Mechanism of Action of Potent Boron-Containing Antifungals

Author(s): Costa Arvanitis, Trevor Rook, Ian Macreadie*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Boron is unusual to organic chemists, yet boron interacts greatly with organic biochemicals and has considerable bioactivity, especially as an antifungal and insecticide. The bestknown bioactive boron compounds are boric acid, its salt borax, and the closely related boronic acids. A newcomer is tavaborole (trade name Kerydin), recently developed and approved in 2014 for topical treatment of onychomycosis, a fungal infection of nails and the nail bed. It is timely to review the literature and explore the way in which these compounds may work.

Methods: The focus of this review is to examine peer-reviewed literature relating to boric acid, boronic acid and tavaborole, the most bioactive boron-containing compounds, and the evidence for their proposed mechanism of antifungal action. In parallel with the literature, we have examined the fungistatic effects of boric acid on yeast.

Results: All three compounds are reported to inhibit protein synthesis but their mechanism of action may differ. Chemistry studies indicate an interaction of boric acid with ribose and ribose-containing moieties such as NAD. In this review, we discuss the activity of boric acid and use both tavaborole and the boronic acids to exemplify the similar underlying mechanisms used. As there is a push to develop new antimicrobials, we demonstrate that boric acid’s fungistatic effect is alleviated with ribose, NAD and tryptophan.

Conclusion: We speculate that boric acid inhibits yeast growth by disrupting tryptophan synthesis as well as downstream NAD, a rate limiting co-enzyme, essential for cellular function.

Keywords: Borate complex, enzyme, membrane, yeast, nutrition, dietary supplements, ribose, diols.

