Bioinspired Synthesis of Copper Nanoparticles and its Efficacy on Seed Viability and Seedling Growth in Mungbean (Vigna radiata L.)

Author(s): Ajinkya S. Jahagirdar, Sudhir Shende, Aniket Gade, Mahendra Rai*.

Journal Name: Current Nanoscience

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Copper is an important micronutrient required for the growth of the plants. It activates enzymes and helps in protein synthesis in plants. Nanoparticles in the size range from 1 to 100 nm possess unique properties, such as the high surface area to volume ratio, size-dependent capabilities and unique optical properties, and hence, copper nanoparticles (CuNPs) were evaluated for growth promotion of mung bean (Vigna radiata L.).

Objective: The main aim of the study was to synthesize CuNPs using neem extracts, and evaluate their activity on viability of seeds and growth of seedlings in V. radiata.

Methods: Here, we synthesized CuNPs by the neem (Azadirachta indica) leaf extract, which was treated with copper sulphate and ascorbic acid. The reduction of copper sulphate to CuNPs was confirmed by the UV-Visible spectrophotometer and was further characterized by XRD, FTIR, NTA, and Zeta potential measurement. The efficacy of biogenic CuNPs (size <50 nm) was evaluated on germination and growth promotion of V. radiata seeds. The copper content was confirmed in CuNPs treated plants after analysis by Atomic Absorption Spectroscopy (AAS).

Results: CuNPs were synthesized by the neem (A. indica) leaf extract as brown precipitation. Preliminary detection was performed by UV-Visible spectrophotometer, which showed a peak at 619 nm. Further characterization by X-ray diffraction confirmed the Face Centered Cubic crystal structure. Fourier Transform Infra Red spectroscopy analysis revealed the presence of amino acids as functional groups in the leaf extract. Nanoparticle tracking and analysis (NTA) demonstrated an average size of 41±21 nm with the concentration of 3.3×109 particles/ml. Zeta potential value was found to be -18.2 mV. The growth promotion effect showed the maximum germination recorded at 100 ppm of CuNPs; while copper ions showed an adverse effect on root growth. The AAS analysis demonstrated the increased copper content in the CuNPs treated seedlings than that of the control.

Conclusion: It is a first report to demonstrate the positive effect of biogenic CuNPs on growth, nutrition and enhanced seed germination, and hence, CuNPs could be used as a nano-fertilizer after further extensive nursery trials.

Keywords: Nanotechnology, agriculture, biogenic CuNPs, seed germination, FTIR, nano-fertilizer.

