pac J Trop Med 2012; 598-604.
[103]
Adhira P, Ranjini KR, Jagadeesh N, et al. Toxicity effect of Cassia fistula Linn. and Gliricidia sepium Jacq. leaf extract against fourth instar larvae of filarial mosquito Culex quinquefasciatus Say. (diptera: culiciae). J Entomol Res 2016; 40: 369-72.
[104]
Sinha SN. Phytochemical profiles and antioxidant activities of the leaf extract of Gliricidia sepium. Int J Innov Bio-Sci 2013; 3: 87-91.
[105]
Jiu J. A survey of some medicinal plants of Mexico for selected biological activities. Lloydia 1966; 29: 250-9.
[106]
Rimando AM, Inoshiri S, Otsuka H, et al. Screening for mast cell histamine release inhibitory activity of Philippine medicinal plants: Active constituent of Ehretia microphylla. Jpn J Pharmacol 1987; 41: 242-7.
[107]
Dhawan BN, Patnaik GK, Rastogi RP, et al. Screening of Indian plants for biological activity. VI. Indian J Exp Biol 1977; 15: 208.
[108]
Kumar KP, Naik VS, Chandra CB, et al. Evaluation of in vitro and in vivo anti-inflammatory activity of aqueous extract of Gliricidia sepium flowers in rats. Int J Pharmacog Phytochem Res 2014; 6: 477-81.
[109]
Glasby JS. Dictionary of plants containing secondary metabolites. London: Taylor & Francis 1991.
[110]
Rastrelli L, Berger I, Kubelka W, et al. New 12a-hydroxyrotenoids from Gliricidia sepium bark. J Nat Prod 1988; 62: 188-90.
[111]
Rastrelli L, Caceres A, de Simone F, Aquino R. Studies on the constituents of Gliricidia sepium (Laguminosae) leaves and roots: Isolation and structure elucidation of new triterpenoid saponins and aromatic compounds. J Agric Food Chem 1999; 47: 1537-40.
[112]
Kaniampady MM, Muhammed Arif M, Jirovetz L, Shafi PM. Essential oil composition of Gliricidia sepium (Leguminosae) leaves and flowers. Indian J Chem 2007; 48B: 1359-60.
[113]
Gibson DN. Flora of Guatemala. Fieldiana Bot 1970; 24(9): 208.
[114]
Logan MH. Digestive disorders and plant medicinals in Highland Guatemala. Anthropos 1973; 68: 537-47.
[115]
Ocampo R, Balick MJ. Plants of semillas sagradas An ethnomedicinal garden in Costa Rica Finca Luna Nueva Extractos de Costa Rica. 2009.
[116]
Guzmán Gutierrez SL, Reyes Chilpa R, Bonilla Jaime H. Medicinal plants for the treatment of “nervios”, anxiety, and depression in Mexican Traditional Medicine. Rev Bras Farmacogn 2014; 24: 591-608.
[117]
Pascual ME, Slowing K, Carretero E, et al. Lippia: Traditional uses, chemistry and pharmacology: A review. J Ethnopharmacol 2001; 76: 201-14.
[118]
Hennebelle T, Sahpaz S, Joseph H, Bailleul F. Ethnopharmacology of Lippia alba. J Ethnopharmacol 2008; 116: 211-22.
[119]
Ocampo RA, Maffioli A. El Uso de Algunas Plantas Medicinales en Costa Rica. San José: Trejos Hnos 1987.
[120]
Mamun-or-Rashid ANM Islam, MR, Dash BK. In vitro antibacterial effect of bushy matgrass (Lippia alba Mill.) extracts. Res J Med Plant 2012; 6: 334-40.
[121]
Nuñez MB, Torres CA, Aguado MI, et al. Polyphenols and antimicrobial activity in extracts of Lippia alba (Mill.). Int J Med Arom Plants 2013; 2: 361-8.
[122]
Abad MJ, Bermejo P, Villar A, et al. Antiviral activity of medicinal plant extracts. Phytother Res 1997; 11: 198-202.
[123]
Costa DCM, Vermelho AB, Almeida CA, et al. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes. J Enzyme Inhib Med Chem 2014; 29: 12-7.
[124]
Shukla R, Singh P, Prakash B, et al. Efficacy of essential oils of Lippia alba (Mill.) N.E. Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behavior of pulse beetle, Callosobruchus chinensis L. J Sci Food Agric 2011; 91: 2277-83.
[125]
Vega SS, Zambrano DF, Méndez-Sánchez SC, et al. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 2014.
[http://dx.doi.org/10.1007/s00436-014-3917-6]
[126]
Chagas ACS, Oliveira MCS, Giglioti R, et al. Efficacy of 11 Brazilian essential oils on lethality of the cattle tick Rhipicephalus (Boophilus) microplus. Ticks Tick-born Dis 2016; 7: 427-32.
[127]
Ramos A, Visozo A, Piloto J, et al. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J Ethnopharmacol 2003; 87: 241-6.
[128]
Stashenko EE, Jaramillo BE, Martínez JR. Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) N.E. Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. J Chromatogr A 2004; 1025: 93-103.
[129]
Pascual ME, Slowing K, Carretero ME, Villar A. Antiulcerogenic activity of Lippia alba (Mill.) N.E. Brown (Verbenaceae). Il Farmaco 2001; 56: 501-4.
[130]
Bhakuni DS, Dhar ML, Dhar MM, et al. Screening of Indian plants for biological activity. Part III. Indian J Exp Biol 1971; 9: 91.
[131]
Blanco MA, Colareda GA, van Buren C, et al. Antispasmodic effects and composition of the essential oil from two South American chemotypes of Lippia alba. J Ethnopharmacol 2013; 149: 803-9.
[132]
Costa M, Di Stasi LC, Kirizawa M, et al. Screening in mice of some medicinal plants used for analgesic purposes in the state of São Paulo. II. J Ethnopharmacol 1989; 27: 25-33.
[133]
Haldar S, Kar B, Dolai N, et al. In vivo anti-nociceptive and anti-inflammatory activities of Lippia alba. Asian Pac J Trop Dis 2012; 2: S667-70.
[134]
López MA, Stashenko EE, Fuentes JL. Chemical composition and antigenotoxic properties of Lippia alba essential oil. Genet Mol Biol 2011; 34: 479-88.