[1]
Levy, M.; Doisy, E.A. The reaction of borate and sugars ii. The optical activity of sugars in borax solution and the configuration of mutarotatory isomers. J. Biol. Chem., 1929, 84, 749-762.
[2]
Petasis, N.A. Expanding roles for organoboron compounds - Versatile and valuable molecules for synthetic, biological, and medicinal chemistry. Aust. J. Chem., 2007, 60, 795-798.
[http://dx.doi.org/10.1071/CH07360]
[3]
Mosseler, J.A.; Melanson, J.A.; Bowes, E.G.; Lee, G.M.; Vogels, C.M.; Baerlocher, F.J.; Westcott, S.A. Synthesis, characterization and antifungal studies of arylspiroborates derived from 4-nitrocatechol. J. Mol. Struct., 2011, 1002, 24-27.
[http://dx.doi.org/10.1016/j.molstruc.2011.06.034]
[4]
Manov, G.G.; DeLollis, N.J.; Acree, S.F. Ionization constant of boric acid and the pH of certain borax chloride buffer solutions from 0°C to 60°C. J. Res. Natl. Bur. Stand., 1944, 33, 287-305.
[http://dx.doi.org/10.6028/jres.033.013]
[5]
Dordas, C.; Brown, P.H. Permeability of boric acid across lipid bilayers and factors affecting it. J. Membr. Biol., 2000, 175(2), 95-105.
[http://dx.doi.org/10.1007/s002320001058] [PMID: 10811971]
[6]
Rietjens, M.; Steenbergen, P.A. Crosslinking mechanism of boric acid with diols revisited. Eur. J. Inorg. Chem., 2005, 2005, 1162-1174.
[http://dx.doi.org/10.1002/ejic.200400674]
[7]
Kataoka, K.; Miyazaki, H.; Bunya, M.; Okano, T.; Sakurai, Y. Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc., 1998, 120, 12694-12695.
[http://dx.doi.org/10.1021/ja982975d]
[8]
Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules, 2003, 4(5), 1410-1416.
[http://dx.doi.org/10.1021/bm034139o] [PMID: 12959613]
[9]
Sun, X.; James, T.D. Glucose sensing in supramolecular chemistry. Chem. Rev., 2015, 115(15), 8001-8037.
[http://dx.doi.org/10.1021/cr500562m] [PMID: 25974371]
[10]
Duggan, P.J.; Offermann, D.A. Remarkably selective saccharide recognition by solid-supported peptide boronic acids. Tetrahedron, 2009, 65, 109-114.
[http://dx.doi.org/10.1016/j.tet.2008.10.095]
[11]
Panozzo, C.; Nawara, M.; Suski, C.; Kucharczyka, R.; Skoneczny, M.; Bécam, A-M.; Rytka, J.; Herbert, C.J. Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett., 2002, 517(1-3), 97-102.
[http://dx.doi.org/10.1016/S0014-5793(02)02585-1] [PMID: 12062417]
[12]
De Seta, F.; Schmidt, M.; Vu, B.; Essmann, M.; Larsen, B. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J. Antimicrob. Chemother., 2009, 63(2), 325-336.
[http://dx.doi.org/10.1093/jac/dkn486] [PMID: 19059942]
[13]
Benderdour, M.; Van Bui, T.; Hess, K.; Dicko, A.; Belleville, F.; Dousset, B. Effects of boron derivatives on extracellular matrix formation. J. Trace Elem. Med. Biol., 2000, 14(3), 168-173.
[http://dx.doi.org/10.1016/S0946-672X(00)80006-1] [PMID: 11130854]
[14]
Borokhov, O.; Schubert, D. Antimicrobial properties of boron derivatives. New Biocides Development; American Chemical Society, 2007, Vol. 967, pp. 412-435.
[http://dx.doi.org/10.1021/bk-2007-0967.ch020]
[15]
Davis-Mancini, K.; Lopez, I.P.; Hageman, J.H. Benzeneboronic acid selectively inhibits sporulation of Bacillis subtilis. J. Bacteriol 1978, 136(2), 625-630.
[http://dx.doi.org/10.1128/JB.136.2.625-630.1978] [PMID: 30755]
[16]
Savini, V.; Catavitello, C.; Bianco, A.; Balbinot, A.; D’Antonio, F.; D’Antonio, D. Azole resistant Candida glabrata vulvovaginitis treated with boric acid. Eur. J. Obstet. Gynecol. Reprod. Biol., 2009, 147(1), 112.
[http://dx.doi.org/10.1016/j.ejogrb.2009.06.020] [PMID: 19619928]
[17]
Baker, S.J.; Tomsho, J.W.; Benkovic, S.J. Boron-containing inhibitors of synthetases. Chem. Soc. Rev., 2011, 40(8), 4279-4285.
[http://dx.doi.org/10.1039/c0cs00131g] [PMID: 21298158]
[18]
Rock, F.L.; Mao, W.; Yaremchuk, A.; Tukalo, M.; Crépin, T.; Zhou, H.; Zhang, Y.K.; Hernandez, V.; Akama, T.; Baker, S.J.; Plattner, J.J.; Shapiro, L.; Martinis, S.A.; Benkovic, S.J.; Cusack, S.; Alley, M.R. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science, 2007, 316(5832), 1759-1761.
[http://dx.doi.org/10.1126/science.1142189] [PMID: 17588934]
[19]
Kim, D.H.; Hee, S.Q.; Norris, A.J.; Faull, K.F.; Eckhert, C.D. Boric acid inhibits adenosine diphosphate-ribosyl cyclase non-competitively. J. Chromatogr. A, 2006, 1115(1-2), 246-252.
[http://dx.doi.org/10.1016/j.chroma.2006.02.066] [PMID: 16545389]
[20]
Misawa, T.; Kaneshima, H.; Akagi, M. Studies on the metabolism of borate. IV. Effect of borate on glyceraldehydephosphate dehydrogenase. Chem. Pharm. Bull. (Tokyo), 1966, 14(5), 467-473.
[http://dx.doi.org/10.1248/cpb.14.467] [PMID: 5939658]
[21]
Schauder, S.; Shokat, K.; Surette, M.G.; Bassler, B.L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol., 2001, 41(2), 463-476.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02532.x] [PMID: 11489131]
[22]
Miozzari, G.; Niederberger, P.; Hütter, R. Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway. J. Bacteriol., 1978, 134(1), 48-59.
[http://dx.doi.org/10.1128/JB.134.1.48-59.1978] [PMID: 348687]
[23]
Šišak, D.; McCusker, L.B.; Zandomeneghi, G.; Meier, B.H.; Bläser, D.; Boese, R.; Schweizer, W.B.; Gilmour, R.; Dunitz, J.D. The crystal structure of D-ribose--at last! Angew. Chem. Int. Ed. Engl., 2010, 49(26), 4503-4505.
[http://dx.doi.org/10.1002/anie.201001266] [PMID: 20468021]
[24]
Meshram, H.; Rao, N.N.; Thakur, P.B.; Reddy, B.C.; Ramesh, P. Boric acid promoted convenient synthesis of bis (indolyl) methane in aqueous medium. Indian J. Chem., 2013.
[25]
Uluisik, I.; Kaya, A.; Fomenko, D.E.; Karakaya, H.C.; Carlson, B.A.; Gladyshev, V.N.; Koc, A. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One, 2011, 6(11)e27772
[http://dx.doi.org/10.1371/journal.pone.0027772] [PMID: 22114689]
[26]
Goldbach, H.E.; Hartmann, D.; Rötzer, T. Boron is required for the stimulation of the ferricyanide‐induced proton release by auxins in suspension‐cultured cells of Daucus carota and Lycopersicon esculentum. Physiol. Plant., 1990, 80, 114-118.
[http://dx.doi.org/10.1111/j.1399-3054.1990.tb04383.x]
[27]
Touchet, S.; Carreaux, F.; Carboni, B.; Bouillon, A.; Boucher, J.L. Aminoboronic acids and esters: from synthetic challenges to the discovery of unique classes of enzyme inhibitors. Chem. Soc. Rev., 2011, 40(7), 3895-3914.
[http://dx.doi.org/10.1039/c0cs00154f] [PMID: 21431144]
[28]
Mollica, A.; Macedonio, G.; Stefanucci, A.; Costante, R.; Carradori, S.; Cataldi, V.; Giordano, C. Arginine-and lysine-rich peptides: Synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov., 2018, 15, 220-226.
[http://dx.doi.org/10.2174/1570180814666170213161341]
[29]
Stefanucci, A.; Angeli, A.; Dimmito, M.P.; Luisi, G.; Del Prete, S.; Capasso, C.; Donald, W.A.; Mollica, A.; Supuran, C.T. Activation of β- and γ-carbonic anhydrases from pathogenic bacteria with tripeptides. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 945-950.
[http://dx.doi.org/10.1080/14756366.2018.1468530] [PMID: 29747543]
[30]
Hong, H.; Park, S.; Jiménez, R.H.; Rinehart, D.; Tamm, L.K. Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins. J. Am. Chem. Soc., 2007, 129(26), 8320-8327.
[http://dx.doi.org/10.1021/ja068849o] [PMID: 17564441]
[31]
Angeli, A.; Del Prete, S.; Donald, W.A.; Capasso, C.; Supuran, C.T. The γ-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae is potently activated by amines and amino acids. Bioorg. Chem., 2018, 77, 1-5.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.003] [PMID: 29316507]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 16 July, 2020
Page: [552 - 556]
Pages: 5
DOI: 10.2174/1573407215666190308152952
Price: $65

Article Metrics

PDF: 18
HTML: 3