Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors

Author(s): Pranitha Jenardhanan, Manivel Panneerselvam and Premendu P. Mathur*

Volume 19, Issue 6, 2019

Page: [467 - 485] Pages: 19

DOI: 10.2174/1568026619666190304155711

Price: $65

Abstract

Background: Kinases are key modulators in regulating diverse range of cellular activities and are an essential part of the protein-protein interactome. Understanding the interaction of kinases with different substrates and other proteins is vital to decode the cell signaling machinery as well as causative mechanism for disease onset and progression.

Objective: The objective of this review is to present all studies on the structure and function of few important kinases and highlight the protein-protein interaction (PPI) mechanism of kinases and the kinase specific interactome databases and how such studies could be utilized to develop anticancer drugs.

Methods: The article is a review of the detailed description of the various domains in kinases that are involved in protein-protein interactions and specific inhibitors developed targeting these PPI domains.

Results: The review has surfaced in depth the interacting domains in key kinases and their features and the roles of PPI in the human kinome and the various signaling cascades that are involved in certain types of cancer.

Conclusion: The insight availed into the mechanism of existing peptide inhibitors and peptidomimetics against kinases will pave way for the design and generation of domain specific peptide inhibitors with better productivity and efficiency and the various software and servers available can be of great use for the identification and analysis of protein-protein interactions.

Keywords: Human kinome, Kinases, Protein-protein interactions (PPI), Peptide inhibitors, Peptidomimetics, Kinase interaction network.

