Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications

Author(s): Carolline de Jesús-Pires, José Ribamar Costa Ferreira-Neto, João Pacifico Bezerra-Neto, Ederson Akio Kido, Roberta Lane de Oliveira Silva, Valesca Pandolfi, Ana Carolina Wanderley-Nogueira, Eliseu Binneck, Antonio Félix da Costa, Gilvan Pio-Ribeiro, Genira Pereira-Andrade, Ilza Maria Sittolin, Francisco Freire-Filho, Ana Maria Benko-Iseppon*.

Journal Name: Current Protein & Peptide Science

Volume 21 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity. They are mostly associated with responses to biotic stresses, in addition to some predicted activities under drought and osmotic stresses. The present review covers aspects related to the structure, evolution, gene expression, and biotechnological potential of TLPs. The efficiency of the discovery of new TLPs is below its potential, considering the availability of omics data. Furthermore, we present an exemplary bioinformatics annotation procedure that was applied to cowpea (Vigna unguiculata) transcriptome, including libraries of two tissues (root and leaf), and two stress types (biotic/abiotic) generated using different sequencing approaches. Even without using genomic sequences, the pipeline uncovered 56 TLP candidates in both tissues and stresses. Interestingly, abiotic stress (root dehydration) was associated with a high number of modulated TLP isoforms. The nomenclature used so far for TLPs was also evaluated, considering TLP structure and possible functions identified to date. It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming a better performance under biotic and abiotic stresses. The development of new therapeutic drugs against human fungal pathogens also deserves attention. Despite that, applications derived from TLP molecules are still below their potential, as it is evident in our review.

Keywords: Higher plants, TLP, PR-5, osmotin-like, zeamatin, biotic stress, abiotic stress.

[1]
Narusaka, Y.; Narusaka, M.; Abe, H.; Hosaka, N.; Kobayashi, M.; Shiraishi, T.; Iwabuchi, M. High throughput screening for plant defense activators using a β-glucuronidase reporter gene assay in Arabidopsis thaliana. Plant Biotechnol., 2009, 26(3), 345-349.
[http://dx.doi.org/10.5511/plantbiotechnology.26.345]
[2]
van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 2006, 44, 135-162.
[http://dx.doi.org/10.1146/annurev.phyto.44.070505.143425] [PMID: 16602946]
[3]
van der Wel, H.; Loeve, K. Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur. J. Biochem., 1972, 31(2), 221-225.
[http://dx.doi.org/10.1111/j.1432-1033.1972.tb02522.x] [PMID: 4647176]
[4]
Velazhahan, R.; Datta, S.K.; Muthukrishnan, S. Pathogenesis-related proteins in plants; Datta, S.K; Muthukrishnan, S., Eds.; CRC press Boca Raton: lorida, United States, 1999, pp. 107-129.
[5]
Petre, B.; Major, I.; Rouhier, N.; Duplessis, S. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar. BMC Plant Biol., 2011, 11, 33.
[http://dx.doi.org/10.1186/1471-2229-11-33] [PMID: 21324123]
[6]
Malehorn, D.E.; Borgmeyer, J.R.; Smith, C.E.; Shah, D.M. Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. Plant Physiol., 1994, 106(4), 1471-1481.
[http://dx.doi.org/10.1104/pp.106.4.1471] [PMID: 7846159]
[7]
Shatters, R.G., Jr; Boykin, L.M.; Lapointe, S.L.; Hunter, W.B.; Weathersbee, A.A. III Phylogenetic and structural relationships of the PR5 gene family reveal an ancient multigene family conserved in plants and select animal taxa. J. Mol. Evol., 2006, 63(1), 12-29.
[http://dx.doi.org/10.1007/s00239-005-0053-z] [PMID: 16736102]
[8]
Batalia, M.A.; Monzingo, A.F.; Ernst, S.; Roberts, W.; Robertus, J.D. The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nat. Struct. Biol., 1996, 3(1), 19-23.
[http://dx.doi.org/10.1038/nsb0196-19] [PMID: 8548448]
[9]
Grenier, J.; Potvin, C.; Trudel, J.; Asselin, A. Some thaumatin-like proteins hydrolyse polymeric β-1,3-glucans. Plant J., 1999, 19(4), 473-480.
