Peripheral Oxidative Stress Markers in Patients with Bipolar Disorder during Euthymia and in Siblings

Author(s): Amparo Tatay-Manteiga, Vicent Balanzá-Martínez, Giovana Bristot, Rafael Tabarés-Seisdedos, Flavio Kapczinski, Omar Cauli*

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 20 , Issue 1 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aims: Oxidative stress is increased during the acute phases of bipolar disorder (BD). Our aim here was to analyze oxidative stress biomarkers in patients with BD during euthymia and their siblings.

Method: A cross-sectional study was performed in euthymic patients with BD-I (n=48), unaffected siblings (n=23) and genetically unrelated healthy controls (n=21). Protein carbonyl content (PCC), total antioxidant capacity (TRAP), lipid peroxidation (TBARS) and uric acid were measured as biomarkers of oxidative stress in blood.

Results: The antioxidant capacity (TRAP) was lower (p<0.001) in patients with BD compared to their siblings and controls, whereas no differences were observed in PCC, TBARS or uric acid. In patients, the concentrations of TRAP and TBARS were positively associated with the dose of valproic acid (p<0.05 and p<0.001, respectively). The concentrations of these biomarkers were not significantly associated with any of socio-demographic and clinical variables.

Conclusion: A selective reduction in antioxidant capacity is present in BD during euthymia state, whereas other markers of oxidative stress are unaltered during euthymia. Siblings did not show any alterations in oxidative stress biomarkers. Oxidative stress might represent a state-dependent marker in BD. The association between treatment with valproic acid and oxidative stress markers in euthymia deserves further studies.

Keywords: Bipolar disorder, oxidative stress, euthymia, anti-oxidants, biomarker, valproic acid, benzodiazepines.

[1]
Soreca, I.; Frank, E.; Kupfer, D.J. The phenomenology of bipolar disorder: what drives the high rate of medical burden and determines long-term prognosis? Depress. Anxiety, 2009, 26(1), 73-82.
[http://dx.doi.org/10.1002/da.20521] [PMID: 18828143]
[2]
Vieta, E.; Popovic, D.; Rosa, A.R.; Solé, B.; Grande, I.; Frey, B.N.; Martinez-Aran, A.; Sanchez-Moreno, J.; Balanzá-Martínez, V.; Tabarés-Seisdedos, R.; Kapczinski, F. The clinical implications of cognitive impairment and allostatic load in bipolar disorder. Eur. Psychiatry, 2013, 28(1), 21-29.
[http://dx.doi.org/10.1016/j.eurpsy.2011.11.007] [PMID: 22534552]
[3]
Post, R.M. Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am. J. Psychiatry, 1992, 149(8), 999-1010.
[http://dx.doi.org/10.1176/ajp.149.8.999] [PMID: 1353322]
[4]
Post, R.M. Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena. Neurosci. Biobehav. Rev., 2007, 31(6), 858-873.
[http://dx.doi.org/10.1016/j.neubiorev.2007.04.003] [PMID: 17555817]
[5]
Kapczinski, F.; Vieta, E.; Andreazza, A.C.; Frey, B.N.; Gomes, F.A.; Tramontina, J.; Kauer-Sant’anna, M.; Grassi-Oliveira, R.; Post, R.M. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci. Biobehav. Rev., 2008, 32(4), 675-692.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.005] [PMID: 18199480]
[6]
McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav., 2003, 43(1), 2-15.
[http://dx.doi.org/10.1016/S0018-506X(02)00024-7] [PMID: 12614627]
[7]
Berk, M.; Hallam, K.T.; McGorry, P.D. The potential utility of a staging model as a course specifier: a bipolar disorder perspective. J. Affect. Disord., 2007, 100(1-3), 279-281.
