The Role of microRNAs Identified in the Amniotic Fluid

Author(s): Zacharias Fasoulakis*, Marianna Theodora, Ioannis Tsirkass, Theodora Tsirka, Sofia Kalagasidou, Lola Inagamova, Valentinos Papamanolis, Nikolaos Blontzos, Emmanuel N. Kontomanolis

Journal Name: MicroRNA

Volume 9 , Issue 1 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aim: The study aimed to provide an overall view of current data considering the presence of microRNAs in amniotic fluid.

Methods: The available literature in MEDLINE, regarding the role of the amniotic fluid in pregnancy and fetal development, was searched for related articles including terms such as “microRNA”, “Amniotic fluid”, “Adverse outcome” and others.

Results: The amniotic fluid has an undoubtedly significant part in fetal nutrition, with a protecting and thermoregulatory role alongside. MicroRNAs have proven to be highly expressed during pregnancy in many body liquids including amniotic fluid and are transferred between cells loaded in exosomes, while they are also implicated in many processes during fetal development and could be potential biomarkers for early prediction of adverse outcomes.

Conclusion: Current knowledge reveals that amniotic fluid microRNAs participate in many developmental and physiological processes of pregnancy including proliferation of fibroblasts, fetal development, angiogenesis, cardioprotection, activation of signaling pathways, differentiation and cell motility, while the expression profile of specific microRNAs has a potential prognostic role in the prediction of Down syndrome, congenital hydronephrosis and kidney fibrosis.

Keywords: Adverse outcomes, amniotic fluid, fetal development, microRNAs, pregnancy, exosomes.