[http://dx.doi.org/10.1046/j.1365-313X.1999.00551.x] [PMID: 10504569]
[10]
Trudel, J.; Grenier, J.; Potvin, C.; Asselin, A. Several thaumatin-like proteins bind to β-1,3-glucans. Plant Physiol., 1998, 118(4), 1431-1438.
[http://dx.doi.org/10.1104/pp.118.4.1431] [PMID: 9847118]
[11]
Fierens, E.; Rombouts, S.; Gebruers, K.; Goesaert, H.; Brijs, K.; Beaugrand, J.; Volckaert, G.; Van Campenhout, S.; Proost, P.; Courtin, C.M.; Delcour, J.A. TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem. J., 2007, 403(3), 583-591.
[http://dx.doi.org/10.1042/BJ20061291] [PMID: 17269932]
[12]
Lopes, F.E.S.; da Costa, H.P.S.; Souza, P.F.N.; Oliveira, J.P.B.; Ramos, M.V.; Freire, J.E.C.; Jucá, T.L.; Freitas, C.D.T. Peptide from thaumatin plant protein exhibits selective anticandidal activity by inducing apoptosis via membrane receptor. Phytochemistry, 2019, 159, 46-55.
[http://dx.doi.org/10.1016/j.phytochem.2018.12.006] [PMID: 30577001]
[13]
Winter, P.; Benko-Iseppon, A.M.; Hüttel, B.; Ratnaparkhe, M.; Tullu, A.; Sonnante, G.; Pfaff, T.; Tekeoglu, M.; Santra, D.; Sant, V.J.; Rajesh, P.N.; Kahl, G.; Muehlbauer, F.J. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: Localization of resistance genes for fusarium wilt races 4 and 5. Theor. Appl. Genet., 2000, 101(7), 1155-1163.
[http://dx.doi.org/10.1007/s001220051592]
[14]
Benko-Iseppon, A.M.; Winter, P.; Huettel, B.; Staginnus, C.; Muehlbauer, F.J.; Kahl, G. Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor. Appl. Genet., 2003, 107(2), 379-386.
[http://dx.doi.org/10.1007/s00122-003-1260-x] [PMID: 12709786]
[15]
Hsieh, L.S.; Moos, M., Jr; Lin, Y. Characterization of apple 18 and 31 kd allergens by microsequencing and evaluation of their content during storage and ripening. J. Allergy Clin. Immunol., 1995, 96(6 Pt 1), 960-970.
[http://dx.doi.org/10.1016/S0091-6749(95)70234-2] [PMID: 8543755]
[16]
Jung, Y.C.; Lee, H.J.; Yum, S.S.; Soh, W.Y.; Cho, D.Y.; Auh, C.K.; Lee, T.K.; Soh, H.C.; Kim, Y.S.; Lee, S.C. Drought-inducible-but ABA-independent-thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep., 2005, 24(6), 366-373.
[http://dx.doi.org/10.1007/s00299-005-0944-x] [PMID: 15789205]
[17]
Ruperti, B.; Cattivelli, L.; Pagni, S.; Ramina, A. Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). J. Exp. Bot., 2002, 53(368), 429-437.
[http://dx.doi.org/10.1093/jexbot/53.368.429] [PMID: 11847241]
[18]
Hon, W.C.; Griffith, M.; Mlynarz, A.; Kwok, Y.C.; Yang, D.S.C. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol., 1995, 109(3), 879-889.
[http://dx.doi.org/10.1104/pp.109.3.879] [PMID: 8552719]
[19]
Breiteneder, H.; Radauer, C. A classification of plant food allergens. J. Allergy Clin. Immunol., 2004, 113(5), 821-830.
[http://dx.doi.org/10.1016/j.jaci.2004.01.779] [PMID: 15131562]
[20]
Sakamoto, Y.; Watanabe, H.; Nagai, M.; Nakade, K.; Takahashi, M.; Sato, T. Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence. Plant Physiol., 2006, 141(2), 793-801.
[http://dx.doi.org/10.1104/pp.106.076679] [PMID: 16648221]
[21]
Brandazza, A.; Angeli, S.; Tegoni, M.; Cambillau, C.; Pelosi, P. Plant stress proteins of the thaumatin-like family discovered in animals. FEBS Lett., 2004, 572(1-3), 3-7.