[1]
Alzahrani, E.; Ahmed, R.A. Synthesis of copper nanoparticles with various sizes and shapes: Application as a superior non-enzymatic sensor and antibacterial agent. Int. J. Electrochem. Sci., 2016, 11, 4712-4723.
[http://dx.doi.org/10.20964/2016.06.83]
[2]
Brunner, T.J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R.N.; Limbach, L.K.; Bruinink, A.; Stark, W.J. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 2006, 40(14), 4374-4381.
[http://dx.doi.org/10.1021/es052069i] [PMID: 16903273]
[3]
Badami, B.V. Concept of green chemistry. Resonance, 2008, 13, 1041-1048.
[http://dx.doi.org/10.1007/s12045-008-0124-8]
[4]
Yang, C-J.; Lu, F-H. Shape and size control of Cu nanoparticles by tailoring the surface morphologies of TiN-coated electrodes for biosensing applications. Langmuir, 2013, 29(51), 16025-16033.
[http://dx.doi.org/10.1021/la403719c] [PMID: 24320707]
[5]
Castro, M.J.L.; Ojeda, C.; Cirelli, A.F. Advances in surfactants for agrochemicals. Environ. Chem. Lett., 2014, 12(1), 85-95.
[http://dx.doi.org/10.1007/s10311-013-0432-4]
[6]
Willems, V.; Wildonberg, D. Roadmap report on nanoparticles; Espanal: Barcelona, Spain, 2005.
[7]
Ingle, A.P.; Duran, N.; Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl. Microbiol. Biotechnol., 2014, 98(3), 1001-1009.
[http://dx.doi.org/10.1007/s00253-013-5422-8] [PMID: 24305741]
[8]
Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol., 2015, 31(6), 865-873.
[http://dx.doi.org/10.1007/s11274-015-1840-3] [PMID: 25761857]
[9]
Shende, S.; Rathod, D.P.; Gade, A.; Rai, M. Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol., 2017, 11(7), 773-781.
[http://dx.doi.org/10.1049/iet-nbt.2016.0179]
[10]
Kumar, A.; Jee, M. Nanotechnology: A review of applications and issue. IJITEE, 2013, 3(4), 89-92.
[11]
Krolikowska, A.; Kudelski, A.; Michota, A.; Bukowska, A. SERS studies on structure of thioglycolic acid monolayer on silver and gold. Surf. Sci., 2003, 532, 227-232.
[http://dx.doi.org/10.1016/S0039-6028(03)00094-3]
[12]
Chandrasekharan, N.; Kumat, P. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem., 2000, 104, 10851-10857.
[http://dx.doi.org/10.1021/jp0010029]
[13]
Peto, G.; Molnar, G.; Paszti, Z.; Geszti, O.; Beck, A.; Guczi, L. Electronic structure of gold nanoparticles deposited on SiOx/Si. Mater. Sci. Eng., 2002, 19, 95-99.
[http://dx.doi.org/10.1016/S0928-4931(01)00449-0]
[14]
Aslani, F.; Bagheri, S.; Muhd Julkapli, N.; Juraimi, A.S.; Hashemi, F.S.; Baghdadi, A. Effects of engineered nanomaterials on plants growth: an overview. Sci. World J., 2014, 2014, 641759
[http://dx.doi.org/10.1155/2014/641759] [PMID: 25202734]
[15]
Alam, A.; Rizvi, I.F.; Sayeed, U.; Kalim, M.; Khan, A.; Akhtar, S.; Farooqui, A.; Siddiqui, M.H. Application of nanotechnology in agriculture and food science. World J. Pharm. Sci., 2016, 4(7), 45-54.
[16]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16, 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[17]
Chinnamuthu, C.R.; Boopathi, P.M. Nanotechnology and agroecosystem. Madras Agric. J., 2009, 96(1-6), 7-31. http://2828402980211270348-a-18027447.
[18]
Chowdappa, P.; Gowda, S. Nanotechnology in crop protection: Status and scope. Pest Manage. Hortic. Ecosyst., 2013, 19(2), 131-151.
[19]
Kumar, R.; Sharon, M.; Choudhary, A.K. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2, 83-92.
[20]
Liu, W.T. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng., 2006, 102(1), 1-7.
[http://dx.doi.org/10.1263/jbb.102.1] [PMID: 16952829]
[21]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[22]
Cuevas, R.; Durán, N.; Diez, M.C.; Tortella, G.R.; Rubilar, O. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J. Nanomater., 2015, 2015789089
[http://dx.doi.org/10.1155/2015/789089]
[23]
Bhople, S.; Gaikwad, S.; Deshmukh, S.; Bonde, S.; Gade, A.; Sen, S.; Brezinska, A.; Dahm, H.; Rai, M. Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnol., 2016, 10(6), 389-394.
[http://dx.doi.org/10.1049/iet-nbt.2015.0111] [PMID: 27906139]
[24]
Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater. Lett., 2014, 115, 13-17.
[http://dx.doi.org/10.1016/j.matlet.2013.10.011]
[25]
Bawaskar, M.; Gaikwad, S.; Ingle, A.; Rathod, D.; Gade, A.; Duran, N.; Marcato, D.; Rai, M. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr. Nanosci., 2010, 6, 376-380.
[http://dx.doi.org/10.2174/157341310791658919]
[26]
Bramhanwade, K.; Shende, S.; Bonde, S.; Gade, A.; Rai, M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ. Chem. Lett., 2016, 14, 229-235.
[http://dx.doi.org/10.1007/s10311-015-0543-1]
[27]
Du, B.D.; Phu, D.V.; Quoc, L.A.; Hien, N.Q. Synthesis and investigation of antimicrobial activity of Cu2O nanoparticles Zeolite. J. Nanopart, 2017, 2017, Article ID 7056864.
[http://dx.doi.org/10.1155/2017/7056864]
[28]
Umer, A.; Naveed, S.; Ramzan, N. Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 2012, 7(5), 1230005
[http://dx.doi.org/10.1142/S1793292012300058]
[29]
Gopinath, M.; Subbaiya, R.; Selvam, M.M.; Suresh, D. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(9), 814-818.
[30]
Mahavinod, J.K.V.; Subbaiya, A.R. Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(9), 768-774.
[31]
Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem., 2011, 13, 900-904.
[http://dx.doi.org/10.1039/c0gc00772b]
[32]
Kulkarni, V.D.; Kulkarni, P.S. Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int. J. Chem. Stud., 2013, 1(3), 1-4.
[33]
Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796-810.
[http://dx.doi.org/10.1007/s11095-010-0073-2] [PMID: 20204471]
[34]
Gajendiran, J.; Rajendran, V. PVA assisted copper (Cu) and cuprous oxide (Cu2O) nanostructures via hydrothermal method. DerPharmaChemica, 2012, 4(5), 1879-1882.
[35]
Kooti, M.; Matouri, L. Fabrication of nanosized cuprous oxide using Fehling’s solution. Trans. F. Nanotechnol., 2010, 17(1), 73-78.
[36]
Cheirmadurai, K.; Biswas, S.; Murali, R.; Thanikaivelan, P. Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Advances, 2014, 4, 19507-19511.
[http://dx.doi.org/10.1039/c4ra01414f]
[37]
Singare, D.S.; Marella, S.; Gowthamrajan, K.; Kulkarni, G.T.; Vooturi, R.; Rao, P.S. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int. J. Pharm., 2010, 402(1-2), 213-220.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.041] [PMID: 20933066]
[38]
Zain, N.M.; Stapley, A.G.F.; Shama, G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr. Polym., 2014, 112, 195-202.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.081] [PMID: 25129735]
[39]
Adhikari, T.; Kundu, S.; Biswas, A.; Tarafdar, J.C.; Rao, A.S. Effect of copper oxide nanoparticle on seed germination of selected crops. J. Agric. Sci. Technol., 2012, 2, 815-823.
[40]
González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.J.; Corredor, E.; Testillano, P.S.; Risueño, M.C.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; Pérez-de-Luque, A. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot., 2008, 101(1), 187-195.
[http://dx.doi.org/10.1093/aob/mcm283] [PMID: 17998213]
[41]
Verma, J.P.; Singh, V.; Yadav, J. Effect of copper sulphate on seed germination, plant growth and peroxidase activity of mung bean (Vigna radiata). IJB, 2011, 7(2), 200-204.
[http://dx.doi.org/10.3923/ijb.2011.200.204]
[42]
Mazumdar, H. Accumulation and uptake of silver nanoparticles during seed germinations of selected annual crop plants. Int. J. Chemtech Res., 2014, 6(1), 108-113.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [246 - 252]
Pages: 7
DOI: 10.2174/1573413715666190325170054
Price: $65

Article Metrics

PDF: 8
HTML: 3
EPUB: 1
PRC: 1