Coumarin Hybrids: Promising Scaffolds in the Treatment of Breast Cancer

Author(s): Rohit Bhatia, Ravindra K. Rawal*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 17 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Breast cancer is the most common invasive cancer in women, and the second main cause of deaths in women, after lung cancer. There is continuous advancement in the development of therapeutic agents against breast cancer in recent years and it is still in progress. Development of hybrid molecules by combining different pharmacophores to obtain significant biological activity is an excellent approach. Coupling of coumarin scaffold with other distinct motifs has led to the design of newer compounds against breast cancer. These distinct pharmacophores possess a diverse mode of action as well as selectivity. It has been reported in the literature that coumarin hybrids possess significant potency against breast cancer by binding to various biological targets which are associated with breast cancer. Due to low toxicity profile on various organ systems, coumarin hybrids have nowadays attracted the keen attention of researchers to explore their therapeutic ability against breast cancer. Reported coumarin hybrids include coupling with isoxazole, thiazole, monastrol, chalcone, triazole, sulphonamide, triphenylethylene, benzimidazole, pyran, imidazole, stilbene, oestrogen, phenylsulphonylfuroxan, etc. In the present review, a description of various coumarin hybrid molecules has been presented along with their structural-activity relationships.

Keywords: Pharmacophore, breast cancer, coumarin hybrids, monastrol, stilbene, sulphonamide.

