Follistatin-like 1 in Cardiovascular Disease and Inflammation

Author(s): Marijn M.C. Peters, Timion A. Meijs, Wouter Gathier, Pieter A.M. Doevendans, Joost P.G. Sluijter, Steven A.J. Chamuleau, Klaus Neef*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 16 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Follistatin-like 1 (FSTL1), a secreted glycoprotein, has been shown to participate in regulating developmental processes and to be involved in states of disease and injury. Spatiotemporal regulation and posttranslational modifications contribute to its specific functions and make it an intriguing candidate to study disease mechanisms and potentially develop new therapies. With cardiovascular diseases as the primary cause of death worldwide, clarification of mechanisms underlying cardiac regeneration and revascularization remains essential. Recent findings on FSTL1 in both acute coronary syndrome and heart failure emphasize its potential as a target for cardiac regenerative therapy. With this review, we aim to shed light on the role of FSTL1 specifically in cardiovascular disease and inflammation.

Keywords: Follistatin-Like 1, FSTL1, cardiac regeneration, inflammation, cardiovascular diseases, glycoprotein, cardiomyocytes.

[1]
Shibanuma, M.; Mashimo, J.; Mita, A.; Kuroki, T.; Nose, K. Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-beta 1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur. J. Biochem., 1993, 217(1), 13-19.
[2]
Hambrock, H.O.; Kaufmann, B.; Müller, S.; Hanisch, F.G.; Nose, K.; Paulsson, M.; Maurer, P.; Hartmann, U. Structural characterization of TSC-36/Flik: Analysis of two charge isoforms. J. Biol. Chem., 2004, 279(1), 11727-11735.
[3]
Widera, C.; Horn-Wichmann, R.; Kempf, T.; Bethmann, K.; Fiedler, B.; Sharma, S.; Lichtinghagen, R.; Leitolf, H.; Ivandic, B.; Katus, H.A.; Giannitsis, E.; Wollert, K.C. Circulating concentrations of follistatin-like 1 in healthy individuals and patients with acute coronary syndrome as assessed by an immunoluminometric sandwich assay. Clin. Chem., 2009, 55(1), 1794-1800.
[4]
Tanaka, M.; Ozaki, S.; Osakada, F.; Mori, K.; Okubo, M.; Nakao, K. Cloning of follistatin-related protein as a novel autoantigen in systemic rheumatic diseases. Int. Immunol., 1998, 10(1), 1305-1314.
[5]
Zwijsen, A.; Blockx, H.; Van Arnhem, W.; Willems, J.; Fransen, L.; Devos, K.; Raymackers, J.; Van de Voorde, A.; Slegers, H. Characterization of a rat C6 glioma-secreted follistatin-related protein (FRP). Cloning and sequence of the human homologue. Eur. J. Biochem., 1994, 225(1), 937-946.
[6]
Miyamae, T.; Marinov, A.D.; Sowders, D.; Wilson, D.C.; Devlin, J.; Boudreau, R.; Robbins, P.; Hirsch, R. Follistatin-like protein-1 is a novel proinflammatory molecule. J. Immunol., 2006, 177(7), 4758-4762.
[7]
Oshima, Y.; Ouchi, N.; Sato, K.; Izumiya, Y.; Pimentel, D.R.; Walsh, K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation, 2008, 117(24), 3099-3108.
[8]
Gorgens, S.W.; Raschke, S.; Holven, K.B.; Jensen, J.; Eckardt, K.; Eckel, J. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch. Physiol. Biochem., 2013, 119(2), 75-80.
[9]
Lara-Pezzi, E.; Felkin, L.E.; Birks, E.J.; Sarathchandra, P.; Panse, K.D.; George, R.; Hall, J.L.; Yacoub, M.H.; Rosenthal, N.; Barton, P.J. Expression of follistatin-related genes is altered in heart failure. Endocrinology, 2008, 149(11), 5822-5827.
[10]
Adams, D.; Larman, B.; Oxburgh, L. Developmental expression of mouse Follistatin-like 1 (Fstl1): Dynamic regulation during organogenesis of the kidney and lung. Gene Expr. Patt, 2007, 7(4), 491-500.
