Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Development of Radiofrequency Saturation Amplitude-independent Quantitative Markers for Magnetization Transfer MRI of Prostate Cancer

Author(s): Xunan Huang, Ryan N. Schurr, Shuzhen Wang, Qiguang Miao, Tanping Li* and Guang Jia*

Volume 16, Issue 6, 2020

Page: [695 - 702] Pages: 8

DOI: 10.2174/1573405615666190318153328

Price: $65

Abstract

Background: In the United States, prostate cancer has a relatively large impact on men's health. Magnetic resonance imaging (MRI) is useful for the diagnosis and treatment of prostate cancer.

Introduction: The purpose of this study was to develop a quantitative marker for use in prostate cancer magnetization transfer (MT) magnetic resonance imaging (MRI) studies that is independent of radiofrequency (RF) saturation amplitude.

Methods: Eighteen patients with biopsy-proven prostate cancer were enrolled in this study. MTMRI images were acquired using four RF saturation amplitudes at 33 frequency offsets. ROIs were delineated for the peripheral zone (PZ), central gland (CG), and tumor. Z-spectral data were collected in each region and fit to a three-parameter equation. The three parameters are: the magnitude of the bulk water pool (Aw), the full width at half maximum of the water pool (Gw), and the magnitude of the bound pool (Ab), while, the slopes from the linear regressions of Gw and Ab on RF saturation amplitude (called kAb and kGw) were used as quantitative markers.

Results: A pairwise statistically significant difference was found between the PZ and tumor regions for the two saturation amplitude-independent quantitative markers. No pairwise statistically significant differences were found between the CG and tumor regions for any quantitative markers.

Conclusion: The significant differences between the values of the two RF saturation amplitudeindependent quantitative markers in the PZ and tumor regions reveal that these markers may be capable of distinguishing healthy PZ tissue from prostate cancer.

Keywords: Magnetization transfer MRI, quantitative imaging, radiofrequency (RF) saturation, Z-spectrum, magnetization transfer ratio, prostate cancer.