[http://dx.doi.org/10.1016/j.febslet.2004.07.003] [PMID: 15304314]
[22]
Kitajima, S.; Sato, F. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J. Biochem., 1999, 125(1), 1-8.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022244] [PMID: 9880788]
[23]
Grenier, J.; Potvin, C.; Asselin, A. Some fungi express β-1,3-glucanases similar to thaumatin-like proteins. Mycologia, 2000, 92(5), 841-848.
[24]
Gibson, S.; Somerville, C. Isolating plant genes. Trends Biotechnol., 1993, 11(7), 306-313.
[http://dx.doi.org/10.1016/0167-7799(93)90019-6] [PMID: 7763954]
[25]
Liu, J.J.; Zamani, A.; Ekramoddoullah, A.K.M. Expression profiling of a complex thaumatin-like protein family in western white pine. Planta, 2010, 231(3), 637-651.
[http://dx.doi.org/10.1007/s00425-009-1068-2] [PMID: 19997927]
[26]
Hu, X.; Reddy, A.S.N. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol. Biol., 1997, 34(6), 949-959.
[http://dx.doi.org/10.1023/A:1005893119263] [PMID: 9290646]
[27]
Futamura, N.; Tani, N.; Tsumura, Y.; Nakajima, N.; Sakaguchi, M.; Shinohara, K. Characterization of genes for novel thaumatin-like proteins in Cryptomeria japonica. Tree Physiol., 2006, 26(1), 51-62.
[http://dx.doi.org/10.1093/treephys/26.1.51] [PMID: 16203714]
[28]
Onishi, M.; Tachi, H.; Kojima, T.; Shiraiwa, M.; Takahara, H. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.). Plant Physiol. Biochem., 2006, 44(10), 574-580.
[http://dx.doi.org/10.1016/j.plaphy.2006.09.009] [PMID: 17070691]
[29]
Wang, X.; Tang, C.; Deng, L.; Cai, G.; Liu, X.; Liu, B.; Han, Q.; Buchenauer, H.; Wei, G.; Han, D.; Huang, L.; Kang, Z. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol. Plant., 2010, 139(1), 27-38.
[http://dx.doi.org/10.1111/j.1399-3054.2009.01338.x] [PMID: 20059734]
[30]
Liu, D.; He, X.; Li, W.; Chen, C.; Ge, F. Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell Tissue Organ Cult., 2012, 111(1), 29-39.
[http://dx.doi.org/10.1007/s11240-012-0167-0]
[31]
Taski-Ajdukovic, K.; Nagal, N.; Kovacev, L.; Curcic, Z.; Danojevic, D. Development and application of qRT-PCR for sugar beet gene expression analysis in response to in vitro induced water deficit. Electron. J. Biotechnol., 2012, 15(6), 1-12.
[http://dx.doi.org/10.2225/vol15-issue6-fulltext-7]
[32]
Singh, N.K.; Kumar, K.R.R.; Kumar, D.; Shukla, P.; Kirti, P.B. Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS One, 2013, 8(12)e83963
[http://dx.doi.org/10.1371/journal.pone.0083963] [PMID: 24367621]
[33]
Choi, S.; Hong, J.K.; Hwang, B.K. Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. Planta, 2013, 238(6), 1113-1124.
[http://dx.doi.org/10.1007/s00425-013-1956-3] [PMID: 24022744]
[34]
Ashok Kumar, H.G.; Hegde, V.L.; Shetty, S.M.; Venkatesh, Y.P. Characterization and gene cloning of an acidic thaumatin-like protein (TLP 1), an allergen from sapodilla fruit (Manilkara zapota). Allergol. Int., 2013, 62(4), 447-462.
[http://dx.doi.org/10.2332/allergolint.12-OA-0522] [PMID: 24060761]
[35]
Wang, L.; Yang, L.; Zhang, J.; Dong, J.; Yu, J.; Zhou, J.; Zhuge, Q. Cloning and characterization of a thaumatin-like protein gene PeTLP in Populus deltoides x P. euramericana cv. ‘Nanlin895’. Acta Physiol. Plant., 2013, 35(10), 2985-2998.