[11]
Sumitomo, K.; Kurisaki, A.; Yamakawa, N.; Tsuchida, K.; Shimizu, E.; Sone, S.; Sugino, H. Expression of a TGF-beta1 inducible gene, TSC-36, causes growth inhibition in human lung cancer cell lines. Cancer Lett., 2000, 155(1), 37-46.
[12]
Sylva, M.; Moorman, A.F.; van den Hoff, M.J. Follistatin-like 1 in vertebrate development. Birth Defects Res. C Embryo Today, 2013, 99(1), 61-69.
[13]
Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.P.; Sato, N.; Shah, A.N.; Gheorghiade, M. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol., 2014, 63(1), 1123-1133.
[14]
Taylor, C.J.; Ryan, R.; Nichols, L.; Gale, N.; Hobbs, F.R.; Marshall, T. Survival following a diagnosis of heart failure in primary care. Fam. Pract., 2017, 34(2), 161-168.
[15]
Fisher, S.A.; Zhang, H.; Doree, C.; Mathur, A.; Martin-Rendon, E. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst. Rev., 2015.CD006536
[16]
Van den Akker, F.; Feyen, D.A.; van den Hoogen, P.; van Laake, L.W.; van Eeuwijk, E.C.; Hoefer, I.; Pasterkamp, G.; Chamuleau, S.A.; Grundeman, P.F.; Doevendans, P.A.; Sluijter, J.P. Intramyocardial stem cell injection: Go(ne) with the flow. Eur. Heart J., 2017, 38(3), 184-186.
[17]
Madonna, R.; Van Laake, L.W.; Davidson, S.M.; Engel, F.B.; Hausenloy, D.J.; Lecour, S.; Leor, J.; Perrino, C.; Schulz, R.; Ytrehus, K.; Landmesser, U.; Mummery, C.L.; Janssens, S.; Willerson, J.; Eschenhagen, T.; Ferdinandy, P.; Sluijter, J.P. Position paper of the european society of cardiology working group cellular biology of the heart: Cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J., 2016, 37(23), 1789-1798.
[18]
Fernández-Avilés, F.; Sanz-Ruiz, R.; Climent, A.M.; Badimon, L.; Bolli, R.; Charron, D.; Fuster, V.; Janssens, S.; Kastrup, J.; Kim, H.S.; Lüscher, T.F.; Martin, J.F.; Menasché, P.; Simari, R.D.; Stone, G.W.; Terzic, A.; Willerson, J.T.; Wu, J.C. Global position paper on cardiovascular regenerative medicine. Eur. Heart J., 2017, 38(33), 2532-2546.
[19]
Sluijter, J.P.G.; Davidson, S.M.; Boulanger, C.M.; Buzás, E.I.; de Kleijn, D.P.V.; Engel, F.B.; Giricz, Z.; Hausenloy, D.J.; Kishore, R.; Lecour, S.; Leor, J.; Madonna, R.; Perrino, C.; Prunier, F.; Sahoo, S.; Schiffelers, R.M.; Schulz, R.; Van Laake, L.W.; Ytrehus, K.; Ferdinandy, P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position paper from the working group on cellular biology of the heart of the European society of cardiology. Cardiovasc. Res., 2018, 114(1), 19-34.
[20]
Shimano, M.; Ouchi, N.; Walsh, K. Cardiokines: Recent progress in elucidating the cardiac secretome. Circulation, 2012, 126(1), e327-e332.
[21]
Deddens, J.C.; Vrijsen, K.R.; Girao, H.; Doevendans, P.A.; Sluijter, J.P. Cardiac-released extracellular vesicles can activate endothelial cells. Ann. Transl. Med., 2017, 5(1), 64.
[22]
Doroudgar, S.; Glembotski, C.C. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol. Med., 2011, 17(4), 207-214.
[23]
Jahng, J.W.; Song, E.; Sweeney, G. Crosstalk between the heart and peripheral organs in heart failure. Exp. Mol. Med., 2016, 48(1)e217
[24]
Walsh, K. Adipokines, myokines and cardiovascular disease. Circ. J., 2009, 73(1), 13-18.
[25]
Chiba, A.; Watanabe-Takano, H.; Miyazaki, T.; Mochizuki, N. Cardiomyokines from the heart. Cell. Mol. Life Sci., 2018, 75(1), 1349-1362.
