Establishing Tablet Dissolution Curve Through Determination of Underivatized Alendronate Sodium by Capillary Electrophoresis-UV Detector

Author(s): Tian Luo, Shujuan He, Yueting Deng, Ximin Zhang, Yuming Dong*

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Alendronate sodium is a common clinical osteoporosis drug for postmenopausal women; its determination is very important. However, there is no absorption of chromophores or fluorophores in the molecule, therefore, their direct determination is a challenge. Thus, establishing a common and direct method is very inspiring.

Methods: According to the direct determination of alendronate sodium through the formation of a complex between alendronate sodium and divalent copper ion by capillary electrophoresis with ultraviolet detection, the dissolution profile of alendronate sodium tablet was established. The dissolution curves obtained from high-performance liquid chromatography method involving derivatization with 9- fluorenyl methylchloroformate and capillary electrophoresis with ultraviolet detector were found to be highly similar. Underivatized alendronate sodium can be determined by the capillary electrophoresis method.

Results: Optimum conditions were as follows: background electrolyte including 25 mM CuSO4 at pH 4.59, 5 s injection time, 18 kV applied voltage, and 240 nm detected wavelength. Method validation indicated good linearity (r2>0.9993), precision of migration time with a relative standard deviation <1.5 % for intra-day and <3.6 % for inter-day, precision of peak areas <2.3 % for intra-day and <5.0 % for inter-day, limits of detection (0.01 μg/mL), limit of quantification (0.04 μg/mL) and recovery (90.6 %- 109.0 %).

Conclusion: The proposed capillary electrophoresis method has been proved to be simpler, faster and more convenient to test dissolution profile of alendronate sodium tablet than that of high performance liquid chromatography.

Keywords: Pharmaceutical analysis, capillary electrophoresis, assay, alendronate sodium, dissolution curve, direct determination.