[http://dx.doi.org/10.1007/s11738-013-1330-x]
[36]
Hayashi, M.; Shiro, S.; Kanamori, H.; Mori-Hosokawa, S.; Sasaki-Yamagata, H.; Sayama, T.; Nishioka, M.; Takahashi, M.; Ishimoto, M.; Katayose, Y.; Kaga, A.; Harada, K.; Kouchi, H.; Saeki, Y.; Umehara, Y. A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean. Plant Cell Physiol., 2014, 55(9), 1679-1689.
[http://dx.doi.org/10.1093/pcp/pcu099] [PMID: 25059584]
[37]
Rather, I.A.; Awasthi, P.; Mahajan, V.; Bedi, Y.S.; Vishwakarma, R.A.; Gandhi, S.G. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene, 2015, 558(1), 143-151.
[http://dx.doi.org/10.1016/j.gene.2014.12.055] [PMID: 25550044]
[38]
Chowdhury, S.; Basu, A.; Kundu, S. Cloning, characterization, and bacterial over-expression of an osmotin-like protein gene from Solanum nigrum L. with antifungal activity against three necrotrophic fungi. Mol. Biotechnol., 2015, 57(4), 371-381.
[http://dx.doi.org/10.1007/s12033-014-9831-4] [PMID: 25572937]
[39]
Li, X.Y.; Gao, L.; Zhang, W.H.; Liu, J.K.; Zhang, Y.J.; Wang, H.Y.; Liu, D.Q. Characteristic expression of wheat PR5 gene in response to infection by the leaf rust pathogen, Puccinia triticina. J. Plant Interact., 2015, 10(1), 132-141.
[http://dx.doi.org/10.1080/17429145.2015.1036140]
[40]
Hanselle, T.; Ichinoseb, Y.; Barz, W. Biochemical and molecular biological studies on infection (Ascochyta rabiei)-induced thaumatin-like proteins from chickpea plants (Cicer arietinum L.). Z. Natforsch. C J. Biosci., 2001, 56(11-12), 1095-1107.
[http://dx.doi.org/10.1515/znc-2001-11-1229] [PMID: 11837663]
[41]
Ramos, M.V.; de Oliveira, R.S.; Pereira, H.M.; Moreno, F.B.M.B.; Lobo, M.D.P.; Rebelo, L.M.; Brandão-Neto, J.; de Sousa, J.S.; Monteiro-Moreira, A.C.; Freitas, C.D.; Grangeiro, T.B. Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: Insights into the mechanism of action. Phytochemistry, 2015, 119, 5-18.
[http://dx.doi.org/10.1016/j.phytochem.2015.09.012] [PMID: 26456062]
[42]
Wang, Q.; Li, F.; Zhang, X.; Zhang, Y.; Hou, Y.; Zhang, S.; Wu, Z. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity. PLoS One, 2011, 6(2)e16930
[http://dx.doi.org/10.1371/journal.pone.0016930] [PMID: 21364945]
[43]
Zhang, H.; Chen, L.; Sun, Y.; Zhao, L.; Zheng, X.; Yang, Q.; Zhang, X. Investigating proteome and transcriptome defense response of apples induced by Yarrowia lipolytica. Mol. Plant Microbe Interact., 2017, 30(4), 301-311.
[http://dx.doi.org/10.1094/MPMI-09-16-0189-R] [PMID: 28398122]
[44]
Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[45]
Ashok Kumar, H.G.; Venkatesh, Y.P. In silico analyses of structural and allergenicity features of sapodilla (Manilkara zapota) acidic thaumatin-like protein in comparison with allergenic plant TLPs. Mol. Immunol., 2014, 57(2), 119-128.
[http://dx.doi.org/10.1016/j.molimm.2013.08.010] [PMID: 24091295]
[46]
Breiteneder, H. Thaumatin-like proteins -- a new family of pollen and fruit allergens. Allergy, 2004, 59(5), 479-481.
[http://dx.doi.org/10.1046/j.1398-9995.2003.00421.x] [PMID: 15080826]
[47]
Fierens, E.; Gebruers, K.; Voet, A.R.; De Maeyer, M.; Courtin, C.M.; Delcour, J.A. Biochemical and structural characterization of TLXI, the Triticum aestivum L. thaumatin-like xylanase inhibitor. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 646-654.