[26]
Mattiotti, A.; Prakash, S.; Barnett, P.; van den Hoff, M.J.B. Follistatin-like 1 in development and human diseases. Cell. Mol. Life Sci., 2018, 75(1), 2339-2354.
[27]
Shimano, M.; Ouchi, N.; Nakamura, K.; van Wijk, B.; Ohashi, K.; Asaumi, Y.; Higuchi, A.; Pimentel, D.R.; Sam, F.; Murohara, T.; van den Hoff, M.J.; Walsh, K. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc. Natl. Acad. Sci. USA, 2011, 108(2), E899-E906.
[28]
Liu, S.; Wang, L.; Wang, W.; Lin, J.; Han, J.; Sun, H.; Guo, H.; Sun, R.; Wu, Q. TSC-36/FRP inhibits vascular smooth muscle cell proliferation and migration. Exp. Mol. Pathol., 2006, 80(1), 132-140.
[29]
Ouchi, N.; Asaumi, Y.; Ohashi, K.; Higuchi, A.; Sono-Romanelli, S.; Oshima, Y.; Walsh, K. DIP2A functions as a FSTL1 receptor. J. Biol. Chem., 2010, 285(1), 7127-7134.
[30]
Ogura, Y.; Ouchi, N.; Ohashi, K.; Shibata, R.; Kataoka, Y.; Kambara, T.; Kito, T.; Maruyama, S.; Yuasa, D.; Matsuo, K.; Enomoto, T.; Uemura, Y.; Miyabe, M.; Ishii, M.; Yamamoto, T.; Shimizu, Y.; Walsh, K.; Murohara, T. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation, 2012, 126(14), 1728-1738.
[31]
Xi, Y.; Gong, D.W.; Tian, Z. FSTL1 as a potential mediator of Exercise-Induced cardioprotection in Post-Myocardial infarction rats. Sci. Rep., 2016, 6(1), 32424.
[32]
Beauloye, C.; Bertrand, L.; Horman, S.; Hue, L. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc. Res., 2011, 90(2), 224-233.
[33]
Xiao, Y.; Zhang, Y.; Chen, Y.; Li, J.; Zhang, Z.; Sun, Y.; Shen, H.; Zhao, Z.; Huang, Z.; Zhang, W.; Chen, W.; Shen, Z. Inhibition of MicroRNA-9-5p Protects against cardiac remodeling following myocardial infarction in mice. Hum. Gene Ther., 2018.
[34]
Wei, K.; Serpooshan, V.; Hurtado, C.; Diez-Cuñado, M.; Zhao, M.; Maruyama, S.; Zhu, W.; Fajardo, G.; Noseda, M.; Nakamura, K.; Tian, X.; Liu, Q.; Wang, A.; Matsuura, Y.; Bushway, P.; Cai, W.; Savchenko, A.; Mahmoudi, M.; Schneider, M.D.; van den Hoff, M.J.; Butte, M.J.; Yang, P.C.; Walsh, K.; Zhou, B.; Bernstein, D.; Mercola, M.; Ruiz-Lozano, P. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 2015, 525(1), 479-485.
[35]
van Rooij, E. Cardiac repair after myocardial infarction. N. Engl. J. Med., 2016, 374(1), 85-87.
[36]
Bergmann, O.; Zdunek, S.; Felker, A.; Salehpour, M.; Alkass, K.; Bernard, S.; Sjostrom, S.L.; Szewczykowska, M.; Jackowska, T.; Dos Remedios, C.; Malm, T.; Andrä, M.; Jashari, R.; Nyengaard, J.R.; Possnert, G.; Jovinge, S.; Druid, H.; Frisén, J. Dynamics of Cell Generation and Turnover in the Human Heart. Cell, 2015, 161(7), 1566-1575.
[37]
Buggisch, M.; Ateghang, B.; Ruhe, C.; Strobel, C.; Lange, S.; Wartenberg, M.; Sauer, H. Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J. Cell Sci., 2007, 120(Pt 5), 885-894.