[1]
Ribecco-Lutkiewicz M, Ly D, Sodja C, et al. MicroRNA expression in amniotic fluid cells fetal stem cells in regenerative medicine New York. Springer: New York, NY 2016; pp. 215-28.
[2]
Modena AB, Fieni S. Amniotic fluid dynamics. Acta Biomed 2004; 75: 11-3.
[3]
Sherer DM. A review of amniotic fluid dynamics and the enigma of isolated oligohydramnios. Am J Perinatol 2002; 19(5): 253-66.
[4]
Hamza A, Herr D, Solomayer EF, Meyberg-Solomayer G. Polyhydramnios: causes, diagnosis and therapy. Geburtshilfe Frauenheilkd 2013; 73(12): 1241-6.
[5]
Beall MH, Van den Wijngaard JP, Van Gemert MJ, Ross MG. Regulation of amniotic fluid volume. Placenta 2007; 28(8-9): 824-32.
[6]
Ott WJ. Reevaluation of the relationship between amniotic fluid volume and perinatal outcome. Am J Obstet Gynecol 2005; 192(6): 1803-9.
[7]
Morris RK, Meller CH, Tamblyn J, et al. Association and prediction of amniotic fluid measurements for adverse pregnancy outcome: systematic review and meta-analysis. BJOG 2014; 121(6): 686-99.
[8]
Tsangaris GT, Kolialexi A, Karamessinis PM, et al. The normal human amniotic fluid supernatant proteome. In Vivo 2006; 20(4): 479-90.
[9]
Menon R, Jones J, Gunst PR, et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod Sci 2014; 21(6): 791-803.
[10]
Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol 2005; 25(5): 341.
[11]
Beall MH, Van Den Wijngaard JP, Van Gemert MJ, Ross MG. Amniotic fluid water dynamics. Placenta 2007; 28(8-9): 816-23.
[12]
Brace RA. Physiology of amniotic fluid volume regulation. Obstet Gynecol 1997; 40(2): 280-9.
[13]
Garrison A. Screening, diagnosis, and management of gestational diabetes mellitus. Am Fam Physician 2015; 91(7): 460-7.
[14]
Wong FC, Lo YD. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu Rev Med 2016; 67: 419-32.
[15]
Benn PA, Chapman AR. Practical and ethical considerations of noninvasive prenatal diagnosis. JAMA 2009; 301(20): 2154-6.
[16]
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20.
[17]
Johnstone RM. Revisiting the road to the discovery of exosomes. Blood Cells Mol Dis 2005; 34(3): 214-9.
[18]
Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 2011; 9(1): 86.
[19]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[20]
Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 2011; 12(12): 1659-68.
[21]
Kontomanolis EN, Kalagasidou S, Fasoulakis Z. MicroRNAs as potential serum biomarkers for early detection of ectopic pregnancy. Cureus 2018; 10(3)e2344
[22]
Emmanuel KN, Zacharias F, Valentinos P, Sofia K, Georgios D, Nikolaos KJ. The impact of microRNAs in breast cancer angiogenesis and progression. MicroRNA 2019; 8(2): 101-9.
[23]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654.
[24]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinfo 2015; 13(1): 17-24.
[25]
Bullerdiek J, Flor I. Exosome-delivered microRNAs of “chromosome 19 microRNA cluster” as immunomodulators in pregnancy and tumorigenesis. Mol Cytogenet 2012; 5(1): 27.
[26]
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733-41.
[27]
Merkerova M, Vasikova A, Belickova M, Bruchova H. MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 2010; 19(1): 17-26.
[28]
Mouillet JF, Chu T, Sadovsky Y. Expression patterns of placental microRNAs birth defects Res A Clin Mol Teratol 2011; 91(8): 737-43.
[29]
Sun T, Li W, Li T, Ling S. MicroRNA profiling of amniotic fluid: evidence of synergy of microRNAs in fetal development. PLoS One 2016; 11(5)e0153950
[30]
Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. ‎. Nat Biotechnol 2009; 27(5): 459.
[31]
Wang Y, Melton C, Li YP, et al. miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms. Cell Rep 2013; 4(1): 99-109.
[32]
Liu T, Cheng W, Huang Y, Huang Q, Jiang L, Guo L. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res 2012; 318(4): 424-34.
[33]
Trohatou O, Zagoura D, Bitsika V, et al. Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med 2014; 3(1): 54-68.
[34]
Jezierski A, Rennie K, Tremblay R, et al. Human amniotic fluid cells form functional gap junctions with cortical cells Stem Cells Int 2012; 2012
[35]
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4(2): 68-75.
[36]
Xie J, Zhou Y, Gao W, Li Z, Xu Z, Zhou L. The relationship between amniotic fluid miRNAs and congenital obstructive nephropathy. Am J Transl Res 2017; 9(4): 1754.
[37]
Balbi C, Piccoli M, Barile L, et al. First characterization of human amniotic fluid stem cell extracellular vesicles as a powerful paracrine tool endowed with regenerative potential. Stem Cells Transl Med 2017; 6(5): 1340-55.
[38]
Karaca E, Aykut A, Ertürk B, et al. MicroRNA expression profile in the prenatal amniotic fluid samples of pregnant women with down syndrome. Balkan Med J 2018; 35(2): 163-6.
[39]