« Previous
Graphical Abstract
[1]
Cohen, P. Protein kinases-The major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[2]
de Oliveira, P.S.; Ferraz, F.A.; Pena, D.A.; Pramio, D.T.; Morais, F.A.; Schechtman, D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci. Signal., 2016, 9(420), re3.
[http://dx.doi.org/10.1126/scisignal.aad4016] [PMID: 27016527]
[3]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[4]
Taylor, S.S.; Radzio-Andzelm, E.; Hunter, T. How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein-tyrosine kinase. FASEB J., 1995, 9(13), 1255-1266.
[http://dx.doi.org/10.1096/fasebj.9.13.7557015] [PMID: 7557015]
[5]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8] [PMID: 11057895]
[6]
Tsygankov, A.Y. Non-receptor protein tyrosine kinases. Front. Biosci., 2003, 8, s595-s635.
[http://dx.doi.org/10.2741/1106] [PMID: 12700079]
[7]
(a)Hojjat-Farsangi, M. Targeting non-receptor tyrosine kinases using small molecule inhibitors: an overview of recent advances. J. Drug Target., 2016, 24(3), 192-211.
[http://dx.doi.org/10.3109/1061186X.2015.1068319] [PMID: 26211367]
(b)Hojjat-Farsangi, M. Small-molecule inhibitors of the receptor tyrosine kinases: Promising tools for targeted cancer therapies. Int. J. Mol. Sci., 2014, 15(8), 13768-13801.
[http://dx.doi.org/10.3390/ijms150813768] [PMID: 25110867]
[8]
Swulius, M.T.; Waxham, M.N. Ca(2+)/calmodulin-dependent protein kinases. Cell. Mol. Life Sci., 2008, 65(17), 2637-2657.
[http://dx.doi.org/10.1007/s00018-008-8086-2] [PMID: 18463790]
[9]
Walworth, N.C. Cell-cycle checkpoint kinases: Checking in on the cell cycle. Curr. Opin. Cell Biol., 2000, 12(6), 697-704.
[http://dx.doi.org/10.1016/S0955-0674(00)00154-X] [PMID: 11063934]
[10]
Li, Y.; Sosnik, J.; Brassard, L.; Reese, M.; Spiridonov, N.A.; Bates, T.C.; Johnson, G.R.; Anguita, J.; Visconti, P.E.; Salicioni, A.M. Expression and localization of five members of the testis-specific serine kinase (Tssk) family in mouse and human sperm and testis. Mol. Hum. Reprod., 2011, 17(1), 42-56.
[http://dx.doi.org/ 10.1093/molehr/gaq071] [PMID: 20729278]
[11]
aTimm, T.; Marx, A.; Panneerselvam, S.; Mandelkow, E.; Mandelkow, E.M. Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci.,2008, 9(Suppl. 2), S9. [http://dx.doi.org/10.1186/1471-2202-9- S2-S9] [PMID: 19090997] bMatenia, D.; Mandelkow, E.M. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem. Sci.,2009, 34(7), 332-342. [http://dx.doi.org/10.1016/ j.tibs.2009.03.008] [PMID: 19559622]
[12]
Naz, F.; Anjum, F.; Islam, A.; Ahmad, F.; Hassan, M.I. Microtubule affinity-regulating kinase 4: Structure, function, and regulation. Cell Biochem. Biophys., 2013, 67(2), 485-499.
[http://dx.doi.org/10.1007/s12013-013-9550-7] [PMID: 23471664]
[13]
Rovina, D.; Fontana, L.; Monti, L.; Novielli, C.; Panini, N.; Sirchia, S.M.; Erba, E.; Magnani, I.; Larizza, L. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics. Eur. J. Cell Biol., 2014, 93(8-9), 355-365.
[http://dx.doi.org/10.1016/j.ejcb.2014.07.004] [PMID: 25123532]
[14]
Trinczek, B.; Brajenovic, M.; Ebneth, A.; Drewes, G. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J. Biol. Chem., 2004, 279(7), 5915-5923.
[http://dx.doi.org/10.1074/jbc.M304528200] [PMID: 14594945]
[15]
Tang, E.I.; Xiao, X.; Mruk, D.D.; Qian, X.J.; Mok, K.W.; Jenardhanan, P.; Lee, W.M.; Mathur, P.P.; Cheng, C.Y. Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. Spermatogenesis, 2012, 2(2), 117-126.