[1]
"Breast Cancer." MedlinePlus. January 28. 2009.http://www.nlm.nih.gov/medlineplus/breastcancer.html
[2]
"Breast Cancer" Centers for disease control and prevention. July 11. 2008.http://www.cdc.gov/cancer/breast
[3]
"What You Need to Know About Breast Cancer." National cancer Institute.November 1. 2007.http://www.cancer.gov/cancertopics/ wyntk/breast
[4]
Hsiao, Y.H.; Chou, M.C.; Flower, C.; Mason, J.T.; Man, Y.G. Breast cancer heterogeneity: Mechanisms, proofs and implications. J. Cancer, 2010, 1, 6-13.
[5]
Becker, S. A historic and scientific review of breast cancer: The next global health care challenge. Intl. J. Gyne. Obste., 2015, 131, S36-S39.
[7]
Clezardin, P. Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res., 2011, 13, 207-215.
[8]
Ravnan, M.C.; Ravnan, S.L.; Walberg, M.P. Metastatic breast cancer: A review of current and novel pharmacotherapy. Formulary, 2011, 46, 130-146.
[9]
Cardoso, F.; Senkus-Kone, E.; Fallowfield, L.; Costa, A.; Castigilone, M. Locally recurrent or metastatic breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and followup. Ann. Oncol., 2010, 21, 15-19.
[10]
Pagani, O.; Senkus, E.; Wood, W.; Colleoni, M.; Cufer, T.; Kyriakides, S.; Costa, A.; Winer, E.P.; Cardoso, F. International guidelines for management of metastatic breast cancer: Can metastatic breast cancer be cured? J. Natl. Cancer Inst., 2010, 102, 456-463.
[11]
Sashidhara, K.V.; Kumar, M.; Sonkar, R.; Singh, B.S.; Khanna, A.K.; Bhatia, G. Indole based fibrates as potential hypolipidemic and anti-obesity agents. J. Med. Chem., 2012, 55, 2769-2779.
[12]
Chen, S.; Cho, M.; Karlsberg, K.; Zhou, D.Y.; Yuan, C. Biochemical and biological characterization of a novel anti-aromatase coumarin derivative. J. Biol. Chem., 2004, 279, 48071-48078.
[13]
Musa, A.M.; Cooperwood, J.S.; Khan, M.O.F. A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[14]
Moyer, J.D.; Barbacci, E.G.; Iwata, K.K.; Arnold, L.; Boman, B.; Cunningham, A. DiOrio. C.; Doty, J.; Morin, M.J.; Moyer, M.P.I nduction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res., 1997, 57, 4838-4848.
[15]
Lewis, J.S.; Jordan, V.C. Selective estrogen receptor modulators (SERMs): mechanisms of anti-carcinogenesis and drug resistance. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2005, 591, 247-263.
[16]
Harada, K.; Kubo, H.; Tomigahara, K.; Nishioka, K.; Takahashi, J.; Momose, M.; Inoue, S.; Kojima, A. Coumarins as novel 17β-hydroxysteroid dehydrogenase type 3 inhibitors for potential treatment of prostate cancer. Bioorg. Med. Chem. Lett., 2010, 20, 272-275.
[17]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2010, 20, 7205-7211.
[18]
Asadi, P.; Khodarahmi, G.; Jahanian-Najafabadi, A.; Saghaie, L.; Hassanzadeh, F. Biologically active heterocyclic hybrids based on quinazolinone, benzofuran and imidazolium moieties: synthesis, characterization, cytotoxic and antibacterial evaluation. Chem. Biodivers., 2017, 14(4)
[http://dx.doi.org/10.1002/cbdv.201600411]
[19]
Adriano, D.A.; Lívia, B.S.; Donald, J.A. Structure-Based Drug Design Strategies in Medicinal Chemistry. Curr. Top. Med. Chem., 2009, 9(9), 771-790.
[20]
Shaveta, Mishra S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[21]
Ballazhi, L.; Popovski, E.; Jashari, A.; Imeri, F.; Ibrahimi, I.; Mikhova, B.; Mladenovska, K. Potential anti-proliferative effect of isoxazolo- and thiazolo coumarin derivatives on breast cancer mediatedbone and lung metastases. Acta Pharm., 2015, 65, 53-63.
[22]
Sashidhara, K.V.; Avula, S.R.; Sharma, K.; Palnati, K.; Bathula, S.R. Discovery of coumarin-monastrol hybrid as potential anti-breast tumor-specific agent. Eur. J. Med. Chem., 2013, 60, 120-127.
[23]
You, L.; An, R.; Wang, X.; Li, M. Discovery of novel osthole derivatives as potential anti-breast cancer treatment. Bioorg. Med. Chem. Lett., 2010, 20, 7426-7428.
[24]
Patel, K.; Karthikeyan, C.; Solomon, V.R.; Moorthy, H.R.; Lee, H.; Sahu, K.; Deora, G.S.; Trivedi, P. Synthesis of some coumarinyl chalcones and their antiproliferative activity against breast cancer cell lines. Lett. Drug Des. Discov., 2011, 8(4), 308-311.
[25]
Kahveci, B.; Yilmaz, F.; Mentese, E.; Ulker, S. Design, synthesis and biological evaluation of coumarin-triazole hybrid molecules as potential antitumor and Pancreatic lipase agents. Arch. Pharm. Chem. Life Sci., 2017, 350 e1600369
[26]