Lu HE, Yang YC, Chen SM, et al. Modeling neurogenesis impairment in down syndrome with induced pluripotent stem cells from trisomy 21 amniotic fluid cells. Exp Cell Res 2013; 319(4): 498-505.
[40]
Jiang W, Kong L, Ni Q, Lu Y, et al. miR-146a ameliorates liver ischemia/reperfusion injury by suppressing IRAK1 and TRAF6. PLoS One 2014; 9(7)e101530
[41]
Ho J, Pandey P, Schatton T, et al. The pro-apoptotic protein bim is a microRNA target in kidney progenitors. J Am Soc Nephrol 2011; 22(6): 1053-63.
[42]
Xiao GY, Cheng CC, Chiang YS, Cheng WTK, Liu IH, Wu SC. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy. Sci Rep 2016; 6: 23120.
[43]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-205.
[44]
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27(7): 1380-91.
[45]
Liu T, Hu K, Zhao Z, et al. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway. Oncotarget 2015; 6(39): 41638.
[46]
Jiang Q, He M, Guan S, et al. MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway. Tumour Biol 2016; 37(4): 5001-11.
[47]
Qian D, Chen K, Deng H, et al. MicroRNA-374b suppresses proliferation and promotes apoptosis in T-cell lymphoblastic lymphoma by repressing AKT1 and Wnt-16. Clin Cancer Res 2015; 21(21): 4881-9.
[48]
Tang H, Kong Y, Guo J, et al. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Cancer Lett 2013; 340(1): 72-81.
[49]
Wang Z, Humphries B, Xiao H, Jiang Y, Yang C. MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation. J Biol Chem 2014; 289(26): 18373-86.
[50]
Tian Y, Pan Q, Shang Y, et al. MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2) impact on the epithelial-mesenchymal transition in colon cancer cells. J Biol Chem 2014; 289(52): 36101-15.
[51]
Saydam O, Shen Y, Wurdinger T, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-Cadherin and activating the Wnt/-Catenin signaling pathway. Mol Cell Biol 2009; 29(21): 5923-40.
[52]
Abedi N, Mohammadi-Yeganeh S, Koochaki A, Karami F, Paryan M. miR-141 as potential suppressor of β-catenin in breast cancer. Tumour Biol 2015; 36(12): 9895-901.
[53]
Ahmad A, Sarkar SH, Bitar B, et al. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther 2012; 11(10): 2193-201.
[54]
Hsieh IS, Chang KC, Tsai YT, et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 2013; 34(3): 530-8.
[55]
Kang L, Mao J, Tao Y, et al. MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci 2015; 106(6): 700-8.
[56]
Liu Y, Yan W, Zhang W, et al. MiR-218 reverses high invasiveness of glioblastoma cells by targeting the oncogenic transcription factor LEF1. Oncol Rep 2012; 28(3): 1013-21.
[57]
Tang J, Li L, Huang W, et al. MiR-429 increases the metastatic capability of HCC via regulating classic Wnt pathway rather than epithelial-mesenchymal transition. Cancer Lett 2015; 364(1): 33-43.
[58]
Ma F, Zhang J, Zhong L, et al. Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/β-catenin signaling. Gene 2014; 535(2): 191-7.
[59]
Schepers GE, Teasdale RD, Koopman P. Twenty pairs of Sox: extent, homology, and nomenclature of the mouse and human Sox transcription factor gene families. Dev Cell 2002; 3(2): 167-70.
[60]
Wegner M. All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol 2010; 42(3): 381-90.
[61]
Luo G, Luo W, Sun X, et al. MicroRNA-21 promotes migration and invasion of glioma cells via activation of Sox2 and β-catenin signaling. Mol Med Rep 2017; 15(1): 187-93.
[62]
Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y. MicroRNA-126 inhibits sox2 expression and contributes to gastric carcinogenesis. PLoS One 2011; 6(1)e16617
[63]
Vencken SF, Sethupathy P, Blackshields G, et al. An integrated analysis of the SOX2 microRNA response program in human pluripotent and nullipotent stem cell lines. BMC Genomics 2014; 15(1): 711.
[64]
Wang Y, Wang F, Sun T, et al. Entire Mitogen Activated Protein Kinase (MAPK) pathway is present in preimplantation mouse embryos. Dev Dyn 2004; 231(1): 72-87.
[65]
Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 2002; 12(9): 432-8.
[66]
Chattergoon NN, Louey S, Stork PJ, Giraud GD, Thornburg KL. Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes. Am J Physiol Circ Physiol 2014; 307(8): H1216-25.
[67]
Boucherat O, Nadeau V, Berube-Simard F-A, Charron J, Jeannotte L. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development 2015; 142(21): 3801.
[68]
Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9(9): 726-35.
[69]
Huang K, Zhang JX, Han L, et al. MicroRNA roles in beta-catenin pathway. Mol Cancer 2010; 9(1): 252.
[70]
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8(8): 14089.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2020
Published on: 17 February, 2020
Page: [8 - 16]
Pages: 9
DOI: 10.2174/2211536608666190318105140
Price: $65

Article Metrics

PDF: 22
HTML: 4