[http://dx.doi.org/10.4161/spmg.20724] [PMID: 22670221]
[16]
Tang, E.I.; Mruk, D.D.; Cheng, C.Y. MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. J. Endocrinol., 2013, 217(2), R13-R23.
[http://dx.doi.org/10.1530/JOE-12-0586] [PMID: 23449618]
[17]
Kannan, N.; Neuwald, A.F. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci., 2004, 13(8), 2059-2077.
[http://dx.doi.org/10.1110/ps.04637904] [PMID: 15273306]
[18]
Arencibia, J.M.; Pastor-Flores, D.; Bauer, A.F.; Schulze, J.O.; Biondi, R.M. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim. Biophys. Acta, 2013, 1834(7), 1302-1321.
[http://dx.doi.org/10.1016/j.bbapap.2013.03.010] [PMID: 23524293]
[19]
Knighton, D.R.; Zheng, J.H.; Ten Eyck, L.F.; Ashford, V.A.; Xuong, N.H.; Taylor, S.S.; Sowadski, J.M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253(5018), 407-414.
[http://dx.doi.org/10.1126/science.1862342] [PMID: 1862342]
[20]
Hers, I.; Vincent, E.E.; Tavaré, J.M. Akt signalling in health and disease. Cell. Signal., 2011, 23(10), 1515-1527.
[http://dx.doi.org/ 10.1016/j.cellsig.2011.05.004] [PMID: 21620960]
[21]
de Leeuw, R.; Flach, K.; Bentin Toaldo, C.; Alexi, X.; Canisius, S.; Neefjes, J.; Michalides, R.; Zwart, W. PKA phosphorylation redirects ERα to promoters of a unique gene set to induce tamoxifen resistance. Oncogene, 2013, 32(30), 3543-3551.
[http://dx.doi.org/ 10.1038/onc.2012.361] [PMID: 22907427]
[22]
Cobb, M.H.; Xu, S.; Hepler, J.E.; Hutchison, M.; Frost, J.; Robbins, D.J. Regulation of the MAP kinase cascade. Cell. Mol. Biol. Res., 1994, 40(3), 253-256.
[PMID: 7874203]
[23]
Dan, I.; Watanabe, N.M.; Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol., 2001, 11(5), 220-230.
[http://dx.doi.org/10.1016/S0962-8924(01)01980-8] [PMID: 11316611]
[24]
Scott, R.W.; Olson, M.F. LIM kinases: Function, regulation and association with human disease. J. Mol. Med. (Berl.), 2007, 85(6), 555-568.
[http://dx.doi.org/10.1007/s00109-007-0165-6] [PMID: 17294230]
[25]
Jain, A.; Kaczanowska, S.; Davila, E. IL-1 Receptor-associated kinase signaling and its role in inflammation, cancer progression, and therapy resistance. Front. Immunol., 2014, 5, 553.
[http://dx.doi.org/10.3389/fimmu.2014.00553] [PMID: 25452754]
[26]
a)Knippschild, U.; Gocht, A.; Wolff, S.; Huber, N.; Löhler, J.; Stöter, M. The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cell. Signal., 2005, 17(6), 675-689.
[http://dx.doi.org/10.1016/j.cellsig.2004.12.011] [PMID: 15722192]
b)Cruciat, C.M. Casein kinase 1 and Wnt/β-catenin signaling. Curr. Opin. Cell Biol., 2014, 31, 46-55.
[http://dx.doi.org/ 10.1016/j.ceb.2014.08.003] [PMID: 25200911]
[27]
Filippakopoulos, P.; Müller, S.; Knapp, S. SH2 domains: Modulators of nonreceptor tyrosine kinase activity. Curr. Opin. Struct. Biol., 2009, 19(6), 643-649.
[http://dx.doi.org/ 10.1016/j.sbi.2009.10.001] [PMID: 19926274]
[28]
Gao, N.; Hibi, Y.; Cueno, M.; Asamitsu, K.; Okamoto, T. A-kinase-interacting protein 1 (AKIP1) acts as a molecular determinant of PKA in NF-kappaB signaling. J. Biol. Chem., 2010, 285(36), 28097-28104.
[http://dx.doi.org/10.1074/jbc.M110. 116566] [PMID: 20562110]
[29]
Stevens, C.; Lin, Y.; Harrison, B.; Burch, L.; Ridgway, R.A.; Sansom, O.; Hupp, T. Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling. J. Biol. Chem., 2009, 284(1), 334-344.
[http://dx.doi.org/ 10.1074/jbc.M805165200] [PMID: 18974095]
[30]