[http://dx.doi.org/10.1016/j.jad.2007.03.007] [PMID: 17433450]
[8]
Berk, M.; Kapczinski, F.; Andreazza, A.C.; Dean, O.M.; Giorlando, F.; Maes, M.; Yücel, M.; Gama, C.S.; Dodd, S.; Dean, B.; Magalhães, P.V.; Amminger, P.; McGorry, P.; Malhi, G.S. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci. Biobehav. Rev., 2011, 35(3), 804-817.
[http://dx.doi.org/10.1016/j.neubiorev.2010.10.001] [PMID: 20934453]
[9]
Schloesser, R.J.; Huang, J.; Klein, P.S.; Manji, H.K. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology, 2008, 33(1), 110-133.
[http://dx.doi.org/10.1038/sj.npp.1301575] [PMID: 17912251]
[10]
Leboyer, M.; Soreca, I.; Scott, J.; Frye, M.; Henry, C.; Tamouza, R.; Kupfer, D.J. Can bipolar disorder be viewed as a multi-system inflammatory disease? J. Affect. Disord., 2012, 141(1), 1-10.
[http://dx.doi.org/10.1016/j.jad.2011.12.049] [PMID: 22497876]
[11]
Gama, C.S.; Kunz, M.; Magalhães, P.V.; Kapczinski, F. Staging and neuroprogression in bipolar disorder: a systematic review of the literature. Br. J. Psychiatry, 2013, 35(1), 70-74.
[http://dx.doi.org/10.1016/j.rbp.2012.09.001] [PMID: 23567604]
[12]
Goldstein, B.I.; Young, L.T. Toward clinically applicable biomarkers in bipolar disorder: focus on BDNF, inflammatory markers, and endothelial function. Curr. Psychiatry Rep., 2013, 15(12), 425.
[http://dx.doi.org/10.1007/s11920-013-0425-9] [PMID: 24243532]
[13]
Rege, S.; Hodgkinson, S.J. Immune dysregulation and autoimmunity in bipolar disorder: Synthesis of the evidence and its clinical application. Aust. N. Z. J. Psychiatry, 2013, 47(12), 1136-1151.
[http://dx.doi.org/10.1177/0004867413499077] [PMID: 23908311]
[14]
Barbosa, I.G.; Bauer, M.E.; Machado-Vieira, R.; Teixeira, A.L. Cytokines in bipolar disorder: paving the way for neuroprogression. Neural Plast., 2014. 2014360481
[http://dx.doi.org/10.1155/2014/360481] [PMID: 25313338]
[15]
Tatay-Manteiga, A.; Balanzá-Martínez, V.; Bristot, G.; Tabarés-Seisdedos, R.; Kapczinski, F.; Cauli, O. Clinical staging and serum cytokines in bipolar patients during euthymia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 77, 194-201.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.028] [PMID: 28445689]
[16]
Opara, E.C. Oxidative stress. Dis. Mon., 2006, 52(5), 183-198.
[http://dx.doi.org/10.1016/j.disamonth.2006.05.003] [PMID: 16828360]
[17]
Andreazza, A.C.; Kauer-Sant’anna, M.; Frey, B.N.; Bond, D.J.; Kapczinski, F.; Young, L.T.; Yatham, L.N. Oxidative stress markers in bipolar disorder: a meta-analysis. J. Affect. Disord., 2008, 111(2-3), 135-144.
[http://dx.doi.org/10.1016/j.jad.2008.04.013] [PMID: 18539338]
[18]
Mansur, R.B.; Santos, C.M.; Rizzo, L.B.; Cunha, G.R.; Asevedo, E.; Noto, M.N.; Pedrini, M.; Zeni, M.; Cordeiro, Q.; McIntyre, R.S.; Brietzke, E. Inter-relation between brain-derived neurotrophic factor and antioxidant enzymes in bipolar disorder. Bipolar Disord., 2016, 18(5), 433-439.