[1]
Alarfaj, N.A.; El-Razeq, S.A.; Al-Qahtani, F.N. Spectrophotometric determination of alendronate sodium in bulk drug and in pharmaceutical formulation. J. Chem., 2011, 23(2), 697.
[2]
Ke, J.; Dou, H.; Zhang, X.; Uhagaze, D.S.; Ding, X.; Dong, Y. Determination of pKa values of alendronate sodium in aqueous solution by piecewise linear regression based on acid-base potentiometric titration. J. Pharm. Anal., 2016, 6(6), 404-409.
[http://dx.doi.org/10.1016/j.jpha.2016.07.001] [PMID: 29404010]
[3]
Gupta, V.K.; Jain, R.; Sharma, S.; Agarwal, S.; Dwivedi, A. Quantitative determination of alendronate in human urine. Int. J. Electrochem. Sci., 2012, 7(1), 569.
[4]
Walash, M.I.; Metwally, M.E.; Eid, M.; El-Shaheny, R.N. Spectrophotometric determination of risedronate in pharmaceutical formulations via complex formation with cu (ii) ions: application to content uniformity testing. Int. J. Biome. Sc. Ijbs, 2008, 4(4), 303.
[5]
Sultana, S.; Talegaonkar, S.; Mittal, G.; Bhatnagar, A.; Ahmad, F.J. Chromatographia, 2010, 72(3), 321.
[http://dx.doi.org/10.1365/s10337-010-1656-0]
[6]
Xie, B.; Liu, A.; Fang, X.; Chen, Y.; Zhong, H.J. Rapid determination of alendronate to quality evaluation of tablets by high resolution 1H NMR spectroscopy. Pharmaceut. Biomed., 2014, 93(5), 73.
[http://dx.doi.org/10.1016/j.jpba.2013.07.006]
[7]
Ban, E.; Park, J.Y.; Kim, H.T.; Kim, C.K. Determination of alendronate in low volumes of plasma by column-switching high-performance liquid chromatography method and its application to pharmacokinetic studies in human plasma. Arch. Pharm. Res., 2011, 34(12), 2079-2086.
[http://dx.doi.org/10.1007/s12272-011-1211-z] [PMID: 22210034]
[8]
Al Deeb, S.K.; Hamdan, I.I.; Al Najjar, S.M. Spectroscopic and HPLC methods for the determination of alendronate in tablets and urine. Talanta, 2004, 64(3), 695-702.
[http://dx.doi.org/10.1016/j.talanta.2004.03.044] [PMID: 18969661]
[9]
Meng, J.; Meng, Q.; Zheng, L. A simple and rapid high-performance liquid chromatography method for determination of alendronate sodium in beagle dog plasma with application to preclinical pharmacokinetic study. Biomed. Chromatogr., 2010, 24(2), 169-173.
[PMID: 19591131]
[10]
Huikko, K.; Kostiainen, R. Development and validation of a capillary zone electrophoretic method for the determination of bisphosphonate and phosphonate impurities in clodronate. J. Chromatogr. A, 2000, 893(2), 411-420.
[http://dx.doi.org/10.1016/S0021-9673(00)00753-6] [PMID: 11073309]
[11]
Bexheti, D.; Anderson, E.I.; Hutt, A.J.; Hanna-Brown, M. Evaluation of multidimensional capillary electrophoretic methodologies for determination of amino bisphosphonate pharmaceuticals. J. Chromatogr. A, 2006, 1130(1), 137-144.
[http://dx.doi.org/10.1016/j.chroma.2006.06.110] [PMID: 16956614]
[12]
Tarcomnicu, I.; Silvestro, L.; Savu, S.R.; Gherase, A.; Dulea, C. J. Chromatogr. A, 2007, 1160(2), 31.
[13]
Sakiyama, N.; Kataoka, H.; Makita, M. J. Chromatogr. A, 1996, 724(3), 279.
[http://dx.doi.org/10.1016/0021-9673(95)00950-7]
[14]
Tak, Y.H.; Somsen, G.W.; de Jong, G.J. Optimization of dynamic pH junction for the sensitive determination of amino acids in urine by capillary electrophoresis. Anal. Bioanal. Chem., 2011, 401(10), 3275-3281.
[http://dx.doi.org/10.1007/s00216-011-5445-x] [PMID: 22012211]
[15]
Thongkhaoon, K. Kottegoda. S.; Pulido, J.S.; Shippy, S.A. Electrophoresis, 2004, 25(17), 2978.
[PMID: 15349938]
[16]
Segura-Carretero, A.; Cortacero-Ramírez, S.; Fernández-Gutiérrez, A. Beer. Heal. Dis. Preven, 2009, 46(7), 977.
[http://dx.doi.org/10.1016/B978-0-12-373891-2.00096-1]
[17]
Su, S.W.; Liao, Y.C.; Whang, C.W. J. Sep. Sci., 2015, 35(6), 665.
[18]