[135]
Conde R, Corrêa VSC, Carmona F. Chemical composition and therapeutic effects of Lippia alba (Mill.) N.E. Brown leaves hydro-alcoholic extract in patients with migraine. Phytomedicine 2011; 18: 1197-201.
[136]
Carmona F, Angelucci MA, Sales DS, et al. Lippia alba (Mill.) N.E. Brown hydroethanolic extract of the leaves is effective in the treatment of migraine in women. Phytomedicine 2013; 20: 947-50.
[137]
Jezler CN, Oliveira ARMF, Batista RS, et al. Lipia alba morphotypes cidreira and melissa exhibit significant differences in leaf characteristics and essential oil profile. Rev Bras Farmacogn 2013; 23: 217-23.
[138]
Vale TG, Matos FJA, Lima TCM, Viana GSB. Behavioral effects of essential oil from Lippia alba (Mill.) N.E. Brown chemotypes. J Ethnopharmacol 1999; 67: 127-33.
[139]
Mesa-Arango AC, Montiel-Ramos J Zapata Bibiana,, et al. Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill.) N.E. Brown: composition, cytotoxicity and antifungal activity. Mem Inst Oswaldo Cruz 2009; 104: 878-84.
[140]
Martínez M. Las plantas medicinales de México. México: Ed. Botas 1992.
[141]
Pilau MR, Alvez SH, Weiblen R, et al. Antiviral activity of Lippia graveolens (Mexican oregabno) essential oil and its main compound carvacrol against human and animal viruses. Braz J Microbiol 2011; 42: 1616-24.
[142]
Hernández T, Canales M, Avila JG, et al. Ethnobotany and antibacterial activity of some plants used in traditional medicine of Zapotitlán de las Salinas, Puebla (México). J Ethnopharmacol 2003; 88: 181-8.
[143]
Hernández T, Canales M, Avila JG, et al. Composition and antibacterial activity of essential oil of Lippia graveolens H.B.K. (Verbenaceae). Bol Latinoamer Car Plan Med Arom 2009; 8: 295-300.
[144]
Salgueiro LR, Cavaleiro C, Gonçalves MJ, Proença da Cunha A. Antimicrobial activity and chemical composition of the essential oil of Lippia graveolens from Guatemala. Planta Med 2003; 69: 80-3.
[145]
Miller AB, Cates RG, Lawrence M, et al. Antibacterial and antifungal activity of essential oils extracted from Guatemalan medicinal plants. Pharm Biol 2015; 53: 548-54.
[146]
Machado M, Dinis AM, Salgueiro L, et al. Anti-Gardia activity of phenolic-rich essential oil: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure. Parasitol Res 2010; 106: 1205-15.
[147]
Quintanilla-Licea R, Mata-Cárdenas BD, Vargas-Villareal J, et al. Antiprotozoal activity against Entamoeba histolytica of plants used in northeast Mexican traditional medicine. Bioactive compounds from Lippia graveolens and Ruta chalepensis. Molecules 2014; 19: 21044-65.
[148]
Jasso de Rodríguez D, Rodriguez-García R, Hernández Castillo FD, et al. In vitro antifungal activity of extracts of Mexican Chihuahuan desert plants against postharvest fungi. Ind Crops Prod 2011; 34: 960-6.
[149]
Martínez-Velazquez M, Rosario-Cruz R, Castillo-Herrera G, et al. Acaricidal effect of essential oil from Lippia graveolens (Lamiales: Vebenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J Med Entomol 2011; 48: 822-7.
[150]
Martínez-Rocha A, Puga R, Hernandez-Sandoval L, et al. Antioxidant and antimutagenic activities of Mexican oregano (Lippia graveolens Kunth). Plant Foods Hum Nutr 2008; 63: 1-5.
[151]
Rivero-Cruz I, Duarte G, Navarrete A, et al. Chemical composition and antimicrobial and spasmolytic properties of Poliomintha longiflora and Lippia graveolens essential oils. J Food Sci 2011; 76: C309-17.
[152]
González-Trujano ME, Hernández-Sánchez LY, Muñoz-Ocotero V, et al. Pharmacological evaluation of the anxiolytic-like effects of Lippia graveolens and bioactive compounds. Pharm Biol 2017; 55: 1569-76.
[153]
Compadre CM, Husain RA, Leon I, Enríquez RG. Volatile constituents of Montanoa tomentosa and Lippia graveolens. Planta Med 1987; 53: 495-6.
[154]
Uribe-Hernández CJ, Hurtado JB, Olmedo ER, Martínez MA. The essential oil of Lippia graveolens HBK from Jalisco, Mexico. J Essent Oil Res 1992; 4: 647-9.
[155]
Stashenko EE, Martínez JR, Pala MP, et al. Chromatographic and mass spectrometric characterization of essential oils and extracts from Lippia (Verbenaceae) aromatic plants. J Sep Sci 2013; 36: 192-202.
[156]
Rastrelli L, Caceres A, Morales C, et al. Iridoids from Lippia graveolens. Phytochemistry 1998; 40: 1829-32.
[157]
Vernin G, Lageot C, Gaydou EM, Paranyi C. Analysis of the essential oil of Lippia graveolens HBK from El Salvador. Flav Frag J 2001; 16: 219-26.
[158]
Pérez Sabino JF, Mérida Reyes M, Farfán Barrera CD. Análise e discriminação de quimiotipos de Lippia graveolens H.B.K. da Guatemala por microextração em base sólida, CC-EM e análise multivariada. Quim Nova 2012; 35: 97-101.
[159]
Memar MY, Raei P, Alizadeh N, et al. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Rev Med Microbiol 2017; 28: 63-8.
[160]
Leyva-López N, Nair V, Young-Bang W, et al. Protective role of terpenes and polyphenols from three species of oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J Ethnopharmacol 2016; 187: 302-12.
[161]
Arana-Sánchez A, Estarrón-Espinoza M, Obledo-Vázquez EN, et al. Antimicrobial and antioxidant activities of Mexican oregano essential oil (Lippia graveolens H.B.K.) with different composition when microencapsulated in ®-cyclodextrin. Let App Micro 2010; 50: 585-90.