[38]
D’Uva, G.; Aharonov, A.; Lauriola, M.; Kain, D.; Yahalom-Ronen, Y.; Carvalho, S.; Weisinger, K.; Bassat, E.; Rajchman, D.; Yifa, O.; Lysenko, M.; Konfino, T.; Hegesh, J.; Brenner, O.; Neeman, M.; Yarden, Y.; Leor, J.; Sarig, R.; Harvey, R.P.; Tzahor, E. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol., 2015, 17(5), 627-638.
[39]
Heallen, T.; Zhang, M.; Wang, J.; Bonilla-Claudio, M.; Klysik, E.; Johnson, R.L.; Martin, J.F. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science, 2011, 332(6028), 458-461.
[40]
Widera, C.; Giannitsis, E.; Kempf, T.; Korf-Klingebiel, M.; Fiedler, B.; Sharma, S.; Katus, H.A.; Asaumi, Y.; Shimano, M.; Walsh, K.; Wollert, K.C. Identification of follistatin-like 1 by expression cloning as an activator of the growth differentiation factor 15 gene and a prognostic biomarker in acute coronary syndrome. Clin. Chem., 2012, 58(8), 1233-1241.
[41]
Kretzschmar, K.; Post, Y.; Bannier-Hélaouët, M.; Mattiotti, A.; Drost, J.; Basak, O.; Li, V.S.W.; van den Born, M.; Gunst, Q.D.; Versteeg, D.; Kooijman, L.; van der Elst, S.; van Es, J.H.; van Rooij, E.; van den Hoff, M.J.B.; Clevers, H. Profiling proliferative cells and their progeny in damaged murine hearts. PNAS, 2018, 115(52), E12245-E12254.
[42]
Ouchi, N.; Oshima, Y.; Ohashi, K.; Higuchi, A.; Ikegami, C.; Izumiya, Y.; Walsh, K. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J. Biol. Chem., 2008, 283(47), 32802-32811.
[43]
Miyabe, M.; Ohashi, K.; Shibata, R.; Uemura, Y.; Ogura, Y.; Yuasa, D.; Kambara, T.; Kataoka, Y.; Yamamoto, T.; Matsuo, K.; Joki, Y.; Enomoto, T.; Hayakawa, S.; Hiramatsu-Ito, M.; Ito, M.; Van Den Hoff, M.J.; Walsh, K.; Murohara, T.; Ouchi, N. Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury. Cardiovasc. Res., 2014, 103(1), 111-120.
[44]
Wollert, K.C.; Kempf, T.; Peter, T.; Olofsson, S.; James, S.; Johnston, N.; Lindahl, B.; Horn-Wichmann, R.; Brabant, G.; Simoons, M.L.; Armstrong, P.W.; Califf, R.M.; Drexler, H.; Wallentin, L. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation, 2007, 115(8), 962-971.
[45]
El-Armouche, A.; Ouchi, N.; Tanaka, K.; Doros, G.; Wittköpper, K.; Schulze, T.; Eschenhagen, T.; Walsh, K.; Sam, F. Follistatin-like 1 in chronic systolic heart failure: A marker of left ventricular remodeling. Circ Heart Fail, 2011, 4(5), 621-627.
[46]
Tanaka, K.; María, V-M.; Richard, M.; Wilson, B.S.; Eric, E. Essick, Conor, T.; Fowler, B.S.; Kazuto, N.; Maurice, van den Hoff.; Noriyuki, O.; Flora, S. Follistatin like 1 regulates hypertrophy in heart failure with preserved ejection fraction. JACC Basic Transl. Sci., 2016, 1(4), 207-221.
[47]
Namdari, M.; Negahdari, B.; Cheraghi, M.; Aiyelabegan, H.T.; Eatmadi, A. Cardiac failure detection in 30 minutes: New approach based on gold nanoparticles. J. Microencapsul., 2017, 34(2), 132-139.
[48]
Seki, M.; Powers, J.C.; Maruyama, S.; Zuriaga, M.A.; Wu, C.L.; Kurishima, C.; Kim, L.; Johnson, J.; Poidomani, A.; Wang, T.; Muñoz, E.; Rajan, S.; Park, J.Y.; Walsh, K.; Recchia, F.A. Acute and chronic increases of circulating fstl1 normalize energy substrate metabolism in pacing-induced heart failure. Circ Heart Fail, 2018, 11(11)e004486
[49]
Zhang, W.; Wang, W.; Liu, J.; Li, J.; Wang, J.; Zhang, Y.; Zhang, Z.; Liu, Y.; Jin, Y.; Li, J.; Cao, J.; Wang, C.; Ning, W.; Wang, J. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice. Sci. Rep., 2017, 7(1), 45820.
