Valorization of Carbon Dioxide into Oxazolidinones by Reaction with Aziridines

Author(s): Katie J. Lamb, Ian D.V. Ingram, Michael North*, Mani Sengoden

Journal Name: Current Green Chemistry

Volume 6 , Issue 1 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The reduction of carbon dioxide has gained much attention due to increasing environmental concerns about global warming associated with carbon emissions from industrial effluents and public transport etc. In this regard, considerable attention has been devoted to the chemical conversion of carbon dioxide, and its incorporation into synthetic organic molecules under mild and “green” conditions. In recent years, significant effort has been dedicated to studying the fixation of carbon dioxide with aziridines to afford oxazolidinones, which is an environmental friendly and atom economical process. In this review, we discuss the efficiency of different catalytic systems, by comparing and analyzing each reaction parameter such as pressure, temperature, substrate scope and product selectivity.

Keywords: Carbon dioxide, oxazolidinones, aziridines, metal catalysis, organocatalysis, homogenous catalyst.

Investigators, E.; Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; Raskob, G.E.; Segers, A.; Verhamme, P.; Wells, P.; Agnelli, G.; Bounameaux, H.; Cohen, A.; Davidson, B.L.; Piovella, F.; Schellong, S. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med., 2010, 363(26), 2499-2510.
Evans, D.A.; Bartroli, J.; Shih, T.L. Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J. Am. Chem. Soc., 1981, 103(8), 2127-2129.
Yadav, G.D.; Pawar, S.V. Novelty of immobilized enzymatic synthesis of 3-ethyl-1,3-oxazolidin-2-one using 2-aminoalcohol and dimethyl carbonate: Mechanism and kinetic modeling of consecutive reactions. J. Mol. Catal., B Enzym., 2014, 109, 62-69.
Dinsmore, C.J.; Mercer, S.P. Carboxylation and mitsunobu reaction of amines to give carbamates: Retention vs inversion of configuration is substituent-dependent. Org. Lett., 2004, 6(17), 2885-2888.
Comerford, J.W.; Ingram, I.D.V.; North, M.; Wu, X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem., 2015, 17(4), 1966-1987.
Castro-Osma, J.A.; Earlam, A.; Lara-Sánchez, A.; Otero, A.; North, M. Synthesis of oxazolidinones from epoxides and isocyanates catalysed by aluminium heteroscorpionate complexes. ChemCatChem, 2016, 8(12), 2100-2108.
Speranza, G.P.; Peppel, W.J. Preparation of substituted 2-oxazolidones from 1,2-epoxides and isocyanates. J. Org. Chem., 1958, 23(12), 1922-1924.
Beattie, C.; North, M. Mechanistic investigation of the reaction of epoxides with heterocumulenes catalysed by a bimetallic aluminium salen complex. Chem.-Eur. J, 2014, 20(26), 8182-8188.
Varma, D.R.; Guest, I. The bhopal accident and methyl isocyanate toxicity. J. Toxicol. Environ. Health, 1993, 40(4), 513-529.
Ulrich Steuerle, R.F. Aziridines.In: Ullmann’s Encyclopedia of Industrial Chemistry; Wiley, 2006.
Sweeney, J.B. Aziridines: Epoxides’ ugly cousins? Chem. Soc. Rev., 2002, 31(5), 247-258.
Qing-Wen, S.; Ya-Nan, Z.; Liang-Nian, H.; Jian, G.; Zhen-Zhen, Y. Synthesis of Oxazolidinones/polyurethanes from Aziridines and CO2. Curr. Catal., 2012, 1(2), 107-124.
Hunt, A.J.; Farmer, T.J.; Clark, J.H. Element sustainability and the importance of scarce element recovery., 2013, pp 1-28.
Hunt, A.; Kraus, G.A.; Clark, J.H. Element Recovery and Sustainability; Royal Society of Chemistry, 2013.
Dou, X.Y.; He, L.N.; Yang, Z.Z. Proline-catalyzed synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. Synth. Commun., 2012, 42(1), 62-74.
Kawanami, H.; Ikushima, Y. Regioselectivity and selective enhancement of carbon dioxide fixation of 2-substituted aziridines to 2-oxazolidinones under supercritical conditions. Tetrahedron Lett., 2002, 43(21), 3841-3844.