[162]
Jiménez-Pérez NC, Lorea-Hernández FG. Identity and delimitation of the American species of Litsea Lam. (Lauraceae): A morphological approach. Plant Syst Evol 2009; 283: 19-32.
[163]
Montañez-Armenta MP, Valtierra-Pacheco E, Medina-Torres SM. Aprovechamiento tradicional de una especie protegida (Litsea glaucescens Kunth) en “sierra del laurel”, Aguascalientes, Mexico. Ra Ximhai 2011; 7: 155-72.
[164]
Jiménez-Pérez NC, Lorea-Hernández FG, Jankowski CK, Reyes-Chilpa R. Essential oils in Mexican bays (Litsea spp. Lauraceae): Taxonomic assortment and ethnobotanical implications. Econ Bot 2011; 65: 178-89.
[165]
Raman V, Bussmann RW, Khan IA. Which Bay leaf is in your spice rack? - A quality control study. Planta Med 2017; 83: 1058-67.
[166]
Wang YS, Wen ZQ, Li BT, et al. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: an update. J Ethnopharmacol 2016; 181: 66-107.
[167]
Meckes M, Villarreal ML, Tortoriello J, et al. A micro-biological evaluation of medicinal plants used by the Maya people of Southern Mexico. Phytother Res 1995; 9: 244-50.
[168]
Cruz SM, Marroquín MN, Gaitán IC, et al. Antimicrobial activity of essential oils and ethanolic extracts of three species of laurel (Litsea spp.) from Guatemala. Acta Hortic 2014; (1030): 23-30.
[169]
Tortoriello J, Meckes-Lozoya M, Villareal ML, et al. Spasmolytic activity of medicinal plants used to treat gastrointestinal and respiratory diseases in the Highland of Chiapas. Phytomedicine 1995; 2: 57-66.
[170]
Tucker AO, Maciarello MJ, Hill M. Litsea glaucescens Humb. Bompl. & Kunth var. glaucescens (Laurel): A Mexican bay. Econ Bot 1992; 46: 21-6.
[171]
Vallverdú C, Vila R, Cruz SM, et al. Composition of the essential oil from leaves of Litsea guatemalensis. Flavour Fragrance J 2005; 20: 415-8.
[172]
Cruz SM, Mérida M, Pérez F, et al. Chemical composition of essential oil of Litsea guatemalensis (Mexican bay) from different provenances of Guatemala. Acta Hortic 2012; (964): 47-58.
[173]
López JA, Barillas W, Gomez-Laurito J, et al. Flavonoids from Litsea glaucescens. Planta Med 1995; 61: 198.
[174]
Simão KAB, Klein-Junior LC, Cruz SM, et al. Anti-inflammatory and anti-hyperalgesic evaluation of the condiment laurel (Litsea guatemalensis Mez.) and its chemical composition. Food Chem 2012; 132: 1980-6.
[175]
Guzmán-Gutiérrez SL, Gómez-Cansino R, García-Zebadúa JC, et al. Antidepressant activity of Litsea glaucescens essential oil: Identification of ®-pinene and linalool as active principles. J Ethnopharmacol 2012; 143: 673-9.
[176]
Medina-Torres L, Santiago-Adame R, Calderas F, et al. Microencapsulation by spray drying of laurel infusion (Litsea glaucescens) with maltodextrin. Ind Crops Prod 2016; 90: 1-8.
[177]
Nash DL, Williams LO. Flora of Guatemala. Fieldiana Bot 1976; 24(12): 272.
[178]
Giovannini P, Howes MJR, Edwards SE. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. J Ethnopharmacol 2016; 184: 58-71.
[179]
Morton JF. Some folk-medicine plants of Central American markets. Q J Crude Drug Res 1977; 15: 165-92.
[180]
Lentz DL, Clark AM, Hufford CD, et al. Antimicrobial properties of Honduran medicinal plants. J Ethnopharmacol 1998; 63: 253-63.
[181]
Berger I, Barrientos AC, Cáceres A, et al. Plants used in Guatemala for the treatment of protozoal infections. II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi. J Ethnopharmacol 1998; 62: 107-15.
[182]
Berger I, Passreiter CM, Cáceres A, Kubelka W. Antiprotozoal activity of Neurolaena lobata. Phytother Res 2000; 14: 1-4.
[183]
Passreiter CM, Isman MB. Antifeedant bioactivity of sesquiterpene lactones from Neurolaena lobata and their antagonism by γ-aminobutyric acid. Biochem Syst Ecol 1997; 25: 371-7.
[184]
Franssen FFJ, Smeijsters LJJW, Berger I, Medinilla B. In vivo and in vitro antiplasmodial activities of some plants traditionally used in Guatemala against malaria. Antimicrob Agents Chemother 1997; 41: 1500-3.
[185]
Fujimaki Y, Kamachi T, Yanagi T, et al. Macrofilaricidal and microfilaricidal effects of Neurolaena lobata, a Guatemalan medicinal plant, on Brugia pahangi. J Helminthol 2005; 79: 23-8.
[186]
Medinilla B. Evaluación farmacológica y toxicológica “in vitro” de algunas plantas comúnmente empleadas en Guatemala contra la malaria. Rev Cient Fac CCQQ 1993; 9: 7-10.
[187]
Gupta MP, Solis NG, Avella ME, Sánchez C. Hypoglycemic activity of Neurolaena lobata (L.) R. Br J Ethnopharmacol 1984; 10: 323-7.
[188]
Gracioso JS, Hiruma-Lima CA, Brito SAMR. Antiulcerogenic effect of a hydroalcoholic extract and its organic fractions of Neurolaena lobata (L) R. Br Phytomedicine 2000; 7: 283-9.
[189]
Passreiter CM. Pyrrolizidine alkaloids from Neurolaena lobata. Biochem Syst Ecol 1998; 26: 839-43.
[190]
Kerr KM, Mabry TJ, Yoser S. 6-hydroxy- and 6-methoxyflavonoids from Neurolaena lobata and N. macrocephala. Phytochemistry 1981; 20: 791-4.
[191]
François G, Passreiter CM, Woerdenbag HJ, Van Looveren M. Antiplasmodial activities and cytotoxic effects of aqueous extracts and sesquiterpene lactones from Neurolaena lobata. Planta Med 1996; 62: 126-9.