[50]
Tania, N.P.; Maarsingh, H.T.; Bos, I.S.; Mattiotti, A.; Prakash, S.; Timens, W.; Gunst, Q.D.; Jimenez-Borreguero, L.J.; Schmidt, M.; van den Hoff, M.J.B.; Gosens, R. Endothelial follistatin-like-1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling. Pulm. Circ., 2017, 7(1), 219-231.
[51]
Prakash, S.; Borreguero, L.J.J.; Sylva, M.; Flores Ruiz, L.; Rezai, F.; Gunst, Q.D.; de la Pompa, J.L.; Ruijter, J.M.; van den Hoff, M.J.B. Deletion of Fstl1 (Follistatin-Like 1) From the endocardial/endothelial lineage causes mitral valve disease. Arterioscler. Thromb. Vasc. Biol., 2017, 37(9), e116-e130.
[52]
Ruparelia, N.; Chai, J.T.; Fisher, E.A.; Choudhury, R.P. Inflammatory processes in cardiovascular disease: A route to targeted therapies. Nat. Rev. Cardiol., 2017, 14(3), 314.
[53]
Mullenix, P.S.; Andersen, C.A., and ; Starnes, B.W. Atherosclerosis as inflammation. Ann. Vasc. Surg., 2005, 19(1), 130-138.
[54]
Maekawa, N.; Wada, H.; Kanda, T.; Niwa, T.; Yamada, Y.; Saito, K.; Fujiwara, H.; Sekikawa, K.; Seishima, M. Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. J. Am. Coll. Cardiol., 2002, 39(7), 1229-1235.
[55]
Jiang, B.; Liao, R. The paradoxical role of inflammation in cardiac repair and regeneration. J. Cardiovasc. Transl. Res., 2010, 3(4), 410-416.
[56]
Aurora, A.B.; Porrello, E.R.; Tan, W.; Mahmoud, A.I.; Hill, J.A.; Bassel-Duby, R.; Sadek, H.A.; Olson, E.N. Macrophages are required for neonatal heart regeneration. J. Clin. Invest., 2014, 124(3), 1382-1392.
[57]
Xia, Y.; Lee, K.; Li, N.; Corbett, D.; Mendoza, L.; Frangogiannis, N.G. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem. Cell Biol., 2009, 131(4), 471-481.
[58]
Humbert, M.; Monti, G.; Brenot, F.; Sitbon, O.; Portier, A.; Grangeot-Keros, L.; Duroux, P.; Galanaud, P.; Simonneau, G.; Emilie, D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med., 1995, 151(5), 1628-1631.
[59]
Li, D.; Wang, Y.; Xu, N.; Wei, Q.; Wu, M.; Li, X.; Zheng, P.; Sun, S.; Jin, Y.; Zhang, G.; Liao, R.; Zhang, P. Follistatin-like protein 1 is elevated in systemic autoimmune diseases and correlated with disease activity in patients with rheumatoid arthritis. Arthrit Res. Ther., 2011, 13(1), R17.
[60]
Wilson, D.C.; Marinov, A.D.; Blair, H.C.; Bushnell, D.S.; Thompson, S.D.; Chaly, Y.; Hirsch, R. Follistatin-like protein 1 is a mesenchyme-derived inflammatory protein and may represent a biomarker for systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum., 2010, 62(8), 2510-2516.
[61]
Miller, M.; Beppu, A.; Rosenthal, P.; Pham, A.; Das, S.; Karta, M.; Song, D.J.; Vuong, C.; Doherty, T.; Croft, M.; Zuraw, B.; Zhang, X.; Gao, X.; Aceves, S.; Chouiali, F.; Hamid, Q.; Broide, D.H. Fstl1 promotes asthmatic airway remodeling by inducing oncostatin. M. J. Immunol., 2015, 195(8), 3546-3556.