Shen, Y.M.; Duan, W.L.; Shi, M. Chemical fixation of carbon dioxide co-catalyzed by a combination of Schiff bases or phenols and organic bases. Eur. J. Org. Chem., 2004, (14), 3080-3089.
North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem., 2010, 12(9), 1514-1539.
Martin, C.; Fiorani, G.; Kleij, A.W. Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal., 2015, 5(2), 1353-1370.
Baronsky, T.; Beattie, C.; Harrington, R.W.; Irfan, R.; North, M.; Osende, J.G.; Young, C. Bimetallic Aluminum(salen) catalyzed synthesis of oxazolidinones from epoxides and isocyanates. ACS Catal., 2013, 3(4), 790-797.
Hancock, M.T.; Pinhas, A.R. Synthesis of oxazolidinones and 1,2- diamines from N-alkyl aziridines. Synthesis (Stuttg), 2004, (14), 2347-2355.
Hancock, M.T.; Pinhas, A.R. A convenient and inexpensive conversion of an aziridine to an oxazolidinone. Tetrahedron Lett, 2003, 44(29), 5457-5460.
Sudo, A.; Morioka, Y.; Koizumi, E.; Sanda, F.; Endo, T. Highly efficient chemical fixations of carbon dioxide and carbon disulfide by cycloaddition to aziridine under atmospheric pressure. Tetrahedron Lett., 2003, 44(43), 7889-7891.
Matsuda, H.; Ninagawa, A.; Hasegawa, H. Reaction of carbon-dioxide with 1-phenylaziridine catalyzed by organo-antimony and organotin compounds. Bull. Chem. Soc. Jpn., 1985, 58(9), 2717-2718.
Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem., 2016, 18(13), 3879-3890.
Tascedda, P.; Duñach, E. Electrosynthesis of cyclic carbamates from aziridines and carbon dioxide. Chem. Commun., 2000, (6), 449-450.
Sudo, A.; Morioka, Y.; Sanda, F.; Endo, T. N-tosylaziridine, a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett., 2004, 45(7), 1363-1365.
Wu, Y.; He, L.N.; Du, Y.; Wang, J.Q.; Miao, C.X.; Li, W. Zirconyl chloride: An efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron, 2009, 65(31), 6204-6210.
Miller, A.W.; Nguyen, S.T. (Salen)chromium(III)/DMAP: An efficient catalyst system for the selective synthesis of 5-substituted oxazolidinones from carbon dioxide and aziridines. Org. Lett., 2004, 6(14), 2301-2304.
Fontana, F.; Chen, C.C.; Aggarwal, V.K. Palladium-catalyzed insertion of co2 into vinylaziridines: New route to 5-vinyloxazolidinones. Org. Lett., 2011, 13(13), 3454-3457.
Arayachukiat, S.; Yingcharoen, P.; Vummaleti, S.V.C.; Cavallo, L.; Poater, A.; D’Elia, V. Cycloaddition of CO2 to challenging N-tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights. Mol. Catal., 2017, 443, 280-285.
Ren, W.M.; Liu, Y.; Lu, X.B. Bifunctional aluminum catalyst for co2 fixation: Regioselective ring opening of three-membered heterocyclic compounds. J. Org. Chem., 2014, 79(20), 9771-9777.
The international aluminium institute. Recycling aluminium: Aluminium for future generations. Available at. [Accessed March 11th 2019].
Ma, T.Y.; Qiao, S.Z. Acid-base bifunctional periodic mesoporous metal phosphonates for synergistically and heterogeneously catalyzing co2 conversion. ACS Catal., 2014, 4(11), 3847-3855.
Lin, X.Z.; Yang, Z.Z.; He, L.N.; Yuan, Z.Y. Mesoporous zirconium phosphonates as efficient catalysts for chemical CO2 fixation. Green Chem., 2015, 17(2), 795-798.
Xu, H.; Liu, X.F.; Cao, C.S.; Zhao, B.; Cheng, P.; He, L.N. A porous metal-organic framework assembled by [Cu30] nanocages: Serving as recyclable catalysts for co2 fixation with aziridines. Adv. Sci., 2016, 3(11), 1600048.
European Chemicals Agency. N,N-dimethylformamide.. https:// (accessed December 12th 2018).
Wang, X.; Gao, W.Y.; Niu, Z.; Wojtas, L.; Perman, J.A.; Chen, Y.S.; Li, Z.; Aguila, B.; Ma, S.Q. A metal-metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO2 with aziridines. Chem. Commun., 2018, 54(10), 1170-1173.