[192]
Macías FA, Galindo JCG, Castellano D, Velaco RF. Sesquiterpene lactones with potential use as natural herbicides models (I): Trans, trans-germacranolides. J Agric Food Chem 1999; 47: 4407-14.
[193]
Walshe-Roussel B, Choueiri C, Saleem A, et al. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q’eqchi’ Maya traditional medicine. Phytochemistry 2013; 92: 122-7.
[194]
Lajter I, Vasas A, Béni Z, et al. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities. J Nat Prod 2014; 77: 576-82.
[195]
McKinnon R, Bonder M, Zupkó I, et al. Pharmacological insight into anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R.BR ex Cass. Phytomedicine 2014; 21: 1695-701.
[196]
Devidse G, Souza M, Knapp S, et al. Flora Mesoamericana 1995; 1: 345-6.
[197]
Stolze RG. Ferns and fern allies of Guatemala. Fieldiana: Bot New Ser 1981; 6: 374-7.
[198]
Gupta MP. Plantas medicinales iberoamericanas. Bogotá: Cyted-CAB 2008.
[199]
Chowdhury MA, Rahman MM, Hasan MR, et al. Antidiarrheal activity of Polypodium leucotomos. Phytopharmacol 2012; 3: 245-51.
[200]
Vargas J, García E, Gutiérrez F, Osorio C. Síntesis de ácidos nucleicos y niveles de AMP cíclico en tumores murinos después del tratamiento in vitro con anapsos. Arch Fac Med Madrid 1981; 40: 39-46.
[201]
Gombau L, García F, Lahoz A, et al. Polypodium leucotomos extract: Antioxidant activity and disposition. Toxicol In Vitro 2006; 20: 464-71.
[202]
Antón Alvarez X, Franco A, Fernández-Novo L, Cacabelos R. Effects of anapsos on behavior and brain cytokines in rats. Ann Psychiat 1992; 3: 329-41.
[203]
Rayward J, Villarrubia VG, Guillen C, et al. An extract of the fern Polypodium leucotomos inhibits human peripheral blood mononuclear cells proliferation in vitro. Int J Immunopharmacol 1997; 19: 9-14.
[204]
Middelkamp-Hup MA, Pathak MA, Parrado C, et al. Orally administered Polypodium leucotomos extract decreases psoralen-UVA-induced phototoxicity, pigmentation, and damage of human skin. J Am Acad Dermatol 2004; 50: 41-9.
[205]
Middelkamp-Hup MA, Pathak MA, Parrado C, et al. Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin. J Am Acad Dermatol 2004; 51: 910-8.
[206]
Gonzalez S, Gilaberte Y, Philips N, Juarranz A. Fernblock, a nutraceutical with photoprotective properties and potential preventive agent s for skin photoaging and photoinduced skin cancers. Int J Mol Sci 2011; 12: 8466-75.
[207]
Horvath A, Alvarado F, Szöcs J, et al. Metabolic effects of calagualine, an antitumoral saponin of Polypodium leucotomos. Nature 1967; 214: 1256-8.
[208]
Rodríguez-Yanes E, Juarranz A, Cuevas J, et al. Polypodium leucotomos decreases UV-induced epidermal cell proliferation and enhances p53 expression and plasma antioxidant capacity in hairless mice. Exp Dermatol 2012; 21: 630-42.
[209]
Rodríguez-Yanes E, Cuevas J, González S, Mallol J. Oral administration of Polypodium leucotomos delays skin tumor development and increases epidermal p53 expression and the anti-oxidant status of UV-irradiated hairless mice. Exp Dermatol 2014; 23: 509-28.
[210]
Del Pino Gamboa J, de Sambricio Guiu F, Colomo Gomez C. Comparison of Polypodium leucotomos extract with placebo in 37 cases of psoriaris. Med Cutan Ibero Lat Am 1982; 10: 203-8.
[211]
Vargas J, Muñoz C, Osorio C, García-Olivares E. Anapsos, an antipsoriatic drug which increases the proportion of suppressor cells in human peripheral blood. Ann Inst Pasteur Immunol 1981; 134: 393-400.
[212]
Jiménez D, Naranjo R, Doblaré E, et al. Anapsos, an antipsoriatic drug in atopic dermatitis. Allergol Immunopathol 1987; 15: 185-9.
[213]
Padilla HC, Laínez H, Pacheco JA. A new agent (hydrophilic fraction of Polypodium leucotomos) for management of psoriasis. Int J Dermatol 1974; 13: 276-82.
[214]
Zurita Salazar G, Briones Cedeño MC, Preciado Román V, Uraga Pazmiño R. Extracto de Polypodium leucotomos como adjuvante en la repigmentación inducida con UVB de banda estrecha en pacientes con vitiligo. Med Cutan Ibero Lat Am 2013; 41: 205-9.
[215]
Tanew A, Radakovic S, Gonzalez S, et al. Oral administration of a hydrophilic extract of Polypodium leucotomos for the prevention of polymorphic light eruption. J Am Acad Dermatol 2012; 66: 58-62.
[216]
Ramírez-Bosca A, Zapater P, Betlloch I, et al. Extracto de Polypodium leucotomos en dermatitis atópica: Ensayo multicéntrico, aleatorizado, doble ciego y controlado con placebo. Actas Dermo Sifilográf 2012; 103: 599-607.
[217]
Caccialanza M, Percivalle S, Piccinno R, Brambilla R. Photoprotective activity of oral polypodium leucotomos extract in 25 Patients with idiopathic photodermatoses. Photodermatol Photoimmunol Photomed 2007; 23: 46-7.
[218]
Capote R, Alonso-Lebrero JL, García F, et al. Polypodium leucotomos extract inhibits trans-urocanic acid photoisomerization and photodecomposition. J Photochem Photobiol 2006; 82: 173-9.
[219]
Villa A, Viera MH, Amini S, et al. Decrease of ultraviolet A light-induced “common deletion” in healthy volunteers after oral Polypodium leucotomos extract supplement in a randomized clinical trial. J Am Acad Dermatol 2010; 62: 511-3.
[220]
Palomino OM. Current knowledge in Polypodium leucotomos effect on skin protection. Arch Dermatol Res 2015; 307: 199-209.