[http://dx.doi.org/10.1080/14756360802321831] [PMID: 18951281]
[48]
Ghosh, R.; Chakrabarti, C. Crystal structure analysis of NP24-I: a thaumatin-like protein. Planta, 2008, 228(5), 883-890.
[http://dx.doi.org/10.1007/s00425-008-0790-5] [PMID: 18651170]
[49]
Cao, J.; Lv, Y.; Hou, Z.; Li, X.; Ding, L. Expansion and evolution of thaumatin-like protein (TLP) gene family in six plants. Plant Growth Regul., 2016, 79(3), 299-307.
[http://dx.doi.org/10.1007/s10725-015-0134-y]
[50]
Liu, J.J.; Sturrock, R.; Ekramoddoullah, A.K.M. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep., 2010, 29(5), 419-436.
[http://dx.doi.org/10.1007/s00299-010-0826-8] [PMID: 20204373]
[51]
Min, K.; Ha, S.C.; Hasegawa, P.M.; Bressan, R.A.; Yun, D.J.; Kim, K.K. Crystal structure of osmotin, a plant antifungal protein. Proteins, 2004, 54(1), 170-173.
[http://dx.doi.org/10.1002/prot.10571] [PMID: 14705035]
[52]
Wanderley-Nogueira, A.C.; Belarmino, L.C. Soares-Cavalcanti, Nda.M.; Bezerra-Neto, J.P.; Kido, E.A.; Pandolfi, V.; Abdelnoor, R.V.; Binneck, E.; Carazzole, M.F.; Benko-Iseppon, A.M. An overall evaluation of the Resistance (R) and Pathogenesis-Related (PR) superfamilies in soybean, as compared with Medicago and Arabidopsis Genet. Mol. Biol., 2012, 35(1 (suppl))(Suppl.). , 260-271.
[http://dx.doi.org/10.1590/S1415-47572012000200007] [PMID: 22802711]
[53]
Singh, S.; Chand, S.; Singh, N.K.; Sharma, T.R. Genome-wide distribution, organization and functional characterization of disease resistance and defence response genes across rice species. PLoS One, 2015, 10(4), 1-29.
[http://dx.doi.org/10.1371/journal.pone.0125964]
[54]
Vasconcelos, E.V.; de Andrade Fonsêca, A.F.; Pedrosa-Harand, A.; de Andrade Bortoleti, K.C.; Benko-Iseppon, A.M.; da Costa, A.F.; Brasileiro-Vidal, A.C. Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromosome Res., 2015, 23(2), 253-266.
[http://dx.doi.org/10.1007/s10577-014-9464-2] [PMID: 25634499]
[55]
Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.L.; Cooper, D.; Coutinho, P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Déjardin, A.; Depamphilis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehlting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjärvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leplé, J.C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin, F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, C.; Nieminen, K.; Nilsson, O.; Pereda, V.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouzé, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui, A.; Sterky, F.; Terry, A.; Tsai, C.J.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra, M.; Sandberg, G.; Van de Peer, Y.; Rokhsar, D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793), 1596-1604.
[http://dx.doi.org/10.1126/science.1128691] [PMID: 16973872]
[56]
Burdon, J.J.; Thrall, P.H. Coevolution of plants and their pathogens in natural habitats. Science, 2009, 324(5928), 755-756.
[http://dx.doi.org/10.1126/science.1171663] [PMID: 19423818]
[57]
Benko-Iseppon, A.M.; Galdino, S.L.; Calsa, T., Jr; Kido, E.A.; Tossi, A.; Belarmino, L.C.; Crovella, S. Overview on plant antimicrobial peptides. Curr. Protein Pept. Sci., 2010, 11(3), 181-188.
[http://dx.doi.org/10.2174/138920310791112075] [PMID: 20088772]
[58]
Kohler, A.; Rinaldi, C.; Duplessis, S.; Baucher, M.; Geelen, D.; Duchaussoy, F.; Meyers, B.C.; Boerjan, W.; Martin, F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol. Biol., 2008, 66(6), 619-636.
[http://dx.doi.org/10.1007/s11103-008-9293-9] [PMID: 18247136]
[59]
Paterson, A.H.; Freeling, M.; Tang, H.; Wang, X. Insights from the comparison of plant genome sequences. Annu. Rev. Plant Biol., 2010, 61, 349-372.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112235] [PMID: 20441528]
[60]
Zhao, J.P.; Su, X.H. Patterns of molecular evolution and predicted function in thaumatin-like proteins of Populus trichocarpa. Planta, 2010, 232(4), 949-962.