Yip-Schneider, M.T.; Miao, W.; Lin, A.; Barnard, D.S.; Tzivion, G.; Marshall, M.S. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem. J., 2000, 351(Pt 1), 151-159.
[http://dx.doi.org/10.1042/bj3510151] [PMID: 10998357]
[31]
Sharrocks, A.D.; Yang, S.H.; Galanis, A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem. Sci., 2000, 25(9), 448-453.
[http://dx.doi.org/10.1016/S0968-0004(00)01627-3] [PMID: 10973059]
[32]
Sadowski, I.; Stone, J.C.; Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol., 1986, 6(12), 4396-4408.
[http://dx.doi.org/10.1128/MCB.6.12.4396] [PMID: 3025655]
[33]
Pawson, T.; Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science, 2003, 300(5618), 445-452.
[http://dx.doi.org/10.1126/science.1083653] [PMID: 12702867]
[34]
Boggon, T.J.; Eck, M.J. Structure and regulation of Src family kinases. Oncogene, 2004, 23(48), 7918-7927.
[http://dx.doi.org/ 10.1038/sj.onc.1208081] [PMID: 15489910]
[35]
Pawson, T.; Olivier, P.; Rozakis-Adcock, M.; McGlade, J.; Henkemeyer, M. Proteins with SH2 and SH3 domains couple receptor tyrosine kinases to intracellular signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1993, 340(1293), 279-285.
[http://dx.doi.org/10.1098/rstb.1993.0069] [PMID: 8103930]
[36]
Vidal, M.; Gigoux, V.; Garbay, C. SH2 and SH3 domains as targets for anti-proliferative agents. Crit. Rev. Oncol. Hematol., 2001, 40(2), 175-186.
[http://dx.doi.org/10.1016/S1040-8428(01)00142-1] [PMID: 11682324]
[37]
Arold, S.T.; Ulmer, T.S.; Mulhern, T.D.; Werner, J.M.; Ladbury, J.E.; Campbell, I.D.; Noble, M.E. The role of the Src homology 3-Src homology 2 interface in the regulation of Src kinases. J. Biol. Chem., 2001, 276(20), 17199-17205.
[http://dx.doi.org/ 10.1074/jbc.M011185200] [PMID: 11278857]
[38]
Cowan-Jacob, S.W.; Fendrich, G.; Manley, P.W.; Jahnke, W.; Fabbro, D.; Liebetanz, J.; Meyer, T. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure, 2005, 13(6), 861-871.
[http://dx.doi.org/ 10.1016/j.str.2005.03.012] [PMID: 15939018]
[39]
Shima, T.; Okumura, N.; Takao, T.; Satomi, Y.; Yagi, T.; Okada, M.; Nagai, K. Interaction of the SH2 domain of Fyn with a cytoskeletal protein, beta-adducin. J. Biol. Chem., 2001, 276(45), 42233-42240.
[http://dx.doi.org/10.1074/jbc.M102699200] [PMID: 11526103]
[40]
Evans, J.V.; Ammer, A.G.; Jett, J.E.; Bolcato, C.A.; Breaux, J.C.; Martin, K.H.; Culp, M.V.; Gannett, P.M.; Weed, S.A. Src binds cortactin through an SH2 domain cystine-mediated linkage. J. Cell Sci., 2012, 125(Pt 24), 6185-6197.
[http://dx.doi.org/ 10.1242/jcs.121046] [PMID: 23097045]
[41]
Reed, J.C.; Doctor, K.S.; Godzik, A. The domains of apoptosis: A genomics perspective. Sci. STKE, 2004, 2004(239), re9.
[PMID: 15226512]
[42]
Park, H.H.; Lo, Y.C.; Lin, S.C.; Wang, L.; Yang, J.K.; Wu, H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol., 2007, 25, 561-586.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141656] [PMID: 17201679]
[43]
Ferrao, R.; Wu, H. Helical assembly in the death domain (DD) superfamily. Curr. Opin. Struct. Biol., 2012, 22(2), 241-247.
[http://dx.doi.org/10.1016/j.sbi.2012.02.006] [PMID: 22429337]
[44]
Scott, F.L.; Stec, B.; Pop, C.; Dobaczewska, M.K.; Lee, J.J.; Monosov, E.; Robinson, H.; Salvesen, G.S.; Schwarzenbacher, R.; Riedl, S.J. The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature, 2009, 457(7232), 1019-1022.
[http://dx.doi.org/10.1038/nature07606] [PMID: 19118384]
[45]
Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003, 114(2), 181-190.