Graphical Abstract
[1]
Dinh KT, Mahal BA, Ziehr DR, et al. Risk of prostate cancer mortality in men with a history of prior cancer. BJU Int 2016; 117(6B): E20-8.
[http://dx.doi.org/10.1111/bju.13144] [PMID: 25845283]
[2]
Nour SG. Magnetic Resonance image-guided focal prostate ablation. Semin Intervent Radiol 2016; 33(3): 206-16.
[http://dx.doi.org/10.1055/s-0036-1586153] [PMID: 27582608]
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Haider MA, van der Kwast TH, Tanguay J, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 2007; 189(2): 323-8.
[http://dx.doi.org/10.2214/AJR.07.2211] [PMID: 17646457]
[5]
Ozer S, Langer DL, Liu X, et al. Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med Phys 2010; 37(4): 1873-83.
[http://dx.doi.org/10.1118/1.3359459] [PMID: 20443509]
[6]
Kitajima K, Kaji Y, Fukabori Y, Yoshida K, Suganuma N, Sugimura K. Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J Magn Reson Imaging 2010; 31(3): 625-31.
[http://dx.doi.org/10.1002/jmri.22075] [PMID: 20187206]
[7]
Bjurlin MA, Rosenkrantz AB, Lepor H, Taneja SS. Magnetic resonance imaging in prostate cancer. Transl Androl Urol 2017; 6(3): 343-4.
[http://dx.doi.org/10.21037/tau.2017.05.16] [PMID: 28725575]
[8]
Parivar F, Waluch V. Magnetic resonance imaging of prostate cancer. Hum Pathol 1992; 23(4): 335-43.
[http://dx.doi.org/10.1016/0046-8177(92)90079-I] [PMID: 1563733]
[9]
Artan Y, Yetik IS, Haider MA. Automated prostate cancer localization with multiparametric magnetic resonance imaging. In: Abdomen and thoracic imaging: An engineering & clinical perspective. New York: Springer 2013; pp. 559-86.
[10]
Rahul C, Mehta G, Bruce Pike, Dieter R. Improved detection of enhancing and nonenhancing lesions of multiple sclerosis with magnetization transfer. In: ICDAR 2017. Kyoto; Japan 2017; pp. 1-6.
[11]
Hoeks CMA, Barentsz JO, Hambrock T, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 2011; 261(1): 46-66.
[http://dx.doi.org/10.1148/radiol.11091822] [PMID: 21931141]
[12]
Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 2009; 30(2): 327-34.
[http://dx.doi.org/10.1002/jmri.21824] [PMID: 19629981]
[13]
Kumar V, Bora GS, Kumar R, Jagannathan NR. Multiparametric (mp) MRI of prostate cancer. Prog Nucl Magn Reson Spectrosc 2018; 105: 23-40.
[http://dx.doi.org/10.1016/j.pnmrs.2018.01.001] [PMID: 29548365]
[14]
Woo S, Suh CH, Kim SY, Cho JY, Kim SH. The diagnostic performance of mri for detection of lymph node metastasis in bladder and prostate cancer: an updated systematic review and diagnostic meta-analysis. AJR Am J Roentgenol 2018; 210(3): W95-W109.
[http://dx.doi.org/10.2214/AJR.17.18481] [PMID: 29381380]
[15]
Lemaitre G, Marti R, Rastgoo M, Meriaudeau F. Computer-aided detection for prostate cancer detection based on multi-parametric magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc 2017; 2017: 3138-41.
[http://dx.doi.org/10.1109/EMBC.2017.8037522] [PMID: 29060563]
[16]
Giannini V, Vignati A, de Luca M, et al. A novel and fully automated registration method for prostate cancer detection using multiparametric magnetic resonance imaging. J Med Imaging Health Inform 2015; 5(6): 1171-82.
[http://dx.doi.org/10.1166/jmihi.2015.1518]
[17]
Turkbey B, Brown AM, Sankineni S, Wood BJ, Pinto PA, Choyke PL. Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin 2016; 66(4): 326-36.
[http://dx.doi.org/10.3322/caac.21333] [PMID: 26594835]
[18]
Du X, Lu H, Rao Y. Modeling and analyses of operational software system with rejuvenation and reconfiguration. Adv Intell Syst Comput 2014; 255: 799-807.
[19]
Smith SA, Farrell JAD, Jones CK, Reich DS, Calabresi PA, van Zijl PCM. Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: feasibility and application. Magn Reson Med 2006; 56(4): 866-75.
[http://dx.doi.org/10.1002/mrm.21035] [PMID: 16964602]
[20]
Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed 2001; 14(2): 57-64.
[http://dx.doi.org/10.1002/nbm.683] [PMID: 11320533]
[21]
Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10(1): 135-44.
[http://dx.doi.org/10.1002/mrm.1910100113] [PMID: 2547135]
[22]
Wolff SD, Chesnick S, Frank JA, Lim KO, Balaban RS. Magnetization transfer contrast: MR imaging of the knee. Radiology 1991; 179(3): 623-8.
[http://dx.doi.org/10.1148/radiology.179.3.2027963] [PMID: 2027963]
[23]
Harrison R, Bronskill MJ, Henkelman RM. Magnetization transfer and T2 relaxation components in tissue. Magn Reson Med 1995; 33(4): 490-6.
[http://dx.doi.org/10.1002/mrm.1910330406] [PMID: 7776879]
[24]
Henkelman RM, Huang X, Xiang Q-S, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29(6): 759-66.
[http://dx.doi.org/10.1002/mrm.1910290607] [PMID: 8350718]
[25]
Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med 1995; 33(4): 475-82.
[http://dx.doi.org/10.1002/mrm.1910330404] [PMID: 7776877]
[26]
Graham SJ, Henkelman RM. Understanding pulsed magnetization transfer. J Magn Reson Imaging 1997; 7(5): 903-12.
[http://dx.doi.org/10.1002/jmri.1880070520] [PMID: 9307918]
[27]
Wu R, Longo DL, Aime S, Sun PZ. Quantitative description of radiofrequency (RF) power-based ratiometric chemical exchange saturation transfer (CEST) pH imaging. NMR Biomed 2015; 28(5): 555-65.
[http://dx.doi.org/10.1002/nbm.3284] [PMID: 25807919]
[28]
Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 2008; 105(7): 2266-70.
[http://dx.doi.org/10.1073/pnas.0707666105] [PMID: 18268341]
[29]
Bytchenkoff D, Pelupessy P, Bodenhausen G. Anisotropic local motions and location of amide protons in proteins. J Am Chem Soc 2005; 127(14): 5180-5.
[http://dx.doi.org/10.1021/ja043575v] [PMID: 15810853]
[30]
Bryant RG. The dynamics of water-protein interactions. Annu Rev Biophys Biomol Struct 1996; 25: 29-53.
[http://dx.doi.org/10.1146/annurev.bb.25.060196.000333] [PMID: 8800463]
[31]
Parker DL, Buswell HR, Goodrich KC, Alexander AL, Keck N, Tsuruda JS. The application of magnetization transfer to MR angiography with reduced total power. Magn Reson Med 1995; 34(2): 283-6.
[http://dx.doi.org/10.1002/mrm.1910340221] [PMID: 7476089]
[32]
Li LZ, Zhou R, Xu HN, et al. Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential. Proc Natl Acad Sci USA 2009; 106(16): 6608-13.
[http://dx.doi.org/10.1073/pnas.0901807106] [PMID: 19366661]
[33]
Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 2003; 50(1): 83-91.
[http://dx.doi.org/10.1002/mrm.10514] [PMID: 12815682]
[34]
Mehta RC, Pike GB, Enzmann DR. Improved detection of enhancing and nonenhancing lesions of multiple sclerosis with magnetization transfer. AJNR Am J Neuroradiol 1995; 16(9): 1771-8.
[PMID: 8693973]
[35]
maniatis V, Pappas J, Roussakis A, Efthimiadou R, Andreou J. Biexponential T2 relaxation time analysis of the brain. Invest Radiol 2002; 37(7): 363-7.
[PMID: 12068156]
[36]
Kumar V, Jagannathan NR, Kumar R, et al. Evaluation of the role of magnetization transfer imaging in prostate: a preliminary study. Magn Reson Imaging 2008; 26(5): 644-9.
[http://dx.doi.org/10.1016/j.mri.2008.01.030] [PMID: 18436407]
[37]
Kumar V, Jagannathan NR, Thulkar S, Kumar R. Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer. Int J Urol 2012; 19(7): 602-13.
[http://dx.doi.org/10.1111/j.1442-2042.2012.02995.x] [PMID: 22435389]
[38]
Arima K, Hayashi N, Yanagawa M, et al. The progress in diagnostic imaging for staging of bladder and prostate cancer: endorectal magnetic resonance imaging and magnetization transfer contrast. Hinyokika Kiyo 1999; 45(8): 553-7.
[PMID: 10500962]
[39]
Padhani AR. Dynamic contrast-enhanced MRI of prostate cancer Dynamic contrast enhanced imaging in oncology. Berlin, London: Springer 2005; pp. 191-213.
[http://dx.doi.org/10.1007/3-540-26420-5_12]