[http://dx.doi.org/10.1007/s00425-010-1218-6] [PMID: 20645107]
[61]
Misas-Villamil, J.C.; van der Hoorn, R.A.L. Enzyme-inhibitor interactions at the plant-pathogen interface. Curr. Opin. Plant Biol., 2008, 11(4), 380-388.
[http://dx.doi.org/10.1016/j.pbi.2008.04.007] [PMID: 18550418]
[62]
Ogata, C.M.; Gordon, P.F.; de Vos, A.M.; Kim, S.H. Crystal structure of a sweet tasting protein thaumatin I, at 1.65 A resolution. J. Mol. Biol., 1992, 228(3), 893-908.
[http://dx.doi.org/10.1016/0022-2836(92)90873-I] [PMID: 1469722]
[63]
Tachi, H.; Fukuda-Yamada, K.; Kojima, T.; Shiraiwa, M.; Takahara, H. Molecular characterization of a novel soybean gene encoding a neutral PR-5 protein induced by high-salt stress. Plant Physiol. Biochem., 2009, 47(1), 73-79.
[http://dx.doi.org/10.1016/j.plaphy.2008.09.012] [PMID: 19010689]
[64]
Woloshuk, C.P.; Meulenhoff, J.S.; Sela-Buurlage, M.; van den Elzen, P.J.M.; Cornelissen, B.J.C. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell, 1991, 3(6), 619-628.
[PMID: 1841721]
[65]
D’Angeli, S.; Altamura, M.M. Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta, 2007, 225(5), 1147-1163.
[http://dx.doi.org/10.1007/s00425-006-0426-6] [PMID: 17086398]
[66]
Roberts, W.K.; Selitrennikoff, C.P. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol., 1990, 136, 1771-1778.
[http://dx.doi.org/10.1099/00221287-136-9-1771]
[67]
Schimoler-O’Rourke, R.; Richardson, M.; Selitrennikoff, C.P. Zeamatin inhibits trypsin and α-amylase activities. Appl. Environ. Microbiol., 2001, 67(5), 2365-2366.
[http://dx.doi.org/10.1128/AEM.67.5.2365-2366.2001] [PMID: 11319124]
[68]
de Vos, A.M.; Hatada, M.; van der Wel, H.; Krabbendam, H.; Peerdeman, A.F.; Kim, S.H. Three-dimensional structure of thaumatin I, an intensely sweet protein. Proc. Natl. Acad. Sci. USA, 1985, 82(5), 1406-1409.
[http://dx.doi.org/10.1073/pnas.82.5.1406] [PMID: 3856268]
[69]
Faus, I. Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl. Microbiol. Biotechnol., 2000, 53(2), 145-151.
[http://dx.doi.org/10.1007/s002530050001] [PMID: 10709975]
[70]
Fry, J.C. Natural Food Additives, Ingredients and Flavourings; Baines, D; Seal, R., Ed.; Woodhead Publishing: Cambridge, UK, 2012, pp. 41-75.
[http://dx.doi.org/10.1533/9780857095725.1.41]
[71]
Masuda, T.; Kitabatake, N. Developments in biotechnological production of sweet proteins. J. Biosci. Bioeng., 2006, 102(5), 375-389.
[http://dx.doi.org/10.1263/jbb.102.375] [PMID: 17189164]
[72]
Philippe, R.N.; De Mey, M.; Anderson, J.; Ajikumar, P.K. Biotechnological production of natural zero-calorie sweeteners. Curr. Opin. Biotechnol., 2014, 26, 155-161.
[http://dx.doi.org/10.1016/j.copbio.2014.01.004] [PMID: 24503452]
[73]
Dahal, N.R.; Xu, X.M. Sweetest protein-thaumatin. J. Food Sci. Technol. Nepal, 2012, 7, 112-118.
[http://dx.doi.org/10.3126/jfstn.v7i0.11210]
[74]
Faus, I.; Patiño, C.; Río, J.L.; del Moral, C.; Barroso, H.S.; Rubio, V. Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in Escherichia coli. Biochem. Biophys. Res. Commun., 1996, 229(1), 121-127.