[221]
Gonzalez-Jurado JA, Pradas F, Molina FS, de Teresa C. Effect of Phlebodium decumanum on the immune response induced by training in sedentary university students. J Sports Sci Med 2011; 10: 315-21.
[222]
Murbach TS, Béres E, Vértesi A, et al. A comprehensive toxicological safety assessment of an aqueous extract of Polypodium leucotomos (Fernblock®). Food Chem Toxicol 2015; 86: 328-41.
[223]
Gomez LD, Wallace JW. Flavonoids of Phlebodium. Biochem Syst Ecol 1986; 15: 407-8.
[224]
Tuominen M, Bohlin L, Rolfsen W. Effects of calahuala and an active principle, adenosine, on platelet activating factor. Planta Med 1992; 58: 306-10.
[225]
Piñeiro Alvarez B. [2 years personal experience in anapsos treatment of psoriasis in various clinical forms]. Med Cutan Ibero Lat Am . 1983; 11: 65-72.
[226]
Vasänge M, Liu B, Welch CJ, et al. The flavonoid constituents of two Polypodium species (calaguala) and their effect on the elastase release in human neutrophils. Planta Med 1997; 63: 511-7.
[227]
Nestor MS, Berman B, Swenson N. Safety and efficacy of oral Polypodium leucotomos extract in healthy adult subjects. J Clin Aesthet Dermatol 2015; 8: 19-23.
[228]
Stevens WD, Ulloa CU, Pool A, Montiel OM. Flora de Nicaragua 3: 2510. Saint Louis: Missouri Botanical Garden 2001.
[229]
Otero R, Fonnegra R, Jiménez SL, et al. Snakebite and ethnobotany in the northwest region of Colombia. Part I. Traditional use of plants. J Ethnopharmacol 2000; 71: 493-504.
[230]
Michel J, Duarte RE, Bolton JL, et al. Medical potential of plants used by the Q’eqchi Maya of Guatemala for the treatment of women’s health. J Ethnopharmacol 2007; 114: 92-101.
[231]
Lentz DL. Medicinal and other economic plants of the paya of Honduras. Econ Bot 1993; 47: 358-70.
[232]
Morales A, Rojas J, Moujir LM, et al. Chemical composition, antimicrobial and cytotoxic activities of Piper hispidum EO from Venezuela. J Appl Pharm Sci 2013; 3: 16-20.
[233]
Costa GM, Endo EH, Cortez DAG, et al. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. J Mycol Med 2016; 26: 217-26.
[234]
Mendocilla M, Villar López M. Capítulo VII. Monografías de plantas medicinales. In: Villar López M, Villavicencio Vargas O – Manual de Fitoterapia. (pp. 230-232). Lima: EsSalud. Organización Panamericana de la Salud 2001.
[235]
Jenett-Sims K, Mockenhaupt FP, Bienzle U, et al. In vitro antiplasmodial activity of Central American medicinal plants. Trop Med Int Health 1999; 4: 611-5.
[236]
Navickiene HMD, Alécio AC, Kato MJ, et al. Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 2000; 55: 621-6.
[237]
Ruiz C, Haddad M, Alban J, et al. Activity-guided isolation of antileishmanial compounds from Piper hispidum. Phytochem Lett 2011; 4: 363-6.
[238]
da Silva JK, Pinto LC, Burbano RMR, et al. Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind Crops Prod 2014; 58: 55-60.
[239]
Santana AI, Vila R, Cañigueral S, Gupta MP. Chemical composition and biological activity of essential oils from different species of Piper from Panama. Planta Med 2016; 82: 986-91.
[240]
Parmar VS, Jain SC, Bisht KS, et al. Phytochemistry of the genus Piper. Phytochemistry 1997; 46: 597-673.
[241]
Facundo VA, Polli AR, Rodrigues EV, et al. Constituintes químicos fixos e voláteis dos talos e frutos de Piper tuberculatum Jacq. e das raízes de P. hispidum H.B.K. Acta Amazon 2008; 38: 733-42.
[242]
Cruz SM, Veliz FR, Samayoa MC. Caracterización de aceites esenciales y evaluación de la actividad biocida de cinco especies nativas de Piperaceae. Tikalia 2005; 23: 51-67.
[243]
Dos Santos PRD, Moreira DL, Guimarães EF, Kaplan MAC. Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest. Phytochemistry 2001; 58: 547-51.
[244]
Pino JA, Marbot R, Bello A, Urquiola A. Composition of the essential oil of Piper hispidum Sw. from Cuba. J Essent Oil Res 2004; 16: 459-60.
[245]
Potzernheim MCL, Bizzo HR, Vieira RF. Análise dos óleos essenciais de três espécies de Piper coletadas na região do Distrito Federal (Cerrado) e comparação con óleos de plantas procedentes da região de Paraty, RJ (Mata Atlântica). Braz J Pharmacog 2006; 16: 246-51.
[246]
Assis A, Brito V, Bittencourt M, et al. Essential oils composition of four Piper species from Brazil. J Essent Oil Res 2013; 25: 203-9.
[247]
WHO monographs on selected medicinal plants 2011; 4: 127-39.
[248]
Shruthi SD, Roshan A, Timilsina SS, Sunita S. A view on the medicinal plant Psidium guajava Linn. (Myrtaceae). J Drug Deliv Ther 2013; 3: 162-8.
[249]
Abdelrahim SI, Almagboul AZ, Omer MEA, Elegami A. Antimicrobial activity of Psidium guajava L. Fitoterapia 2002; 73: 713-5.
[250]
Weenen AH, Nkunya MHH, Bray DH, et al. Antimalarial activity of Tanzanian medicinal plants. Planta Med 1990; 56: 368-70.
[251]
Jaiarj P, Khoohaswan P, Wongkrajang Y, et al. Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. J Ethnopharmacol 1999; 67: 203-12.
[252]
Pérez Gutiérrez RM, Mitchell S, Vargas Solis R. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2008; 117: 1-27.
[253]
Olajide OA, Awe SO, Makinde JM. Pharmacological studies on the leaf of Psidium guajava. Fitoterapia 1999; 70: 25-31.
[254]
Lozoya X, Becerril G, Martínez M. Modelo de perfusión intraluminal de ileon de cobayo in vitro en el estudio de las propiedades antidiarréicas de la guayaba (Psidium guajava). Arch Invest Med 1990; 21: 155-62.