[40]
Cai K, Xu HN, Singh A, Haris M, Reddy R, Li LZ. Characterizing prostate tumor mouse xenografts with CEST and MT-MRI and redox scanning. Adv Exp Med Biol 2013; 765: 39-45.
[http://dx.doi.org/10.1007/978-1-4614-4989-8_6] [PMID: 22879012]
[41]
Chang JH, Lim Joon D, Nguyen BT, et al. MRI scans significantly change target coverage decisions in radical radiotherapy for prostate cancer. J Med Imaging Radiat Oncol 2014; 58(2): 237-43.
[http://dx.doi.org/10.1111/1754-9485.12107] [PMID: 24690247]
[42]
Partin AW, Catalona WJ, Southwick PC, Subong ENP, Gasior GH, Chan DW. Analysis of percent free prostate-specific antigen (PSA) for prostate cancer detection: influence of total PSA, prostate volume, and age. Urology 1996; 48(6A): 55-61.
[http://dx.doi.org/10.1016/S0090-4295(96)00611-5] [PMID: 8973701]
[43]
Tain R, Xu HN, Zhou XJ, Li LZ, Cai K. Magnetization Transfer MRI Contrast May Correlate with Tissue Redox State in Prostate Cancer. Adv Exp Med Biol 2016; 923: 401-6.
[http://dx.doi.org/10.1007/978-3-319-38810-6_52] [PMID: 27526169]
[44]
Lam WW, Oakden W, Murray L, et al. Differentiation of normal and radioresistant prostate cancer xenografts using magnetization transfer-prepared MRI. Sci Rep 2018; 8(1): 10447.
[http://dx.doi.org/10.1038/s41598-018-28731-0] [PMID: 29992999]
[45]
Barrett T, McLean M, Priest AN, et al. Diagnostic evaluation of magnetization transfer and diffusion kurtosis imaging for prostate cancer detection in a re-biopsy population. Eur Radiol 2018; 28(8): 3141-50.
[http://dx.doi.org/10.1007/s00330-017-5169-1] [PMID: 29222677]
[46]
Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 2011; 33(3): 647-54.
[http://dx.doi.org/10.1002/jmri.22480] [PMID: 21563248]
[47]
Hu BS, Conolly SM, Wright GA, Nishimura DG, Macovski A. Pulsed saturation transfer contrast. Magn Reson Med 1992; 26(2): 231-40.
[http://dx.doi.org/10.1002/mrm.1910260205] [PMID: 1325023]
[48]
Mountford C. Magnetic resonance imaging and spectroscopy of the prostate. MAGMA 2008; 21(6): 369-70.
[http://dx.doi.org/10.1007/s10334-008-0153-z] [PMID: 19020913]
[49]
Engelbrecht MR, Huisman HJ, Laheij RJF, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 2003; 229(1): 248-54.
[http://dx.doi.org/10.1148/radiol.2291020200] [PMID: 12944607]
[50]
Craig B. Markwardt1. Non-Linear Least Squares Fitting in IDL with MPFIT. Astronom Data Anal Software Syst XVIII 2009; 411: 251-4.
[51]
Pázman A. Nonlinear least squares - uniqueness versus ambiguity. Series Statistics 1984; 15(3): 323-36.
[http://dx.doi.org/10.1080/02331888408801771]
[52]
Lodi A, Tiziani S, Vodovotz Y. Molecular changes in soy and wheat breads during storage as probed by nuclear magnetic resonance (NMR). J Agric Food Chem 2007; 55(14): 5850-7.
[http://dx.doi.org/10.1021/jf070636a] [PMID: 17579434]
[53]
Azzerboni B, Cardelli E, Della Torre E, Finocchio G. Reversible magnetization and Lorentzian function approximation. J Appl Phys 2003; 93(10): 6635-7.
[http://dx.doi.org/10.1063/1.1557698]
[54]
Kim M, Gillen J, Landman BA, Zhou J, van Zijl PCM. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 2009; 61(6): 1441-50.
[http://dx.doi.org/10.1002/mrm.21873] [PMID: 19358232]
[55]
Smith SA, Bulte JWM, van Zijl PCM. Direct saturation MRI: theory and application to imaging brain iron. Magn Reson Med 2009; 62(2): 384-93.
[http://dx.doi.org/10.1002/mrm.21980] [PMID: 19526497]
[56]
Yuwen Zhou I, Wang E, Cheung JS, et al. Direct saturation-corrected chemical exchange saturation transfer MRI of glioma: Simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts. Magn Reson Med 2017; 78(6): 2307-14.
[http://dx.doi.org/10.1002/mrm.26959] [PMID: 29030880]
[57]
Barker GJ, Tofts PS, Gass A. An interleaved sequence for accurate and reproducible clinical measurement of magnetization transfer ratio. Magn Reson Imaging 1996; 14(4): 403-11.