European Chemicals Agency. N,N-dimethylacetamide. Available at. https:// 100.004.389 (accessed December 12th 2018).
Mu, W.H.; Chasse, G.A.; Fang, D.C. High level a initio exploration on the conversion of carbon dioxide into oxazolidinones: The mechanism and regioselectivity. J. Phys. Chem. A, 2008, 112(29), 6708-6714.
Adhikari, D.; Miller, A.W.; Baik, M.H.; Nguyen, S.T. Intramolecular ring-opening from a CO2-derived nucleophile as the origin of selectivity for 5-substituted oxazolidinone from the (salen)Cr-catalyzed aziridine + CO2 coupling. Chem. Sci., 2015, 6(2), 1293-1300.
Reetz, M.; List, B.; Jaroch, S.; Weinmann, H. Organocatalysis; Springer-Verlag Berlin Heidelberg: Germany, 2007.
Moyano, A.; Rios, R. Asymmetric organocatalytic cyclization and cycloaddition reactions. Chem. Rev., 2011, 111(8), 4703-4832.
Du, Y.; Wu, Y.; Liu, A.H.; He, L.N. Quaternary ammonium bromide functionalized polyethylene glycol: A highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J. Org. Chem., 2008, 73(12), 4709-4712.
Yang, Z.Z.; He, L.N.; Peng, S.Y.; Liu, A.H. Lewis basic ionic liquids-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Green Chem., 2010, 12(10), 1850-1854.
Yang, Z.Z.; Li, Y.N.; Wei, Y.Y.; He, L.N. Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions. Green Chem., 2011, 13(9), 2351-2353.
Qi, C.R.; Ye, J.W.; Zeng, W.; Jiang, H.F. Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide. Adv. Synth. Catal., 2010, 352(11-12), 1925-1933.
Jiang, H.F.; Ye, J.W.; Qi, C.R.; Huang, L.B. Naturally occurring alpha-amino acid: A simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. Tetrahedron Lett., 2010, 51(6), 928-932.
Luo, Y-R. Handbook of Bond Dissociation Energies in Organic Compounds; Science Press: Beijing, China, 2005.
Baldwin, J.E. Rules for ring-closure J. Chem. Soc. Commun, 1976, (18), 734-736.
Wu, Y.C.; Liu, G.S. Organocatalyzed cycloaddition of carbon dioxide to aziridines. Tetrahedron Lett., 2011, 52(48), 6450-6452.
Zhang, S.; Li, Y.N.; Zhang, Y.W.; He, L.N.; Yu, B.; Song, Q.W.; Lang, X.D. Equimolar carbon absorption by potassium phthalimide and In Situ catalytic conversion under mild conditions. ChemSusChem, 2014, 7(5), 1484-1489.
Ueno, A.; Kayaki, Y.; Ikariya, T. Cycloaddition of tertiary aziridines and carbon dioxide using a recyclable organocatalyst, 1,3-di-tert-butylimidazolium-2-carboxylate: straightforward access to 3-substituted 2-oxazolidones. Green Chem., 2013, 15(2), 425-430.
Saptal, V.B.; Bhanage, B.M. N-Heterocyclic olefins as robust organocatalyst for the chemical conversion of carbon dioxide to value-added chemicals. ChemSusChem, 2016, 9(15), 1980-1985.
Watile, R.A.; Bagal, D.B.; Deshmukh, K.M.; Dhake, K.P.; Bhanage, B.M. Polymer supported diol functionalized ionic liquids: An efficient, heterogeneous and recyclable catalyst for 5-aryl-2-oxazolidinones synthesis from CO2 and aziridines under mild and solvent free condition. J. Mol. Catal. A Chem., 2011, 351, 196-203.
Watile, R.A.; Bhanage, B.M. Chitosan biohydrogel beads: A recyclable, biodegradable, heterogeneous catalyst for the regioselective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines at mild conditions. Indian J. Chem., 2012, 51A, 1354-1360.
Ghormade, V.; Pathan, E.K.; Deshpande, M.V. Can fungi compete with marine sources for chitosan production? Int. J. Biol. Macromol., 2017, 104, 1415-1421.
Kathalikkattil, A.C.; Tharun, J.; Roshan, R.; Soek, H-G.; Park, D-W. Efficient route for oxazolidinone for synthesis using heterogeneous biopolymer catalysts from unactivated alkyl aziridine and CO2 under mild conditions. Appl. Catal. A Gen., 2012, 447-448, 107-114.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [32 - 43]
Pages: 12
DOI: 10.2174/2213346106666190321142328

Article Metrics

PDF: 58