[http://dx.doi.org/10.1111/bdi.12418] [PMID: 27488494]
[19]
Rosenblat, J.D.; Brietzke, E.; Mansur, R.B.; Maruschak, N.A.; Lee, Y.; McIntyre, R.S. Inflammation as a neurobiological substrate of cognitive impairment in bipolar disorder: Evidence, pathophysiology and treatment implications. J. Affect. Disord., 2015, 188, 149-159.
[http://dx.doi.org/10.1016/j.jad.2015.08.058] [PMID: 26363613]
[20]
Angst, J.; Gamma, A.; Lewinsohn, P. The evolving epidemiology of bipolar disorder. World Psychiatry, 2002, 1(3), 146-148.
[PMID: 16946835]
[21]
Simon, N.M.; Smoller, J.W.; McNamara, K.L.; Maser, R.S.; Zalta, A.K.; Pollack, M.H.; Nierenberg, A.A.; Fava, M.; Wong, K.K. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol. Psychiatry, 2006, 60(5), 432-435.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.004] [PMID: 16581033]
[22]
Mur, M.; Portella, M.J.; Martínez-Arán, A.; Pifarré, J.; Vieta, E. Long-term stability of cognitive impairment in bipolar disorder: a 2-year follow-up study of lithium-treated euthymic bipolar patients. J. Clin. Psychiatry, 2008, 69(5), 712-719.
[http://dx.doi.org/10.4088/JCP.v69n0504] [PMID: 18435565]
[23]
Cacilhas, A.A.; Magalhães, P.V.; Ceresér, K.M.; Walz, J.C.; Weyne, F.; Rosa, A.R.; Vieta, E.; Kapczinski, F. Bipolar disorder and age-related functional impairment. Br. J. Psychiatry, 2009, 31(4), 354-357.
[http://dx.doi.org/10.1590/S1516-44462009000400012] [PMID: 20098826]
[24]
Andreazza, A.C.; Cassini, C.; Rosa, A.R.; Leite, M.C.; de Almeida, L.M.; Nardin, P.; Cunha, A.B.; Ceresér, K.M.; Santin, A.; Gottfried, C.; Salvador, M.; Kapczinski, F.; Gonçalves, C.A. Serum S100B and antioxidant enzymes in bipolar patients. J. Psychiatr. Res., 2007, 41(6), 523-529. [a]
[http://dx.doi.org/10.1016/j.jpsychires.2006.07.013] [PMID: 16956621]
[25]
Andreazza, A.C.; Frey, B.N.; Erdtmann, B.; Salvador, M.; Rombaldi, F.; Santin, A.; Gonçalves, C.A.; Kapczinski, F. DNA damage in bipolar disorder. Psychiatry Res., 2007, 153(1), 27-32. [b]
[http://dx.doi.org/10.1016/j.psychres.2006.03.025] [PMID: 17582509]
[26]
Kunz, M.; Gama, C.S.; Andreazza, A.C.; Salvador, M.; Ceresér, K.M.; Gomes, F.A.; Belmonte-de-Abreu, P.S.; Berk, M.; Kapczinski, F. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(7), 1677-1681.
[http://dx.doi.org/10.1016/j.pnpbp.2008.07.001] [PMID: 18657586]
[27]
Dean, O.M.; van den Buuse, M.; Bush, A.I.; Copolov, D.L.; Ng, F.; Dodd, S.; Berk, M. A role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice. Curr. Med. Chem., 2009, 16(23), 2965-2976.
[http://dx.doi.org/10.2174/092986709788803060] [PMID: 19689277]
[28]
Siwek, M.; Sowa-Kućma, M.; Dudek, D.; Styczeń, K.; Szewczyk, B.; Kotarska, K.; Misztakk, P.; Pilc, A.; Wolak, M.; Nowak, G. Oxidative stress markers in affective disorders. Pharmacol. Rep., 2013, 65(6), 1558-1571.
[http://dx.doi.org/10.1016/S1734-1140(13)71517-2] [PMID: 24553004]
[29]
Zhang, X.Y.; Yao, J.K. Oxidative stress and therapeutic implications in psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 197-199.
[http://dx.doi.org/10.1016/j.pnpbp.2013.03.003] [PMID: 23523744]
[30]
Floyd, R.A.; Carney, J.M. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol., 1992, 32(Suppl.), S22-S27.
[http://dx.doi.org/10.1002/ana.410320706] [PMID: 1510377]
[31]
Dröse, S.; Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol., 2012, 748, 145-169.
[http://dx.doi.org/10.1007/978-1-4614-3573-0_6] [PMID: 22729857]
[32]
Manji, H.; Kato, T.; Di Prospero, N.A.; Ness, S.; Beal, M.F.; Krams, M.; Chen, G. Impaired mitochondrial function in psychiatric disorders. Nat. Rev. Neurosci., 2012, 13(5), 293-307.
[http://dx.doi.org/10.1038/nrn3229] [PMID: 22510887]
[33]
Andreazza, A.C.; Shao, L.; Wang, J.F.; Young, L.T. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch. Gen. Psychiatry, 2010, 67(4), 360-368.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.22] [PMID: 20368511]
[34]
Cataldo, A.M.; McPhie, D.L.; Lange, N.T.; Punzell, S.; Elmiligy, S.; Ye, N.Z.; Froimowitz, M.P.; Hassinger, L.C.; Menesale, E.B.; Sargent, L.W.; Logan, D.J.; Carpenter, A.E.; Cohen, B.M. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am. J. Pathol., 2010, 177(2), 575-585.
[http://dx.doi.org/10.2353/ajpath.2010.081068] [PMID: 20566748]
[35]
Jacoby, A.S.; Vinberg, M.; Poulsen, H.E.; Kessing, L.V.; Munkholm, K. Increased DNA and RNA damage by oxidation in patients with bipolar I disorder. Transl Psychiatry., 2016, 9 6-8. e867
[http://dx.doi.org/10.1038/tp.2016.141]
[36]
Kato, T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr. Res., 2017, 187, 62-66.
[http://dx.doi.org/10.1016/j.schres.2016.10.037] [PMID: 27839913]
[37]
Kazuno, A.A.; Munakata, K.; Mori, K.; Nanko, S.; Kunugi, H.; Nakamura, K.; Mori, N.; Yamada, K.; Yoshikawa, T.; Kato, N.; Kato, T. Mitochondrial DNA haplogroup analysis in patients with bipolar disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(2), 243-247.
[http://dx.doi.org/10.1002/ajmg.b.30804] [PMID: 18546119]
[38]
Machado-Vieira, R.; Andreazza, A.C.; Viale, C.I.; Zanatto, V.; Cereser, V., Jr; da Silva Vargas, R.; Kapczinski, F.; Portela, L.V.; Souza, D.O.; Salvador, M.; Gentil, V. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci. Lett., 2007, 421(1), 33-36.
[http://dx.doi.org/10.1016/j.neulet.2007.05.016] [PMID: 17548157]
[39]
Kapczinski, F.; Dal-Pizzol, F.; Teixeira, A.L.; Magalhaes, P.V. Kauer-Sant’Anna, M.; Klamt, F.; Moreira, J.C.; de Bittencourt Pasquali, M.A.; Fries, G.R.; Quevedo, J.; Gama, C.S.; Post, R. Peripheral biomarkers and illness activity in bipolar disorder. J. Psychiatr. Res., 2011, 45(2), 156-161.
[http://dx.doi.org/10.1016/j.jpsychires.2010.05.015] [PMID: 20541770]
[40]
Gubert, C.; Stertz, L.; Pfaffenseller, B.; Panizzutti, B.S.; Rezin, G.T.; Massuda, R.; Streck, E.L.; Gama, C.S.; Kapczinski, F.; Kunz, M. Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J. Psychiatr. Res., 2013, 47(10), 1396-1402.
[http://dx.doi.org/10.1016/j.jpsychires.2013.06.018] [PMID: 23870796]
[41]
Bengesser, S.A.; Lackner, N.; Birner, A.; Fellendorf, F.T.; Platzer, M.; Mitteregger, A.; Unterweger, R.; Reininghaus, B.; Mangge, H.; Wallner-Liebmann, S.J.; Zelzer, S.; Fuchs, D.; McIntyre, R.S.; Kapfhammer, H.P.; Reininghaus, E.Z. Peripheral markers of oxidative stress and antioxidative defense in euthymia of bipolar disorder--Gender and obesity effects. J. Affect. Disord., 2015, 172, 367-374.
[http://dx.doi.org/10.1016/j.jad.2014.10.014] [PMID: 25451439]
[42]
Vasconcelos-Moreno, M.P.; Fries, G.R.; Gubert, C.; Dos Santos, B.T.M.Q.; Fijtman, A.; Sartori, J.; Ferrari, P.; Grun, L.K.; Parisi, M.M.; Guma, F.T.C.R.; Barbé-Tuana, F.M.; Kapczinski, F.; Rosa, A.R.; Yatham, L.N. Kauer-Sant’Anna, M. Kauer-Sant’Anna, M. Telomere length, oxidative stress, inflammation and BDNF levels in siblings of patients with bipolar disorder: implications for accelerated cellular aging. Int. J. Neuropsychopharmacol., 2017, 20(6), 445-454.
[http://dx.doi.org/10.1093/ijnp/pyx001] [PMID: 28339618]
[43]
Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol., 1990, 186, 464-478.
[http://dx.doi.org/10.1016/0076-6879(90)86141-H] [PMID: 1978225]
[44]
Wayner, D.D.; Burton, G.W.; Ingold, K.U.; Locke, S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett., 1985, 22; 187(1), 33-7.
[http://dx.doi.org/10.1016/0014-5793(85)81208-4]
[45]
Wills, E.D. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J., 1966, 99(3), 667-676.
[PMID: 5964963]
[46]
Takuma, K.; Baba, A.; Matsuda, T. Astrocyte apoptosis: implications for neuroprotection. Prog. Neurobiol., 2004, 72(2), 111-127.
[http://dx.doi.org/10.1016/j.pneurobio.2004.02.001] [PMID: 15063528]
[47]
Akarsu, S.; Bolu, A.; Aydemir, E.; Zincir, S.B.; Kurt, Y.G.; Zincir, S.; Erdem, M.; Uzun, Ö. The Relationship between the Number of Manic Episodes and Oxidative Stress Indicators in Bipolar Disorder. Psychiatry Investig., 2018, 15(5), 514-519.
[http://dx.doi.org/10.30773/pi.2016.12.31] [PMID: 29674601]
[48]
Bortolasci, C.C.; Vargas, H.O.; Souza-Nogueira, A.; Barbosa, D.S.; Moreira, E.G.; Nunes, S.O.; Berk, M.; Dodd, S.; Maes, M. Lowered plasma paraoxonase (PON)1 activity is a trait marker of major depression and PON1 Q192R gene polymorphism-smoking interactions differentially predict the odds of major depression and bipolar disorder. J. Affect. Disord., 2014, 159, 23-30.
[http://dx.doi.org/10.1016/j.jad.2014.02.018] [PMID: 24679385]
[49]
Cingi Yirün, M.; Ünal, K.; Altunsoy Şen, N.; Yirün, O.; Aydemir, Ç.; Göka, E. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index. Noro Psikiyatri Arsivi, 2016, 53(3), 194-198.
[http://dx.doi.org/10.5152/npa.2015.10123] [PMID: 28373794]
[50]
Benzie, I.F. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. Int. J. Food Sci. Nutr., 1996, 47(3), 233-261.
[http://dx.doi.org/10.3109/09637489609012586] [PMID: 8735779]
[51]
Papandreou, C.; Schiza, S.E.; Tzatzarakis, M.N.; Kavalakis, M.; Hatzis, C.M.; Tsatsakis, A.M.; Kafatos, A.G.; Siafakas, N.M.; Tzanakis, N.E. Effect of Mediterranean diet on lipid peroxidation marker TBARS in obese patients with OSAHS under CPAP treatment: a randomised trial. Sleep Breath., 2012, 16(3), 873-879.
[http://dx.doi.org/10.1007/s11325-011-0589-7] [PMID: 21918812]
[52]
Zortea, K.; Fernandes, B.S.; Guimarães, L.R.; Francesconi, L.P.; Lersch, C.; Gama, C.S.; Schroeder, R.; Zanotto-Filho, A.; Moreira, J.C.; Lobato, M.I.; Belmonte-de-Abreu, P.S. Reduced serum non-enzymatic antioxidant defense and increased lipid peroxidation in schizophrenic patients on a hypocaloric diet Neurosci Lett, 2012, 14 512(1), 43-7.
[http://dx.doi.org/10.1016/j.neulet.2012.01.060]
[53]
Chowdhury, M.I.; Hasan, M.; Islam, M.S.; Sarwar, M.S.; Amin, M.N.; Uddin, S.M.N.; Rahaman, M.Z.; Banik, S.; Hussain, M.S.; Yokota, K.; Hasnat, A. Elevated serum MDA and depleted non-enzymatic antioxidants, macro-minerals and trace elements are associated with bipolar disorder. J. Trace Elem. Med. Biol., 2017, 39, 162-168.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.012] [PMID: 27908410]
[54]
Ozcan, M.E.; Gulec, M.; Ozerol, E.; Polat, R.; Akyol, O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int. Clin. Psychopharmacol., 2004, 19(2), 89-95.
[http://dx.doi.org/10.1097/00004850-200403000-00006] [PMID: 15076017]
[55]
Frey, B.N.; Andreazza, A.C.; Kunz, M.; Gomes, F.A.; Quevedo, J.; Salvador, M.; Gonçalves, C.A.; Kapczinski, F. Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(1), 283-285.
[http://dx.doi.org/10.1016/j.pnpbp.2006.06.011] [PMID: 16859818]
[56]
Brown, N.C.; Andreazza, A.C.; Young, L.T. An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res., 2014, 218(1-2), 61-68.
[http://dx.doi.org/10.1016/j.psychres.2014.04.005] [PMID: 24794031]
[57]
Tsai, M.C.; Huang, T.L. Thiobarbituric acid reactive substances (TBARS) is a state biomarker of oxidative stress in bipolar patients in a manic phase. J. Affect. Disord., 2015, 173, 22-26.
[http://dx.doi.org/10.1016/j.jad.2014.10.045] [PMID: 25462391]
[58]
Andreazza, A.C.; Wang, J.F.; Salmasi, F.; Shao, L.; Young, L.T. Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J. Neurochem., 2013, 127(4), 552-561.
[http://dx.doi.org/10.1111/jnc.12316] [PMID: 23692477]
[59]
Muti, M.; Del Grande, C.; Musetti, L.; Marazziti, D.; Turri, M.; Cirronis, M.; Pergentini, I.; Corsi, M.; Dell’Osso, L.; Corsini, G.U. Serum uric acid levels and different phases of illness in bipolar I patients treated with lithium. Psychiatry Res., 2015, 225(3), 604-608.
[http://dx.doi.org/10.1016/j.psychres.2014.11.038] [PMID: 25547850]
[60]
Kuloglu, M.; Ustundag, B.; Atmaca, M.; Canatan, H.; Tezcan, A.E.; Cinkilinc, N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem. Funct., 2002, 20(2), 171-175.
[http://dx.doi.org/10.1002/cbf.940] [PMID: 11979513]
[61]
Versace, A.; Andreazza, A.C.; Young, L.T.; Fournier, J.C.; Almeida, J.R.; Stiffler, R.S.; Lockovich, J.C.; Aslam, H.A.; Pollock, M.H.; Park, H.; Nimgaonkar, V.L.; Kupfer, D.J.; Phillips, M.L. Elevated serum measures of lipid peroxidation and abnormal prefrontal white matter in euthymic bipolar adults: toward peripheral biomarkers of bipolar disorder. Mol. Psychiatry, 2014, 19(2), 200-208.
[http://dx.doi.org/10.1038/mp.2012.188] [PMID: 23358158]
[62]
Krause, K.H.; Berlit, P.; Schmidt-Gayk, H.; Schellenberg, B. Antiepileptic drugs reduce serum uric acid. Epilepsy Res., 1987, 1(5), 306-307.
[http://dx.doi.org/10.1016/0920-1211(87)90007-6] [PMID: 3143553]
[63]
Fichsel, G.; Fichsel, H.; Liappis, N. [Serum uric acid concentration and anticonvulsant therapy in childhood] Klin. Padiatr., 1993, 205(6), 429-431.
[http://dx.doi.org/10.1055/s-2007-1025263] [PMID: 8309207]
[64]
Dietrich-Muszalska, A.; Kolińska-Łukaszuk, J. Comparative effects of aripiprazole and selected antipsychotic drugs on lipid peroxidation in plasma. Psychiatry Clin. Neurosci., 2018, 72(5), 329-336.
[http://dx.doi.org/10.1111/pcn.12631] [PMID: 29280533]
[65]
Balanzá-Martínez, V.; Selva, G.; Martínez-Arán, A.; Prickaerts, J.; Salazar, J.; González-Pinto, A.; Vieta, E.; Tabarés-Seisdedos, R. Neurocognition in bipolar disorders--a closer look at comorbidities and medications. Eur. J. Pharmacol., 2010, 626(1), 87-96.
[http://dx.doi.org/10.1016/j.ejphar.2009.10.018] [PMID: 19836378]
[66]
Antypa, N.; Serretti, A. Family history of a mood disorder indicates a more severe bipolar disorder. J. Affect. Disord., 2014, 156, 178-186.
[http://dx.doi.org/10.1016/j.jad.2013.12.013] [PMID: 24439249]
[67]
Fusar-Poli, P.; Howes, O.; Bechdolf, A.; Borgwardt, S. Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies. J. Psychiatry Neurosci., 2012, 37(3), 170-184.
[http://dx.doi.org/10.1503/jpn.110061] [PMID: 22297067]
[68]
Arts, B.; Jabben, N.; Krabbendam, L.; van Os, J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol. Med., 2008, 38(6), 771-785.
[http://dx.doi.org/10.1017/S0033291707001675] [PMID: 17922938]
[69]
Ellenbogen, M.A.; Santo, J.B.; Linnen, A.M.; Walker, C.D.; Hodgins, S. High cortisol levels in the offspring of parents with bipolar disorder during two weeks of daily sampling. Bipolar Disord., 2010, 12(1), 77-86.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00770.x] [PMID: 20148869]
[70]
Fries, G.; Vasconcelos-Moreno, M.; Gubert, C.; dos Santos, B.; Sartori, J.; Eisele, B.; Ferrari, P.; Fijtman, A.; Rüegg, J.; Gassen, N.; Kapczinski, F.; Rein, T. Kauer-Sant’Anna, M. Hypothalamic-Pituitary-Adrenal Axis Dysfunction and Illness Progression in Bipolar Disorder. Int. J. Neuropsychopharmacol., 2014, 1-10.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Page: [77 - 86]
Pages: 10
DOI: 10.2174/1871530319666190307165355
Price: $65

Article Metrics

PDF: 32
HTML: 3