Tzanavaras, P.D.; Zacharis, C.K.; Theodoridis, G.A.; Kalaitzantonakis, E.A.; Voulgaropoulos, A.N. Anal. Chim. Acta, 2005, 547(1), 98.
[http://dx.doi.org/10.1016/j.aca.2005.02.026]
[19]
Xie, Z.; Jiang, Y.; Zhang, D.Q. Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. J. Chromatogr. A, 2006, 1104(1-2), 173-178.
[http://dx.doi.org/10.1016/j.chroma.2005.11.113] [PMID: 16376909]
[20]
Ptácek, P.; Klíma, J.; Macek, J. Determination of alendronate in human urine as 9-fluorenylmethyl derivative by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 767(1), 106.
[PMID: 11863282]
[21]
Sparidans, R.W.; den Hartig, J.; Cremers, S.; Beijnen, J.H.; Vermeij, P. Semi-automatic liquid chromatographic analysis of olpadronate in urine and serum using derivatization with (9-fluorenylmethyl)chloroformate. J. Chromatogr. B Biomed. Sci. Appl., 2000, 738(2), 331-341.
[http://dx.doi.org/10.1016/S0378-4347(99)00532-0] [PMID: 10718651]
[22]
Lovdahl, M.J.; Pietrzyk, D.J. Anion-exchange separation and determination of bisphosphonates and related analytes by post-column indirect fluorescence detection. J. Chromatogr. A, 1999, 850(1-2), 143-152.
[http://dx.doi.org/10.1016/S0021-9673(99)00622-6] [PMID: 10457475]
[23]
Zacharis, C.K.; Tzanavaras, P.D. Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological material: a review of analytical methods. J. Pharm. Biomed. Anal., 2008, 48(3), 483-496.
[http://dx.doi.org/10.1016/j.jpba.2008.05.028] [PMID: 18599247]
[24]
Tsai, E.W.; Chamberlin, S.D.; Forsyth, R.J.; Bell, C.; Ip, D.P.; Brooks, M.A. Determination of bisphosphonate drugs in pharmaceutical dosage formulations by ion chromatography with indirect UV detection. J. Pharm. Biomed. Anal., 1994, 12(8), 983-991.
[http://dx.doi.org/10.1016/0731-7085(94)00047-6] [PMID: 7819384]
[25]
Han, Y.H.; Qin, X.Z. J. Chromatogr. A, 1996, 719(2), 345.
[http://dx.doi.org/10.1016/0021-9673(95)00728-8] [PMID: 8611944]
[26]
Tsai, E.W.; Singh, M.M.; Lu, H.H.; Ip, D.P.; Brooks, M.A. Application of capillary electrophoresis to pharmaceutical analysis: Determination of alendronate in dosage forms. J. Chromatogr. A, 1992, 626(2), 245.
[http://dx.doi.org/10.1016/0021-9673(92)85416-Q]
[27]
Walash, M.I.; Metwally, M.E.; Eid, M.; El-Shaheny, R.N. Spectrophotometric Determination of Risedronate in Pharmaceutical Formulations via Complex Formation with Cu (II) Ions: Application to Content Uniformity Testing. Int. J. Biomed. Sci., 2008, 4(4), 303-309.
[PMID: 23675102]
[28]
Ostović, D.; Stelmach, C.; Hulshizer, B. Formation of a chromophoric complex between alendronate and copper(II) ions. Pharm. Res., 1993, 10(3), 470-472.
[http://dx.doi.org/10.1023/A:1018969112754] [PMID: 8464827]
[29]
Kuljanin, J.; Janković, I.; Nedeljković, J.; Prstojević, D.; Marinković, V. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J. Pharm. Biomed. Anal., 2002, 28(6), 1215-1220.
[http://dx.doi.org/10.1016/S0731-7085(02)00021-3] [PMID: 12049986]
[30]
National Pharmacopoeia Committee.Pharmacopoeia of People's Republic of China [M] Part 2; Beijing Chemical Industry Press, 2015, p. Appendix 181.
[31]
The United States Pharmacopoeia 30th and The National formulary 25th, Rockville, MD, USA, 2007.
[32]
Saranadasa, H.; Krishnamoorthy, K. J. Biopharmaceut. Statis., 2005, 15(2), 265.
[http://dx.doi.org/10.1081/BIP-200049832]
[33]
Kassaye, L.; Genete, G. Evaluation and comparison of in-vitro dissolution profiles for different brands of amoxicillin capsules. Afr. Health Sci., 2013, 13(2), 369-375.
[http://dx.doi.org/10.4314/ahs.v13i2.25] [PMID: 24235938]
[34]
Xie, M.F. Chine. J. Pharm. (Cairo), 2009, 40(4), 308.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 15 June, 2020
Page: [615 - 622]
Pages: 8
DOI: 10.2174/1573412915666190312163137
Price: $65

Article Metrics

PDF: 21
HTML: 2