[http://dx.doi.org/10.1006/bbrc.1996.1767] [PMID: 8954093]
[75]
Edens, L.; Heslinga, L.; Klok, R.; Ledeboer, A.M.; Maat, J.; Toonen, M.Y.; Visser, C.; Verrips, C.T. Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Eschericha coli. Gene, 1982, 18(1), 1-12.
[76]
Yesilirmak, F.; Sayers, Z. Heterelogous expression of plant genes. Int. J. Plant Genomics, 2009. 2009296482
[http://dx.doi.org/10.1155/2009/296482] [PMID: 19672459]
[77]
Daniell, S.; Mellits, K.H.; Faus, I.; Connerton, I. Refolding the sweet-tasting protein thaumatin II from insoluble inclusion bodies synthesized in Escherichia coli. Food Chem., 2000, 71(1), 105-110.
[http://dx.doi.org/10.1016/S0308-8146(00)00151-5]
[78]
Ward, O.P. Production of recombinant proteins by filamentous fungi. Biotechnol. Adv., 2012, 30(5), 1119-1139.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.012] [PMID: 21968147]
[79]
Hahm, Y.T.; Batt, C.A. Expression and secretion of thaumatin from Aspergillus Oryzae. Agric. Biol. Chem., 1990, 54(10), 2513-2520.
[http://dx.doi.org/10.1080/00021369.1990.10870381]
[80]
Faus, I.; del Moral, C.; Adroer, N.; del Río, J.L.; Patiño, C.; Sisniega, H.; Casas, C.; Bladé, J.; Rubio, V. Secretion of the sweet-tasting protein thaumatin by recombinant strains of Aspergillus niger var. awamori. Appl. Microbiol. Biotechnol., 1998, 49(4), 393-398.
[http://dx.doi.org/10.1007/s002530051188] [PMID: 9615480]
[81]
Faus, I.; Patiño, C.; del Río, J.L.; del Moral, C.; Barroso, H.S.; Bladé, J.; Rubio, V. Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in the filamentous fungus Penicillium roquefortii. Biotechnol. Lett., 1997, 19(12), 1185-1191.
[http://dx.doi.org/10.1023/A:1018477602350]
[82]
Moralejo, F.J.; Watson, A.J.; Jeenes, D.J.; Archer, D.B.; Martín, J.F. A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspegillus awamori. Mol. Genet. Genomics, 2001, 266(2), 246-253.
[http://dx.doi.org/10.1007/s004380100550] [PMID: 11683266]
[83]
Idiris, A.; Tohda, H.; Kumagai, H.; Takegawa, K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl. Microbiol. Biotechnol., 2010, 86(2), 403-417.
[http://dx.doi.org/10.1007/s00253-010-2447-0] [PMID: 20140428]
[84]
Çelik, E.; Çalık, P. Production of recombinant proteins by yeast cells. Biotechnol. Adv., 2012, 30(5), 1108-1118.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.011] [PMID: 21964262]
[85]
Masuda, T.; Tamaki, S.; Kaneko, R.; Wada, R.; Fujita, Y.; Mehta, A.; Kitabatake, N. Cloning, expression and characterization of recombinant sweet-protein thaumatin II using the methylotrophic yeast Pichia pastoris. Biotechnol. Bioeng., 2004, 85(7), 761-769.
[http://dx.doi.org/10.1002/bit.10786] [PMID: 14991654]
[86]
Ide, N.; Masuda, T.; Kitabatake, N. Effects of pre- and pro-sequence of thaumatin on the secretion by Pichia pastoris. Biochem. Biophys. Res. Commun., 2007, 363(3), 708-714.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.021] [PMID: 17897626]
[87]
Ohta, K.; Masuda, T.; Ide, N.; Kitabatake, N. Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I. FEBS J., 2008, 275(14), 3644-3652.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06509.x] [PMID: 18544096]
[88]
Firsov, A.P.; Pushin, A.S.; Korneeva, I.V.; Dolgov, S.V. Transgenic tomato plants as supersweet protein thaumatin II producers. Appl. Biochem. Microbiol., 2012, 48(9), 746-751.