[62]
Gorelik, M.; Wilson, D.C.; Cloonan, Y.K.; Shulman, S.T.; Hirsch, R. Plasma follistatin-like protein 1 is elevated in Kawasaki disease and may predict coronary artery aneurysm formation. J. Pediatr., 2012, 161(1), 116-119.
[63]
Fan, N.; Sun, H.; Wang, Y.; Wang, Y.; Zhang, L.; Xia, Z.; Peng, L.; Hou, Y.; Shen, W.; Liu, R.; Yin, J.; Peng, Y. Follistatin-like 1: A potential mediator of inflammation in obesity. Mediat Inflamm., 2013, 2013(1)752519
[64]
Clutter, S.D.; Wilson, D.C.; Marinov, A.D.; Hirsch, R. Follistatin-like protein 1 promotes arthritis by up-regulating IFN-gamma. J. Immunol., 2009, 182(1), 234-239.
[65]
Chaly, Y.; Marinov, A.D.; Oxburgh, L.; Bushnell, D.S.; Hirsch, R. FSTL1 promotes arthritis in mice by enhancing inflammatory cytokine/chemokine expression. Arthrit Rheum., 2012, 64(4), 1082-1088.
[66]
Ni, S.; Miao, K.; Zhou, X.; Xu, N.; Li, C.; Zhu, R.; Sun, R.; Wang, Y. The involvement of follistatin-like protein 1 in osteoarthritis by elevating NF-kappaB-mediated inflammatory cytokines and enhancing fibroblast like synoviocyte proliferation. Arthrit Res. Ther., 2015, 17(1), 91.
[67]
Chaly, Y.; Fu, Y.; Marinov, A.; Hostager, B.; Yan, W.; Campfield, B.; Kellum, J.A.; Bushnell, D.; Wang, Y.; Vockley, J.; Hirsch, R. Follistatin-like protein 1 enhances NLRP3 inflammasome-mediated IL-1beta secretion from monocytes and macrophages. Eur. J. Immunol., 2014, 44(5), 1467-1479.
[68]
Kwak, H.B.; Ha, H.; Kim, H.N.; Lee, J.H.; Kim, H.S.; Lee, S.; Kim, H.M.; Kim, J.Y.; Kim, H.H.; Song, Y.W.; Lee, Z.H. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthrit Rheum., 2008, 58(5), 1332-1342.
[69]
Kawabata, D.; Tanaka, M.; Fujii, T.; Umehara, H.; Fujita, Y.; Yoshifuji, H.; Mimori, T.; Ozaki, S. Ameliorative effects of follistatin-related protein/TSC-36/FSTL1 on joint inflammation in a mouse model of arthritis. Arthritis Rheum., 2004, 50(2), 660-668.
[70]
Conway, J.G. Inhibition of cartilage and bone destruction in adjuvant arthritis in the rat by a matrix metalloproteinase inhibitor. J. Exp. Med., 1995, 182(2), 449-457.
[71]
Dooley, S.; Herlitzka, I.; Hanselmann, R.; Ermis, A.; Henn, W.; Remberger, K.; Hopf, T.; Welter, C. Constitutive expression of c-fos and c-jun, overexpression of ets-2, and reduced expression of metastasis suppressor gene nm23-H1 in rheumatoid arthritis. Ann. Rheum. Dis., 1996, 55(5), 298-304.
[72]
Shiozawa, S.; Shimizu, K.; Tanaka, K.; Hino, K. Studies on the contribution of c-fos/AP-1 to arthritic joint destruction. J. Clin. Invest., 1997, 99(6), 1210-1216.
[73]
Tamura, T.; Udagawa, N.; Takahashi, N.; Miyaura, C.; Tanaka, S.; Yamada, Y.; Koishihara, Y.; Ohsugi, Y.; Kumaki, K.; Taga, T. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11924-11948.
[74]
Cheng, K.Y.; Liu, Y.; Han, Y.G.; Li, J.K.; Jia, J.L.; Chen, B.; Yao, Z.X.; Nie, L.; Cheng, L. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide. J. Mol. Histol., 2017, 48(2), 63-72.