[255]
Lutterodt GD. Inhibition of Microlax*-induced experi-mental diarrhoea with narcotic-like extracts of Psidium guajava leaf in rats. J Ethnopharmacol 1992; 37: 151-7.
[256]
Almeida CE, Karnikowski MGO, Foleto R, Baldisseotto B. Analysis of antidiarrhoeic effect of plants used in popular medicine. Rev Saúd Púb 1995; 29: 428-33.
[257]
Ramirez G, Zavala M, Pérez J, Zamilpa A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. eCAM 2012; ID 701261..
[258]
Zolla C, del Bosque S, Tascon A, Mellado V. Medicina tradicional y enfermedad. México: CEISS 1988.
[259]
Lozoya X, Reyes-Morales H, Chávez-Soto MA, et al. Intestinal anti-spasmodic effect of a phytodrug of Psidium guajava folia in the treatment of acute diarrheic disease. J Ethnopharmacol 2002; 83: 19-24.
[260]
Thomford KP, Mensah MLK, Dikson RA, et al. A randomized double-blind study evaluating the safety and effectiveness of a Ghanaian polyherbal product for the management of superficial mycoses. J Herb Med 2015; 140-6.
[261]
Deguchi Y, Miyazaki K. Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extracts. Nutr Metab 2010; 7: 9.
[262]
Kumari S, Rakavp R, Mangaraj M. Effect of guava in blood glucose and lipid profile in healthy human subjects: A randomized controlled study. J Clin Diagn Res 2016; 10: 4-7.
[263]
Lozoya X, Meckes M, Abou-Zaid M, et al. Quercetin glucosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch Med Res 1994; 25: 11-5.
[264]
Birdi T, Daswani P, Brijesh S, et al. Newer insights into the mechanism of action of Psidium guajava L. leaves in infectious diarrhea. BMC Comp Alter Med 2010; 10: 33.
[265]
Kaneko K, Suzuki K, Iwadate-Iwata E, et al. Evaluation of food-drug interaction of guava leaf tea. Phytother Res 2013; 27: 299-305.
[266]
Huft MJ. Smilacaceae. In: Devidse G, Sousa M, Chater AL, et al Flora Mesoamericana. 1994; 6: p. 21.
[267]
Stevens WD, Ulloa C, Pool A, Montiel OM. Flora de Nicaragua Monogr Syst Bot 85(3). Saint Louis: Missouri Botanical Garden 2001.
[268]
Caceres A, Cruz SM, Martínez V, et al. Ethnobotanical, pharmacognostical, pharmacological and phytochemical studies on Smilax domingensis in Guatemala. Braz J Pharmacog 2012; 22: 239-48.
[269]
Leonti M, Sticher O, Heinrich M. Medicinal plants of the Popoluca, México: Organoleptic properties as indigenous selection criteria. J Ethnopharmacol 2002; 81: 307-15.
[270]
Doyle BJ, Frasor J, Bellows LE, et al. Estrogenic effects of herbal medicines from Costa Rica used for the management of menopausal symptoms. Menopause 2009; 16: 748-55.
[271]
Bérdy J, Aszalo A, Bostian M, McNitt KL. CRC Handbook of Antibiotic Compounds. Boca Raton: CRC Press, Part 1 & 2, 1982.
[272]
Cáceres S, Zambrano G, Montenegro M, Cáceres A. Extraction of natural colors with potential industrial application from Smilax domingensis rhizome. Acta Hortic 2014; (1030): 71-5.
[273]
Gentry JL, Standley PC. Flora of Guatemala. Fieldiana Bot 1974; 24(10): 130.
[274]
Bhiravamurty PV, Rethy P, Nerist NN. (1989) Chemotaxonomy of some members of the Solanum nigrum L. complex. Solanaceae Newslet 3(1): 12.
[275]
Peralta Gomez S, Rayan Clarenc A, Campos Lara MG, et al. Toxicity analysis, phytochemical and pharmacological study of the plant known as mora herb, collected at the Environmental Education Center of Yautlica (CEA-Yautlica). Asian J Plant Sci 2013; 12: 159-64.
[276]
Andrade-Cetto A. Ethnobotanical study of the medicinal plants from Tlanchino, Hidalgo, México. J Ethnopharmacol 2009; 122: 163-71.
[277]
Leal CM, Orózco N, Rivera J, et al. In vitro activity against Helicobacter pylori by ethanol extracts from sixteen medicinal plants used for chronic gastrointestinal diseases in Guatemala. Acta Hortic 2014; (1030): 93-101.
[278]
Reyes-Villanueva González-Gaona OJ, Rodriguez-Perez MA. Larvicidal effect of medicinal plants against Aedes aegypti (L.) (Diptera: Culicidae) in Mexico. BioAssay 2008; 3: 1-3.
[http://dx.doi.org/10.14295/BA.v3.0.57]
[279]
Budavari S. The Merck Index: Rahway: Merck & Co, CD version, 2000.
[280]
He XG, Mocek U, Floss HG, et al. An antifungal compound from Solanum nigrescens. J Ethnopharmacol 1994; 43: 173-7.
[281]
Logan MH. Digestive disorders and plant medicinals in Highland Guatemala. Anthropos 1973; 68: 537-47.
[282]
Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders - A survey of ethno-botanical literature. J Ethnopharmacol 2007; 113: 363-81.
[283]
Guzmán-Gutierrez SL, Reyes Chilpa R, Bonilla-Jaime H. Medicinal plants for the treatment of “nervios”, anxiety, and depression in Mexican Traditional Medicine. Rev Bras Farmacogn 2014; 24: 591-608.
[284]
Pérez-Ortega G, González-Trujano ME, Ángeles-López GE, Brindisi F. Tagetes lucida Cav.: Ethnobotany, phytochemistry and pharmacology of its tranquilizing properties. J Ethnopharmacol 2016; 181: 221-8.
[285]
Neher RT. The ethnobotany of Tagetes. Econ Bot 1968; 22: 317-25.
[286]
Siegel RK, Collings PR, Diaz JL. On the use of Tagetes lucida and Nicotiana rustica as a Huichol smoking mixture: The Aztec “yahutli” with suggestive hallucinogenic effects. Econ Bot 1977; 31: 16-23.