[http://dx.doi.org/10.1134/S0003683812090025]
[89]
Georgiev, M.I.; Agostini, E.; Ludwig-Müller, J.; Xu, J. Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol., 2012, 30(10), 528-537.
[http://dx.doi.org/10.1016/j.tibtech.2012.07.001] [PMID: 22906523]
[90]
Pham, N.B.; Schäfer, H.; Wink, M. Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol. J., 2012, 7(4), 537-545.
[http://dx.doi.org/10.1002/biot.201100430] [PMID: 22125283]
[91]
Stoger, E. Plant bioreactors - the taste of sweet success. Biotechnol. J., 2012, 7(4), 475-476.
[http://dx.doi.org/10.1002/biot.201100472] [PMID: 22253253]
[92]
Rajam, M.V.; Chandola, N.; Goud, P.S.; Singh, D.; Kashyap, V.; Choudhary, M.L.; Sihachakr, D. Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants. Biol. Plant., 2007, 51(1), 135-141.
[http://dx.doi.org/10.1007/s10535-007-0026-8]
[93]
Barre, A.; Peumans, W.J.; Menu-Bouaouiche, L.; Van Damme, E.J.M.; May, G.D.; Herrera, A.F.; Van Leuven, F.; Rougé, P. Purification and structural analysis of an abundant thaumatin-like protein from ripe banana fruit. Planta, 2000, 211(6), 791-799.
[http://dx.doi.org/10.1007/s004250000354] [PMID: 11144263]
[94]
Ng, T.B. Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides, 2004, 25(7), 1215-1222.
[http://dx.doi.org/10.1016/j.peptides.2004.03.012] [PMID: 15245883]
[95]
Sripriya, R.; Parameswari, C.; Veluthambi, K. Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes. Vitr. Cell Dev. Biol. Plant., 2017, 53, 12-21.
[96]
Misra, R.C. Sandeep; Kamthan, M.; Kumar, S.; Ghosh, S. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci. Rep., 2016, 6, 25340.
[http://dx.doi.org/10.1038/srep25340] [PMID: 27150014]
[97]
Reiss, E.; Schubert, J.; Scholze, P.; Kramer, R.; Sonntag, K. The barley thaumatin-like protein Hv-TLP8 enhances resistance of oilseed rape plants to Plasmodiophora brassicae. Plant Breed., 2009, 128(2), 210-212.
[http://dx.doi.org/10.1111/j.1439-0523.2008.01595.x]
[98]
Safavi, K.; Zareie, R.; Tabatabaie, B.E.S. Expression of TLP-3 gene without signal peptide in tobacco plants using Agrobacterium mediated transformation. Afr. J. Biotechnol., 2011, 10(24), 4816-4822.
[99]
Munis, M.F.H.; Tu, L.; Deng, F.; Tan, J.; Xu, L.; Xu, S.; Long, L.; Zhang, X. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem. Biophys. Res. Commun., 2010, 393(1), 38-44.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.069] [PMID: 20097164]
[100]
Acharya, K.; Pal, A.K.; Gulati, A.; Kumar, S.; Singh, A.K.; Ahuja, P.S. Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol. Biotechnol., 2013, 54(2), 609-622.
[http://dx.doi.org/10.1007/s12033-012-9603-y] [PMID: 23086453]
[101]
Ye, X.Y.; Wang, H.X.; Ng, T.B. First chromatographic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity. Biochem. Biophys. Res. Commun., 1999, 263(1), 130-134.
[http://dx.doi.org/10.1006/bbrc.1999.1166] [PMID: 10486265]
[102]
Yasmin, N.; Saleem, M. Biochemical characterization of fruit-specific pathogenesis-related antifungal protein from basrai banana. Microbiol. Res., 2014, 169(5-6), 369-377.
[http://dx.doi.org/10.1016/j.micres.2013.08.010] [PMID: 24192113]
[103]
Velázquez, S.F.; Guerra, R.R.; Calderón, L.S. Abiotic and biotic stress response crosstalk in plants. In: Abiotic Stress Response in Plants; Shanker, A., Ed.; Physiological, Biochemical and Genetic Perspectives. InTech: Rijeka, Croatia, 2011.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [36 - 51]
Pages: 16
DOI: 10.2174/1389203720666190318164905
Price: $65

Article Metrics

PDF: 40
HTML: 3