[75]
Hayakawa, S.; Ohashi, K.; Shibata, R.; Kataoka, Y.; Miyabe, M.; Enomoto, T.; Joki, Y.; Shimizu, Y.; Kambara, T.; Uemura, Y.; Yuasa, D.; Ogawa, H.; Matsuo, K.; Hiramatsu-Ito, M.; van den Hoff, M.J.; Walsh, K.; Murohara, T.; Ouchi, N. Cardiac myocyte-derived follistatin-like 1 prevents renal injury in a subtotal nephrectomy model. J. Am. Soc. Nephrol., 2015, 26(3), 636-646.
[76]
Murakami, K.; Tanaka, M.; Usui, T.; Kawabata, D.; Shiomi, A.; Iguchi-Hashimoto, M.; Shimizu, M.; Yukawa, N.; Yoshifuji, H.; Nojima, T.; Ohmura, K.; Fujii, T.; Umehara, H.; Mimori, T. Follistatin-related protein/follistatin-like 1 evokes an innate immune response via CD14 and toll-like receptor 4. FEBS Lett., 2012, 586(4), 319-324.
[77]
Guo, J.; Liang, W.; Li, J.; Long, J. Knockdown of FSTL1 inhibits oxLDL-induced inflammation responses through the TLR4/ MyD88/NF-kappaB and MAPK pathway. Biochem. Biophys. Res. Commun., 2016, 478(4), 1528-1533.
[78]
Maruyama, S.; Nakamura, K.; Papanicolaou, K.N.; Sano, S.; Shimizu, I.; Asaumi, Y.; van den Hoff, M.J.; Ouchi, N.; Recchia, F.A.; Walsh, K. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol. Med., 2016, 8(8), 949-966.
[79]
Magadum, A.; Singh, N.; Kurian, A.A.; Sharkar, M.T.K.; Chepurko, E.; Zangi, L. Ablation of a Single N-Glycosylation Site in Human FSTL 1 Induces Cardiomyocyte Proliferation and Cardiac Regeneration. Mol. Ther. Nucleic Acids, 2018, 13(7), 133-143.
[80]
Amado, L.C.; Saliaris, A.P.; Schuleri, K.H.; St John, M.; Xie, J.S.; Cattaneo, S.; Durand, D.J.; Fitton, T.; Kuang, J.Q.; Stewart, G.; Lehrke, S.; Baumgartner, W.W.; Martin, B.J.; Heldman, A.W.; Hare, J.M. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11474-11479.
[81]
Garbayo, E.; Gavira, J.J.; de Yebenes, M.G.; Pelacho, B.; Abizanda, G.; Lana, H.; Blanco-Prieto, M.J.; Prosper, F. Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci. Rep., 2016, 6(1), 25932.
[82]
Ota, T.; Patronik, N.A.; Schwartzman, D.; Riviere, C.N.; Zenati, M.A. Minimally invasive epicardial injections using a novel semiautonomous robotic device. Circulation, 2008, 118(14)(Suppl.), S115-S120.
[83]
van Slochteren, F.J.; van Es, R.; Gyöngyösi, M.; van der Spoel, T.I.G.; Koudstaal, S.; Leiner, T.; Doevendans, P.A.; Chamuleau, S.A.J. Three-dimensional fusion of electromechanical mapping and magnetic resonance imaging for real-time navigation of intramyocardial cell injections in a porcine model of chronic myocardial infarction. Intl. J. Cardiovasc. Imaging, 2016, 32(5), 833-843.
[84]
Pape, A.C.; Bakker, M.H.; Tseng, C.C.; Bastings, M.M.; Koudstaal, S.; Agostoni, P.; Chamuleau, S.A.; Dankers, P.Y. An Injectable and Drug-loaded Supramolecular Hydrogel for Local Catheter Injection into the Pig Heart. J. Vis. Exp., 2015, 100(1)e52450
[85]
Kwekkeboom, R.F.; Lei, Z.; Doevendans, P.A.; Musters, R.J.; Sluijter, J.P. Targeted delivery of miRNA therapeutics for cardiovascular diseases: Opportunities and challenges. Clin. Sci. (Lond.), 2014, 127(6), 351-365.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 16
Year: 2019
Published on: 12 March, 2019
Page: [1379 - 1389]
Pages: 11
DOI: 10.2174/1389557519666190312161551
Price: $65

Article Metrics

PDF: 49
HTML: 8
EPUB: 1