Reddy, N.S.; Mallireddigari, M.R.; Cosenza, S.; Gumireddy, K.; Bell, S.C.; Reddy, P.K.; Reddy, M.V. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg. Med. Chem. Lett., 2004, 14, 4093-4097.
[27]
Chen, H.; Li, S.; Yao, Y.; Zhou, L.; Zhao, J.; Gu, Y.; Wang, K.; Li, X. Design, synthesis and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with Ct-DNA. Bioorg. Med. Chem. Lett., 2013, 23(17), 4785-4789.
[28]
Paul, K.; Bindal, S.; Luxmi, V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[29]
Chand, K.; Shirazi, A.N.; Yadav, P.; Tiwari, R.K.; Kumari, M.; Parang, K.; Sharma, S.K. Synthesis, anti-proliferative and c-Src kinase inhibitory activities of cinnamoyl- and pyranochromen-2-one derivatives. Can. J. Chem., 2013, 91(8), 741-754.
[30]
Amir, E.; Freedman, O.C.; Seruga, B.; Evans, D.G. Assessing women at high risk of breast cancer: A review of risk assessment models. J. Natl. Cancer Inst., 2010, 102, 680-691.
[31]
Banting, L.; Nicholls, P.J.; Shaw, M.A.; Smith, H.J. Recent developments in aromatase inhibition as a potential treatment for oestrogen-dependent breast cancer. Prog. Med. Chem., 1989, 26, 253-298.
[32]
Stefenachi, A.; Favia, A.D.; Nicolotti, O.; Leonetti, F.; Pisani, L.; Catto, M.; Zimmer, C.; Hartmann, R.W.; Carotti, A. Design, synthesis, and biological evaluation of imidazolyl derivatives of 4,7-disubstituted coumarins as aromatase inhibitors selective over 17-α-hydroxylase/c17-20 lyase. J. Med. Chem., 2011, 54, 1613-1625.
[33]
Xiao, C.F. Tao, Li Y.; Sun, H.Y.; Wei, W.; Chen, Y.; Fu Li, W.; Zou, Y. Design, synthesis and antitumor activity of a series of novel coumarin-stilbenes hybrids, the 3-aryl coumarins. Chin. Chem. Lett., 2010, 21, 1295-1298.
[34]
Hussain, M.K.; Sigh, D.K.; Singh, A.; Asad, M.; Ansari, I.; Shameem, M.; Krishna, S.; Valicherla, G.R.; Makadia, V.; Meena, S.; Deshmukh, A.L.; Gayen, J.R.; Siddiqui, M.I.; Datta, D.; Hajela, K.; Banerjee, D.A. Novel Benzocoumarin-Stilbene Hybrid as a DNA ligase I inhibitorwith in vitro and in vivo anti-tumor activity in breast cancer models. Sci. Rep., 2017, 7, 10715.
[35]
Devraj, R.; Barrett, J.F.; Fernandez, J.A.; Katzenellenbogen, J.A.; Cushman, M. Design, synthesis, and biological evaluation of ellipticine-estradiol conjugates. J. Med. Chem., 1996, 39, 3367-3374.
[36]
Krohn, K.; Kulikowski, K.; Leclercq, G. Diethylstilbestrol-linked cytotoxic agents: synthesis and binding affinity for estrogen receptors. J. Med. Chem., 1989, 32, 1532-1538.
[37]
Musa, M.A.; Khan, M.O.; Cooperwood, J.S. Synthesis and antiproliferative activity of coumarin-estrogenconjugates against breast cancer cell lines. Lett. Drug Des. Discov., 2009, 6(2), 133-138.
[38]
Kamath, P.R.; Sunil, D.; Joseph, M.M.; Salam, A.; Sreelekha, T. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem., 2017, 136, 442-451.
[39]
Liu, M.M.; Chen, X.Y.; Huang, Y.Q.; Feng, P. Guon, Ya-Lan.; Yang, G.; Chen, Y. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J. Med. Chem., 2014, 57(22), 9343-9356.
[40]
Kamath, P.R.; Sunil, D.; Ajees, A.; Pai, K.S.R.; Das, S. Some new coumarin-indole hybrids: Synthesis, anti-cancer and Bcl-2 docking studies. Bioorg. Chem., 2015, 63, 101-109.
[41]
Amin, K.M.; Taha, A.M.; George, R.F.; Mohamed, N.M.; Elsenduny, F.F. Synthesis, anti-tumor activity evaluation and DNA-binding study of coumarin based agents. Arch. Der. Pharmaz, 2018, 351
[http://dx.doi.org/10.1002/ardp.201700199]
[42]
Morsy, S.A.; Farahat, A.A.; Nasr, M.N.A.; Tanatawy, A.S. Synthesis, molecular modelling and anti-cancer activity of new coumarin containing compounds. Saudi Pharm. J., 2017, 25, 873-883.
[43]
Batran, R.Z.; Dawood, D.H.; El-Seginy, S.A.; Ali, M.M.; Maher, T.J.; Gugnani, K.S.; Rondon-Ortiz, A.N. New coumarin derivatives as anti-breast and anti- cervical cancer agents targeting VEGFR-2 and p38α MAPK. Arch. Der. Pharmaz, 2017, 350(9)
[http://dx.doi.org/10.1002/ardp.201700064]
[44]
Kini, S.G.; Choudhary, S.; Mubeen, M. Synthesis, docking and anti-cancer activity of coumarin substituted derivatives of benzothiazole. J. Comput. Methods Mol. Des, 2012, 2, 51-60.
[45]
Goel, R.; Luxami, V.; Paul, K. Synthesis, in vitro anticancer activity and SAR studies of arylated imidazo[1,2-a] pyrazine-coumarin hybrids. RSC Advances, 2015, 5, 37887-37895.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 17
Year: 2019
Published on: 24 September, 2019
Page: [1443 - 1458]
Pages: 16
DOI: 10.2174/1389557519666190308122509
Price: $65

Article Metrics

PDF: 40
HTML: 5