[http://dx.doi.org/10.1016/0730-725X(96)00019-7] [PMID: 8782178]
[58]
Stanisz GJ, Odrobina EE, Pun J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005; 54(3): 507-12.
[http://dx.doi.org/10.1002/mrm.20605] [PMID: 16086319]
[59]
Dodge Y. The concise encyclopedia of statistics Germany?. London: Springer 2008; pp. 409-10.
[60]
Feusner M, Lukoff B. Testing for statistically significant differences between groups of scan patterns Testing for statistically significant differences between groups of scan patterns. New York: ACM 2008; p. 43.
[http://dx.doi.org/10.1145/1344471.1344481]
[61]
Hauke J, Kossowski T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest Geogr 2011; 30(2): 87-93.
[http://dx.doi.org/10.2478/v10117-011-0021-1]
[62]
Zaiss M, Schmitt B, Bachert P. Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J Magn Reson 2011; 211(2): 149-55.
[http://dx.doi.org/10.1016/j.jmr.2011.05.001] [PMID: 21641247]
[63]
Sarkar S. Lorentzian approximation of the fundamental mode in single mode linear and nonlinear fiber. Opt Eng 2011; 50(3): 35004.
[http://dx.doi.org/10.1117/1.3556715]
[64]
Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol 2009; 44(9): 572-6.
[http://dx.doi.org/10.1097/RLI.0b013e3181b4c10e] [PMID: 19692841]
[65]
Foltz WD, Wu A, Chung P, et al. Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer. J Magn Reson Imaging 2013; 37(4): 909-16.
[http://dx.doi.org/10.1002/jmri.23885] [PMID: 23097411]
[66]
Ropele S, Filippi M, Valsasina P, et al. Assessment and correction of B1-induced errors in magnetization transfer ratio measurements. Magn Reson Med 2005; 53(1): 134-40.
[http://dx.doi.org/10.1002/mrm.20310] [PMID: 15690512]
[67]
Louhichi S, Miura R, Volný D. On the asymptotic normality of the R-estimators of the slope parameters of simple linear regression models with associated errors. Statistics 2017; 51(1): 167-87.
[http://dx.doi.org/10.1080/02331888.2016.1261912]
[68]
McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 1988; 12(12): 897-906.
[http://dx.doi.org/10.1097/00000478-198812000-00001] [PMID: 3202246]
[69]
McNaughton-Collins M, Barry MJ. Managing patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Am J Med 2005; 118(12): 1331-9.
[http://dx.doi.org/10.1016/j.amjmed.2004.12.033] [PMID: 16378773]
[70]
Malling B, Røder MA, Brasso K, Forman J, Taudorf M, Lönn L. Prostate artery embolisation for benign prostatic hyperplasia: a systematic review and meta-analysis. Eur Radiol 2019; 29(1): 287-98.
[http://dx.doi.org/10.1007/s00330-018-5564-2] [PMID: 29948079]
[71]
Kisilevzky N, Faintuch S. MRI assessment of prostatic ischaemia: best predictor of clinical success after prostatic artery embolisation for benign prostatic hyperplasia. Clin Radiol 2016; 71(9): 876-82.
[http://dx.doi.org/10.1016/j.crad.2016.05.003] [PMID: 27296474]
[72]
Hruban RH, Zerhouni EA, Dagher AP, Pessar ML, Hutchins GM. Morphologic basis of MR imaging of benign prostatic hyperplasia. J Comput Assist Tomogr 1987; 11(6): 1035-41.
[http://dx.doi.org/10.1097/00004728-198711000-00022] [PMID: 2445800]
[73]
Challacombe B, Sabharwal T. Prostate artery embolisation for benign prostatic hyperplasia. BMJ 2018; 361: k2537.
[http://dx.doi.org/10.1136/bmj.k2537] [PMID: 29921580]
[74]
Steinberg DM, Sauvageot J, Piantadosi S, Epstein JI. Correlation of prostate needle biopsy and radical prostatectomy Gleason grade in academic and community settings. Am J Surg Pathol 1997; 21(5): 566-76.
[http://dx.doi.org/10.1097/00000478-199705000-00010] [PMID: 9158682]
[75]
Stark JR, Perner S, Stampfer MJ, et al. Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3? J Clin Oncol 2009; 27(21): 3459-64.
[http://dx.doi.org/10.1200/JCO.2008.20.4669] [PMID: 19433685]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy