Mineralocorticoid Receptor Antagonists in Essential and Resistant Hypertension

Author(s): Konstantinos P. Imprialos, Sofia Bouloukou, Georgios Kerpiniotis, Alexandra Katsimardou, Dimitrios Patoulias, Constantinos Bakogiannis, Charles Faselis*

Journal Name: Current Pharmaceutical Design

Volume 24 , Issue 46 , 2018

Become EABM
Become Reviewer

Abstract:

Background: Mineralocorticoid receptor antagonists are a second-line class of antihypertensive drugs, which have been accounted for as the optimal add-on therapy in the triple algorithm for the management of resistant hypertension.

Objectives: To assess the effects of mineralocorticoid receptor antagonists in the treatment of patients with essential hypertension and resistant hypertension.

Method: We conducted a meticulous review of the literature and comprehensive identification of the clinical trials assessing the efficacy of mineralocorticoid receptor antagonists in individuals with primary and resistant hypertension.

Results: MRAs have been thoroughly tested in several clinical studies in relevance to blood pressure lowering effects, over the last six decades. Accumulating data observed that MRAs resulted in a significant reduction in blood pressure level in patients with resistant hypertension. In addition, spironolactone was found to beneficially affect the management of resistant hypertension.

Conclusion: Mineralocorticoid receptor antagonists exert a significant antihypertensive effect. Future welldesigned randomized controlled studies are greatly needed to address crucial clinical aspects in the field.

Keywords: Mineralocorticoid receptor antagonists, essential hypertension, resistant hypertension, spironolactone, eplerenone, antihypertensive drugs.

[1]
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017; 389(10064): 37-55.
[2]
Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013; 310(9): 959-68.
[3]
Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360(9349): 1903-13.
[4]
Lip GYH, Coca A, Kahan T, et al. Hypertension and cardiac arrhythmias: executive summary of a consensus document from the European Heart Rhythm Association (EHRA) and ESC Council on Hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE). Eur Heart J Cardiovasc Pharmacother 2017; 3(4): 235-50.
[5]
Viigimaa M, Doumas M, Vlachopoulos C, et al. Hypertension and sexual dysfunction: time to act. J Hypertens 2011; 29(2): 403-7.
[6]
Imprialos KP, Stavropoulos K, Doumas M, Tziomalos K, Karagiannis A, Athyros VG. Sexual dysfunction, cardiovascular risk and effects of pharmacotherapy. Curr Vasc Pharmacol 2018; 16(2): 130-42.
[7]
Gottesman RF, Albert MS, Alonso A, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol 2017; 74(10): 1246-54.
[8]
Vishram JK, Borglykke A, Andreasen AH, et al. Impact of age on the importance of systolic and diastolic blood pressures for stroke risk: the MOnica, Risk, Genetics, Archiving, and Monograph (MORGAM) Project. Hypertension 2012; 60(5): 1117-23.
[9]
Brown DW, Giles WH, Greenlund KJ. Blood pressure parameters and risk of fatal stroke, NHANES II mortality study. Am J Hypertens 2007; 20(3): 338-41.
[10]
Rovio SP, Pahkala K, Nevalainen J, et al. Cardiovascular risk factors from childhood and midlife cognitive performance: the Young Finns study. J Am Coll Cardiol 2017; 69(18): 2279-89.
[11]
Lawes CM, Rodgers A, Bennett DA, et al. Blood pressure and cardiovascular disease in the Asia Pacific region. J Hypertens 2003; 21(4): 707-16.
[12]
Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018; 71(6): e13-e115.
[13]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36(10): 1953-2041.
[14]
Forouzanfar MH, Liu P, Roth GA, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115mmHg, 1990-2015. JAMA 2017; 317(2): 165-82.
[15]
Papademetriou V, Doumas M. Selecting optimum antihypertensive therapy. Hypertens Cardiovasc Dis 2016; pp. 217-48.
[16]
Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence. 12. Effects in individuals with high-normal and normal blood pressure: overview and meta-analyses of randomized trials. J Hypertens 2017; 35(11): 2150-60.
[17]
Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387(10022): 957-67.
[18]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18(8): 891-975.
[19]
Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341(10): 709-17.
[20]
Faselis C, Boutari C, Doumas M, Imprialos K, Stavropoulos K, Kokkinos P. Novel drugs for hypertension and heart failure: struggling for a place under the sun. Curr Pharm Des 2017; 23(10): 1540-50.
[21]
Bayoumi E, Lam PH, Dooley DJ, et al. Spironolactone and outcomes in older patients with heart failure and reduced ejection fraction. Am J Med 2019; 132(1): 71-80.
[22]
Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011; 364(1): 11-21.
[23]
Ando K, Ohtsu H, Uchida S, Kaname S, Arakawa Y, Fujita T. Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2014; 2(12): 944-53.
[24]
Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348(14): 1309-21.
[25]
Funder JW. Aldosterone and mineralocorticoid receptors-physiology and pathophysiology. Int J Mol Sci 2017; 18(5): 1032.
[26]
Kassahn KS, Ragan MA, Funder JW. Mineralocorticoid receptors: evolutionary and pathophysiological considerations. Endocrinology 2011; 152(5): 1883-90.
[27]
Ahmed AH, Gordon RD, Ward G, Wolley M, Kogovsek C, Stowasser M. Should aldosterone suppression tests be conducted during a particular phase of the menstrual cycle, and, if so, which phase? Results of a preliminary study. Clin Endocrinol (Oxf) 2015; 83(3): 303-7.
[28]
Fjeld CC, Birdsong WT, Goodman RH. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100(16): 9202-7.
[29]
Stavropoulos K, Sotiriadis A, Patoulias D, et al. Pseudohyperaldosteronism due to mumijo consumption during pregnancy: a licorice-like syndrome. Gynecol Endocrinol 2018; 34(12): 1019-21.
[30]
Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid receptor and cardiovascular disease. Am J Hypertens 2018; 31(11): 1165-74.
[31]
Hollenberg NK. Aldosterone in the development and progression of renal injury. Kidney Int 2004; 66(1): 1-9.
[32]
Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res 2015; 116(6): 1074-95.
[33]
Jaisser F, Farman N. Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev 2016; 68(1): 49-75.
[34]
Güder G, Bauersachs J, Frantz S, et al. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation 2007; 115(13): 1754-61.
[35]
Cranston WI, Juel-Jensen BE. The effects of spironolactone and chlorthalidone on arterial pressure. Lancet 1962; 1(7240): 1161-4.
[36]
Food and Drug Administration and the Department of Health and Human Services. https://www.fda.gov/downloads/Drugs/.../ Guidances/ucm075072.pdf
[37]
Wolf RL, Mendlowitz M, Roboz J, Styan GP, Kornfeld P, Weigl A. Treatment of hypertension with spironolactone. Double-blind study. JAMA 1966; 198(11): 1143-9.
[38]
Winer BM, Lubbe WF, Colton T. Antihypertensive actions of diuretics. Comparative study of an aldosterone antagonist and a thiazide, alone and together. JAMA 1968; 204(9): 775-9.
[39]
George CF, Breckenridge AM, Dollery CT. Comparison of the potassium- retaining effects of amiloride and spironolactone in hypertensive patients with thiazide-induced hypokalaemia. Lancet 1973; 2(7841): 1288-91.
[40]
Scherstén B, Thulin T, Kuylenstierna J, et al. Clinical and biochemical effects of spironolactone administered once daily in primary hypertension. Multicenter Sweden study. Hypertension 1980; 2(5): 672-9.
[41]
Drayer JI, Kloppenborg PW, Festen J, van’t Laar A, Benraad TJ. Intrapatient comparison of treatment with chlorthalidone, spironolactone and propranolol in normoreninemic essential hypertension. Am J Cardiol 1975; 36(5): 716-21.
[42]
Bell GM, Fananapazir L, Anderton JL. Comparison of single and divided daily dose spironolactone in the control of hypertension. Br J Clin Pharmacol 1981; 12(4): 585-8.
[43]
Douglas JG, Hollifield JW, Liddle GW. Treatment of low-renin essential hypertension. Comparison of spironolactone and a hydrochlorothiazide-triamterene combination. JAMA 1974; 227(5): 518-21.
[44]
Kreeft JH, Larochelle P, Ogilvie RI. Comparison of chlorthalidone and spironolactone in low--renin essential hypertension. Can Med Assoc J 1983; 128(1): 31-4.
[45]
Hood SJ, Taylor KP, Ashby MJ, Brown MJ. The spironolactone, amiloride, losartan, and thiazide (SALT) double-blind crossover trial in patients with low-renin hypertension and elevated aldosterone-renin ratio. Circulation 2007; 116(3): 268-75.
[46]
Mottram PM, Haluska B, Leano R, Cowley D, Stowasser M, Marwick TH. Effect of aldosterone antagonism on myocardial dysfunction in hypertensive patients with diastolic heart failure. Circulation 2004; 110(5): 558-65.
[47]
Costa MB, Andrade Ezequiel DG, Morais Lovis JC, Oliveira MM, Baumgratz de Paula R. Aldosterone antagonist decreases blood pressure and improves metabolic parameters in obese patients with the metabolic syndrome. J Clin Hypertens (Greenwich) 2010; 12(9): 753-5.
[48]
Bomback AS, Muskala P, Bald E, Chwatko G, Nowicki M. Low-dose spironolactone, added to long-term ACE inhibitor therapy, reduces blood pressure and urinary albumin excretion in obese patients with hypertensive target organ damage. Clin Nephrol 2009; 72(6): 449-56.
[49]
Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol 2009; 20(12): 2641-50.
[50]
Grandi AM, Imperiale D, Santillo R, et al. Aldosterone antagonist improves diastolic function in essential hypertension. Hypertension 2002; 40(5): 647-52.
[51]
Ubaid-Girioli S, Adriana de Souza L, Yugar-Toledo JC, et al. Aldosterone excess or escape: Treating resistant hypertension. J Clin Hypertens (Greenwich) 2009; 11(5): 245-52.
[52]
Raheja P, Price A, Wang Z, et al. Spironolactone prevents chlorthalidone-induced sympathetic activation and insulin resistance in hypertensive patients. Hypertension 2012; 60(2): 319-25.
[53]
Garthwaite SM, McMahon EG. The evolution of aldosterone antagonists. Mol Cell Endocrinol 2004; 217(1-2): 27-31.
[54]
Colussi G, Catena C, Sechi LA. Spironolactone, eplerenone and the new aldosterone blockers in endocrine and primary hypertension. J Hypertens 2013; 31(1): 3-15.
[55]
Kolkhof P, Borden SA. Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol Cell Endocrinol 2012; 350(2): 310-7.
[56]
Kolkhof P, Nowack C, Eitner F. Nonsteroidal antagonists of the mineralocorticoid receptor. Curr Opin Nephrol Hypertens 2015; 24(5): 417-24.
[57]
Ruilope LM, Tamargo J. Renin-angiotensin system blockade: Finerenone. Nephrol Ther 2017; 13(Suppl. 1): S47-53.
[58]
Mulder P. Finerenone improves diastolic function in a preclinical model of type 2 diabetes mellitus. Eur Heart J 2016; 37: 829.
[59]
Lentini S, Heinig R, Kimmeskamp-Kirschbaum N, Wensing G. Pharmacokinetics, safety and tolerability of the novel, selective mineralocorticoid receptor antagonist finerenone - results from first-in-man and relative bioavailability studies. Fundam Clin Pharmacol 2016; 30(2): 172-84.
[60]
Heinig R, Kimmeskamp-Kirschbaum N, Halabi A, Lentini S. Pharmacokinetics of the novel Non-steroidal mineralocorticoid receptor antagonist finerenone (BAY 94-8862) in individuals with renal impairment. Clin Pharmacol Drug Dev 2016; 5(6): 488-501.
[61]
Pitt B, Kober L, Ponikowski P, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J 2013; 34(31): 2453-63.
[62]
Filippatos G, Anker SD, Böhm M, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J 2016; 37(27): 2105-14.
[63]
Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 2015; 314(9): 884-94.
[64]
Roush GC, Ernst ME, Kostis JB, et al. Dose doubling, relative potency, and dose equivalence of potassium-sparing diuretics affecting blood pressure and serum potassium: systematic review and meta-analyses. J Hypertens 2016; 34: 11-9.
[65]
Beddhu S, Chertow GM, Cheung AK, et al. Influence of baseline diastolic blood pressure on effects of intensive compared with standard blood pressure control. Circulation 2018; 137(2): 134-43.
[66]
Sim JJ, Shi J, Kovesdy CP, Kalantar-Zadeh K, Jacobsen SJ. Impact of achieved blood pressures on mortality risk and end-stage renal disease among a large, diverse hypertension population. J Am Coll Cardiol 2014; 64(6): 588-97.
[67]
Vidal-Petiot E, Ford I, Greenlaw N, et al. Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet 2016; 388(10056): 2142-52.
[68]
Bangalore S, Messerli FH, Wun CC, et al. J-curve revisited: An analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial. Eur Heart J 2010; 31(23): 2897-908.
[69]
Stavropoulos K, Imprialos KP, Grassos C. Letter by Stavropoulos et al. Regarding Article, “Influence of Baseline Diastolic Blood Pressure on Effects of Intensive Compared With Standard Blood Pressure Control. Circulation 2018; 137(24): 2664-5.
[70]
Bazoukis G, Thomopoulos C, Tse G, Tsioufis C. Is there a blood pressure lowering effect of MRAs in heart failure? An overview and meta-analysis. Heart Fail Rev 2018; 23(4): 547-53.
[71]
Pelliccia F, Patti G, Rosano G, Greco C, Gaudio C. Efficacy and safety of eplerenone in the management of mild to moderate arterial hypertension: systematic review and meta-analysis. Int J Cardiol 2014; 177(1): 219-28.
[72]
Bazoukis G, Thomopoulos C, Tsioufis C. Effect of mineralocorticoid antagonists on blood pressure lowering: overview and meta-analysis of randomized controlled trials in hypertension. J Hypertens 2018; 36(5): 987-94.
[73]
Batterink J, Stabler SN, Tejani AM, Fowkes CT. Spironolactone for hypertension. Cochrane Database Syst Rev 2010; (8): CD008169.
[74]
Tam TS, Wu MH, Masson SC, et al. Eplerenone for hypertension. Cochrane Database Syst Rev 2017; 2: CD008996.
[75]
Egan BM, Zhao Y, Axon RN, Brzezinski WA, Ferdinand KC. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation 2011; 124(9): 1046-58.
[76]
Cai A, Calhoun DA. Resistant hypertension: an update of experimental and clinical findings. Hypertension 2017; 70(1): 5-9.
[77]
Sarafidis PA, Georgianos P, Bakris GL. Resistant hypertension--its identification and epidemiology. Nat Rev Nephrol 2013; 9(1): 51-8.
[78]
Brandani L. Resistant hypertension: a therapeutic challenge. J Clin Hypertens (Greenwich) 2018; 20(1): 76-8.
[79]
Sarganas G, Neuhauser HK. Untreated, uncontrolled, and apparent resistant hypertension: results of the German Health Examination survey 2008-2011. J Clin Hypertens (Greenwich) 2016; 18(11): 1146-54.
[80]
Turner JR, Lee J. American Society of Hypertension Scientific Statements Addressing Resistant Hypertension. J Clin Hypertens (Greenwich) 2016; 18(3): 175-8.
[81]
Bruno RM, Di Giulio A, Bernini G, et al. Device-based therapies for resistant hypertension. Curr Pharm Des 2013; 19: 2401-8.
[82]
Weber MA, Kirtane A, Mauri L, Townsend RR, Kandzari DE, Leon MB. Renal denervation for the treatment of hypertension: Making a new start, getting it right. Catheter Cardiovasc Interv 2015; 86(5): 855-63.
[83]
Papademetriou V, Doumas M, Faselis C, et al. Carotid baroreceptor stimulation for the treatment of resistant hypertension. Int J Hypertens 2011; 2011: 964394.
[84]
Tsioufis C, Dimitriadis K, Kordalis A, et al. Renal denervation therapy: can it contribute to better blood pressure control in hypertension? Curr Vasc Pharmacol 2017; 16(1): 66-9.
[85]
Manolis AJ, Kallistratos MS, Doumas M, et al. Recent advances in the management of resistant hypertension. F1000Prime Rep 2015. 7: 03
[86]
Chen S, Kiuchi MG, Acou WJ, et al. Feasibility of catheter ablation renal denervation in “mild” resistant hypertension. J Clin Hypertens (Greenwich) 2017; 19(4): 361-8.
[87]
Doumas M, Boutari C, Tsioufis C, Dimitriadis K, Triantafyllou A, Douma S. Clinical value of measuring the renin/aldosterone levels: optimizing the management of uncontrolled/resistant hypertension. Curr Vasc Pharmacol 2017; 16(1): 10-4.
[88]
Turner JR, Lee J. American Society of Hypertension Scientific Statements Addressing Resistant Hypertension. J Clin Hypertens (Greenwich) 2016; 18(3): 175-8.
[89]
Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373(9671): 1275-81.
[90]
Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376(9756): 1903-9.
[91]
Papademetriou V, Rashidi AA, Tsioufis C, Doumas M. Renal nerve ablation for resistant hypertension: how did we get here, present status, and future directions. Circulation 2014; 129(13): 1440-51.
[92]
Petidis K, Anyfanti P, Doumas M. Renal sympathetic denervation: renal function concerns. Hypertension 2011; 58(4): e19.
[93]
Papademetriou V, Tsioufis C, Doumas M. Renal denervation and Symplicity HTN-3: “Dubium sapientiae initium” (doubt is the beginning of wisdom). Circ Res 2014; 115(2): 211-4.
[94]
Raman VK, Tsioufis C, Doumas M, Papademetriou V. Renal denervation therapy for drug resistant hypertension: does it still work? Curr Treat Options Cardiovasc Med 2017; 19(5): 39.
[95]
Tsioufis C, Dimitriadis K, Kordalis A, et al. Renal denervation therapy: can it contribute to better blood pressure control in hypertension? Curr Vasc Pharmacol 2017; 16(1): 66-9.
[96]
Weber MA, Kirtane A, Mauri L, Townsend RR, Kandzari DE, Leon MB. Renal denervation for the treatment of hypertension: making a new start, getting it right. J Clin Hypertens (Greenwich) 2015; 17(10): 743-50.
[97]
Afsar B, Sag AA, Kanbay M. Should we take renal denervation with a grain of salt? J Clin Hypertens (Greenwich) 2017; 19(11): 1134-6.
[98]
Doumas M, Lazaridis A, Papademetriou V. Renal nerve ablation for resistant hypertension: the dust has not yet settled. J Clin Hypertens (Greenwich) 2014; 16(6): 399-400.
[99]
Doumas M, Stavropoulos K, Imprialos KP, Athyros VG, Karagiannis A. Renal sympathetic denervation: Ashes to ashes or rebirth from the ashes? J Clin Hypertens (Greenwich) 2018; 20(4): 634-6.
[100]
Vongpatanasin W. Resistant hypertension: a review of diagnosis and management. JAMA 2014; 311(21): 2216-24.
[101]
Doumas M, Douma S. Interventional management of resistant hypertension. Lancet 2009; 373(9671): 1228-30.
[102]
Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390(10108): 2160-70.
[103]
Denegri A, Naduvathumuriyil T, Lüscher TF, Sudano I. Renal nerve ablation reduces blood pressure in resistant hypertension: Long-term clinical outcomes in a single-center experience. J Clin Hypertens (Greenwich) 2018; 20(4): 627-33.
[104]
Kandzari DE, Böhm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 2018; 391(10137): 2346-55.
[105]
Spiering W, Williams B, Van der Heyden J, et al. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet 2017; 390(10113): 2655-61.
[106]
Donazzan L, Ewen S, Papademetriou V, et al. Drug therapy for the patient with resistant hypertension. Future Cardiol 2015; 11(2): 191-202.
[107]
Eguchi K, Kabutoya T, Hoshide S, Ishikawa S, Kario K. Add-on use of eplerenone is effective for lowering home and ambulatory blood pressure in drug-resistant hypertension. J Clin Hypertens (Greenwich) 2016; 18(12): 1250-7.
[108]
Williams B, MacDonald TM, Morant S, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 2015; 386(10008): 2059-68.
[109]
Krieger EM, Drager LF, Giorgi DMA, et al. Spironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT randomized study (Resistant Hypertension Optimal Treatment). Hypertension 2018; 71(4): 681-90.
[110]
Guo H, Xiao Q. Clinical efficacy of spironolactone for resistant hypertension: a meta analysis from randomized controlled clinical trials. Int J Clin Exp Med 2015; 8(5): 7270-8.
[111]
Wang C, Xiong B, Huang J. Efficacy and safety of spironolactone in patients with resistant hypertension: a meta-analysis of randomised controlled trials. Heart Lung Circ 2016; 25(10): 1021-30.
[112]
Zhao D, Liu H, Dong P, et al. A meta-analysis of add-on use of spironolactone in patients with resistant hypertension 2017. 233:113-7.
[113]
Liu L, Xu B, Ju Y. Addition of spironolactone in patients with resistant hypertension: A meta-analysis of randomized controlled trials. Clin Exp Hypertens 2017; 39(3): 257-63.
[114]
Oliveras A, Armario P, Clarà A, et al. Spironolactone versus sympathetic renal denervation to treat true resistant hypertension: results from the DENERVHTA study - a randomized controlled trial. J Hypertens 2016; 34(9): 1863-71.
[115]
de la Sierra A, Pareja J, Armario P, et al. Renal denervation vs. spironolactone in resistant hypertension: Effects on circadian patterns and blood pressure variability. Am J Hypertens 2017; 30(1): 37-41.
[116]
Rosa J, Widimský P, Toušek P, et al. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension 2015; 65(2): 407-13.
[117]
Rosa J, Widimský P, Waldauf P, et al. Role of Adding Spironolactone and Renal Denervation in True Resistant Hypertension: One-Year Outcomes of Randomized PRAGUE-15 Study. Hypertension 2016; 67(2): 397-403.
[118]
Rosa J, Widimský P, Waldauf P, et al. Renal denervation in comparison with intensified pharmacotherapy in true resistant hypertension: 2-year outcomes of randomized PRAGUE-15 study. J Hypertens 2017; 35(5): 1093-9.
[119]
Stavropoulos K, Imprialos KP, Doumas M. Sacubitril/valsartan instead of renin-angiotensin system inhibition alone: A step forward in resistant hypertension. J Clin Hypertens (Greenwich) 2018; 20(1): 65-8.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 46
Year: 2018
Page: [5500 - 5507]
Pages: 8
DOI: 10.2174/1381612825666190306163310
Price: $65

Article Metrics

PDF: 38
HTML: 3
EPUB: 1
PRC: 1