[287]
Capunzzo M, Brunetti L, Cavallo P, et al. Antimicrobial activity of dry extracts of Tagetes lucida from Guatemala. J Prev Med Hyg 2003; 44: 85-7.
[288]
España SM, Velez P, Cáceres A. (1994) Plants used in Guatemala for the treatment of gastrointestinal disorders. 5. Vibriocidal activity of five American plants used to treat diarrhea. Fitoterapia 1994; 65: 273-4.
[289]
Hernández T, Canales M, Flores C, et al. Antimicrobial activity of Tagetes lucida. Pharm Biol 2006; 44: 19-22.
[290]
Damián-Badillo LM, Salgado-Garciglia R, Martínez-Muñoz RE, Martínez-Pacheco MM. Antifungal properties of some Mexican medicinal plants. Open Nat Prod J 2008; 1: 27-33.
[291]
Marotti I, Marotti M, Piccaglia R, et al. Thiophene occurrence in different Tagetes species: Agricultural biomasses as sources of biocidal substances. J Sci Food Agric 2010; 90: 1210-7.
[292]
Oranday A, Martínez G, Nuñez A, et al. Coumarin isolated from Tagetes lucida Cav. exhibits larvicidal activity in Aedes aegypti (L.). Southwest Entomol 2008; 33: 315-7.
[293]
Vera SS, Zambrano DF, Méndez-Sánchez SC, et al. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culidae). Parasitol Res 2014; 113: 2647-54.
[294]
López FJ, Jiménez B, Cortés AR, Aoki K. (1994) Tagetes lucida Cav. I: Inhibitory effect on smooth muscle contractility. Phyton 1990; (51): 71-6.
[295]
Sapúlveda-Arias JC, Veloza LA, Escobar LM, et al. Anti-inflammatory effects of the main constituents and epoxides derived for the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora. J Essent Oil Res 2013; 25: 186-93.
[296]
Guadarrama-Cruz G, Alarcon-Aguilar FJ, Lezama-Velasco R, et al. Antidepressant-like effect of Tagetes lucida Cav in the forced swimming test. J Ethnopharmacol 2008; 120: 277-81.
[297]
Guadarrama-Cruz G, Alarcón-Aguilar FJ, Vega-Avila E, et al. Antidepressant-like effect of Tagetes lucida Cav. extract in rats: Involvement of the serotonergic system. Am J Chin Med 2012; 40: 753-68.
[298]
Yamamoto E, MacRae WD, García FJ, Towers GHN. Photodynamic hemolysis caused by α-terthienyl. Planta Med 1984; 50: 124.
[299]
Hethelyi E, Dános B, Tetényi P. GC/MS analysis of essential oils of some Tagetes species. In: Brunke EJ Progress in Essential Oil Research. Berlin: Walter de Gryter 1986; pp. 131-7.
[300]
Bicchi C, Fresia M, Rubiolo P, et al. Constituents of Tagetes lucida Cav. ssp. lucida essential oil. Flavour Fragrance J 1997; 12: 47-52.
[301]
Ciccio JF. A source of almost pure methyl chavicol: Volatile oil from aerial parts of Tagetes lucida (Asteraceae) cultivated in Costa Rica. Rev Biol Trop 2004; 52: 853-7.
[302]
Abdala LR. Flavonoids of the aerial parts of Tagetes lucida (Asteraceae). Biochem Syst Ecol 1999; 27: 753-4.
[303]
Céspedes CL, Avila JG, Martínez A, et al. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem 2006; 54: 3521-7.
[304]
Sener B, Bingöl F. Screening of natural sources for antiinflammatory activity. (Review) Int J Crude Drug Res 1988; 26: 197-207.
[305]
Mejía-Barajas JA, del Rio REN, Martínez-Muñoz RE, et al. Cytotoxicity activity in Tagetes lucida Cav. Emir J Food Agric 2012; 24: 142-7.
[306]
Mares D, Romagnoli C, Bruni A. Antidermatophytic activity of herniarin in preparations of Chamomilla recutita (L.) Rauschert. Plant Méd Phytothér 1993; 26: 91-100.
[307]
Aquino R, Cáceres A, Morelli S, Rastrelli L. An extract of Tagetes lucida and its phenolic constituents as antioxidants. J Nat Prod 2002; 65: 1773-6.
[308]
Pérez RM, Ocegueda Z, Muñoz JL, et al. A study of the hypoglucemic effect of some Mexican plants. J Ethnopharmacol 1984; 12: 253-62.
[309]
Al-Jubaidi A. Al.Yousef F. Effect of natural products from plant extracts on Gram-positive cocci. Wld Acad Sci Eng Tech 2013; 83: 315.
[310]
Javid T, Adnan M, Tariq A, et al. Antimicrobial activity of three medicinal plants (Artemisia indica, Medicago falcata and Tecoma stans). Afr J Tradit Complement Altern Med 2015; 12: 91-6.
[311]
Torres CA, Nuñez MB, Isla MI, et al. Antibacterial activity of tinctures from tree leaves belonging to the Bignoniaceae family and their synergistic effect with antibiotics. Pharmacogn J 2015; 7: 400-5.
[312]
Ramirez G, Zavala M, Pérez J, Zamilpa A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. eCAM, 2012; ID 701261..
[313]
Patriota LLS, Procópio TF, de Souza MFD, et al. A trypsin inhibitor from Tecoma stans leaves inhibits growth and promotes ATP depletion and lipid peroxidation in Candida albicans and Candida krusei. Front Microbiol 2016; 7: 611.
[314]
Robinson JP, Suriya K, Subbaiya R, Ponmurugan P. Antioxidant and cytotoxic activity of Tecoma stans against lung cancer cell line (A549). Braz J Pharm Sci 2017; 53: 1-5.
[315]
Sridharan G, Sarvanan R, Brindhaq P. Evaluation of anticancer potentials of Tecoma stans (L.) Juss ex. Kunth against EAC cell lines. Int J Pharm Pharm Sci 2014; 6: 88-92.
[316]
Alonso-Castro AJ, Zapata-Bustos R, Romo-Yañez J, et al. The antidiabetic plants Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae) and Teucrium cubense Jacq (Lamiaceae) induced the incorporation of glucose in insulin-sensitive and insulin-resistant murine and human adipocytes. J Ethnopharmacol 2010; 127: 1-6.
[317]
Kusuma Priya N, Sirishaq K, Sai Prathyusha TV, Sathish Kumar M. Evaluation of anti-inflammatory activity of aqueous leaf extracts of Tecoma stans on carrageenan induced paw oedema in rats by using digital plethys-mometer. Res J Pharm Biol Chem Sci 2014; 6: 180-3.
[318]
Aarland RC, Peralta.Gómez S, Morales-Sanchez C, et al. A pharmacological and phytochemical study of medicinal plants used in Mexican folk medicine. Indian J Tradit Knowl 2015; 14: 550-7.
[319]
Evangeline RM, Murugan N, Kumar PP, Christhudas IVSN. In vitro studies of α-glucosidase inhibition, antioxidant and free radical scavenging properties of Tecoma stans L. Int J Pharm Pharm Sci 2015; 7: 44-9.
[320]
Colin GG. Further observations on the anti-diabetic properties of Tecoma mollis. J Am Pharm Assoc 1926; 16: 199-203.
[321]
Pérez RM, Ocegueda Z, Muñoz JL, et al. A study of the hypoglucemic effect of some Mexican plants. J Ethnopharmacol 1984; 12: 253-62.
[322]
Lozoya-Mekes M, Mellado-Campos V. Is the Tecoma stans infusion an antidiabetic remedy? J Ethnopharmacol 1985; 14: 1-9.
[323]
Aguilar-Santamaría L, Ramírez G, Nicasi P, et al. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. J Ethnopharmacol 2009; 124: 284-8.
[324]
Ramesh P, Ramachandran AG, Subramanian SS. Flavonoids of Tecoma stans. Fitoterapia 1986; 57: 281-2.
[325]
Bianco A, Massa M, Oguakwa JU, Pasantilli P. Iridoids in Equatorial and tropical flora. 2. 5-deoxystansioside, an iridoid glucoside from Tecoma stans. Phytochemistry 1981; 20: 1871-2.
[326]
Maiti R, Gonzalez-Rodriguez H, Humari CA, Sarkar NC. Macro and micro-nutrient contents of 18 medicinal, plants used traditionally to alleviate diabetes in Nuevo Leon, northeast of Mexico. Pak J Bot 2016; 48: 271-6.
[327]
Hammouda Y, Amer MS. Antidiabetic effect of tecomine and tecostanine. J Pharm Sci 1966; 55: 1452-4.
[328]
Hammouda Y, Khallafallah N. Stability of tecomine, the major antidiabetic factor of Tecoma stans Juss. J Pharm Sci 1971; 60: 1142-5.
[329]
Ivorra MD, Payá M, Villar A. A review of natural products and plants as potential antidiabetic drugs. J Ethnopharmacol 1989; 27: 243-75.
[330]
Costantino L, Raimondi L, Pirisino R, et al. Isolation and pharmacological activities of Tecoma stans alkaloids. Il Farmaco 2003; 58: 781-5.
[331]
Takahashi M, Konno C, Hikino H. Isolation of hypoglycemic activity of saccharans A, B, C, D, E and F glycans of Saccharum officinarum stalks. Planta Med 1985; 51: 258-60.
[332]
Bailey CJ, Day C. Traditional plant medicine as treatments for diabetes. Diabetes Care 1989; 12: 553-64.
[333]
Ramírez G, Zamilpa A, Zavala M, et al. Chrysoeriol and other polyphenols from Tecoma stans with lipase inhibitory activity. J Ethnopharmacol 2016; 185: 1-8.
[334]
Nash DL. Flora of Guatemala. Fieldiana Bot 24(11): 302-3.
[335]
Contreras-Arias A, Méndez-Estrada VH. Fenología de la planta Valeriana prionophylla (Valerianaceae) en páramos de Costa Rica. Cuad Investig UNED 2014; 6: 221-31.
[336]
Piccinelli AL, Arana S, Caceres A, et al. New lignans from the roots of Valeriana prionophylla with antioxidative and vasorelaxant activities. J Nat Prod 2004; 67: 1135-40.
[337]
Cruz A, Cruz SM, Gaitán I, Cáceres A. Evaluación de la actividad biocida e identificación química de valepotriatos en cuatro especies reconocidas popularmente en Guatemala como valeriana. Rev Cient Ed Esp 2005; 3: 43-8.
[338]
Holzmann I, Cechinel Filho V, Mora TC, et al. Evaluation of behavioral and pharmacological effects of hydro-alcoholic extract of Valeriana prionophylla Standl. from Guatemala. eCAM 2011; ID 312329..
[339]
Holzmann I, Cechinel Filho V, Caceres A, et al. Antidepressant-like effect of hydroalcoholic extract of Valeriana prionophylla Standl. from Guatemala: Evidence for the involvement of the monoaminergic systems. Int J Phytopharm 2016; 6: 14-26.
[340]
Reis MR, de Oliveira Filho AA, Rodrigues LSU, et al. Involvement of potassium channels in vasorelaxant effect induced by Valeriana prionophylla Standl. in rat mesenteric aorta. eCAM 2013; ID 147670.
[341]
Cruz EC, Gomar GR, Barrientos M. Evaluación clínica de la efectividad de Valeriana prionophylla como inductor del sueño. Tikalia 2005; 23: 85-99.
[342]
Quiñónez AS. Comparación del efecto del extracto de Valeriana prionophylla Standl versus placebo sobre la ansiedad de 30 pacientes en tratamiento de quimioterapia por cáncer de mama, durante 4 semanas, en hospital de cancerología Incan Guatemala (Master’s thesis). Guatemala: Universidad de San Carlos de Guatemala, 2007.
[343]
Chavadej S, Becker H, Weberling F. Further investigations of valepotriatos in the Valerianaceae. Pharmaceut Weekbl Sci Ed 1985; 7: 167-8.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 5
ISSUE: 1
Year: 2019
Page: [5 - 30]
Pages: 26
DOI: 10.2174/2215083805666190327172409
Price: $25

Article Metrics

PDF: 27
HTML: 2
EPUB: 1
PRC: 1