[http://dx.doi.org/10.1016/S0092-8674(03)00521-X] [PMID: 12887920]
[46]
Park, A.; Baichwal, V.R. Systematic mutational analysis of the death domain of the tumor necrosis factor receptor 1-associated protein TRADD. J. Biol. Chem., 1996, 271(16), 9858-9862.
[http://dx.doi.org/10.1074/jbc.271.16.9858] [PMID: 8621670]
[47]
Chinnaiyan, A.M.; O’Rourke, K.; Tewari, M.; Dixit, V.M. FADD, A novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, 1995, 81(4), 505-512.
[http://dx.doi.org/10.1016/0092-8674(95)90071-3] [PMID: 7538907]
[48]
Chen, C.H.; Wang, W.J.; Kuo, J.C.; Tsai, H.C.; Lin, J.R.; Chang, Z.F.; Chen, R.H. Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J., 2005, 24(2), 294-304.
[http://dx.doi.org/10.1038/sj.emboj.7600510] [PMID: 15616583]
[49]
Llambi, F.; Lourenço, F.C.; Gozuacik, D.; Guix, C.; Pays, L.; Del Rio, G.; Kimchi, A.; Mehlen, P. The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J., 2005, 24(6), 1192-1201.
[http://dx.doi.org/10.1038/sj.emboj.7600584] [PMID: 15729359]
[50]
Guenebeaud, C.; Goldschneider, D.; Castets, M.; Guix, C.; Chazot, G.; Delloye-Bourgeois, C.; Eisenberg-Lerner, A.; Shohat, G.; Zhang, M.; Laudet, V.; Kimchi, A.; Bernet, A.; Mehlen, P. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol. Cell, 2010, 40(6), 863-876.
[http://dx.doi.org/10.1016/j.molcel.2010.11.021] [PMID: 21172653]
[51]
Lee, Y.R.; Yuan, W.C.; Ho, H.C.; Chen, C.H.; Shih, H.M.; Chen, R.H. The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J., 2010, 29(10), 1748-1761.
[http://dx.doi.org/10.1038/emboj.2010.62] [PMID: 20389280]
[52]
Chen, H.Y.; Chen, R.H. Cullin 3 ubiquitin ligases in cancer biology: Functions and therapeutic implications. Front. Oncol., 2016, 6, 113.
[http://dx.doi.org/10.3389/fonc.2016.00113] [PMID: 27200299]
[53]
Wu, P.R.; Tsai, P.I.; Chen, G.C.; Chou, H.J.; Huang, Y.P.; Chen, Y.H.; Lin, M.Y.; Kimchi, A.; Chien, C.T.; Chen, R.H. DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ., 2011, 18(9), 1507-1520.
[http://dx.doi.org/10.1038/cdd.2011.2] [PMID: 21311567]
[54]
Mor, I.; Carlessi, R.; Ast, T.; Feinstein, E.; Kimchi, A. Death-associated protein kinase increases glycolytic rate through binding and activation of pyruvate kinase. Oncogene, 2012, 31(6), 683-693.
[http://dx.doi.org/10.1038/onc.2011.264] [PMID: 21725354]
[55]
Stanger, B.Z.; Leder, P.; Lee, T.H.; Kim, E.; Seed, B. RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell, 1995, 81(4), 513-523.
[http://dx.doi.org/10.1016/0092-8674(95)90072-1] [PMID: 7538908]
[56]
Kelliher, M.A.; Grimm, S.; Ishida, Y.; Kuo, F.; Stanger, B.Z.; Leder, P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity, 1998, 8(3), 297-303.
[http://dx.doi.org/10.1016/S1074-7613(00)80535-X] [PMID: 9529147]
[57]
Wang, C.Y.; Mayo, M.W.; Korneluk, R.G.; Goeddel, D.V.; Baldwin, A.S. Jr NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998, 281(5383), 1680-1683.
[http://dx.doi.org/ 10.1126/science.281.5383.1680] [PMID: 9733516]
[58]
Zhang, H.; Zhang, H.; Lin, Y.; Li, J.; Pober, J.S.; Min, W. RIP1-mediated AIP1 phosphorylation at a 14-3-3-binding site is critical for tumor necrosis factor-induced ASK1-JNK/p38 activation. J. Biol. Chem., 2007, 282(20), 14788-14796.
[http://dx.doi.org/ 10.1074/jbc.M701148200] [PMID: 17389591]
[59]
Cho, Y.S.; Challa, S.; Moquin, D.; Genga, R.; Ray, T.D.; Guildford, M.; Chan, F.K. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 2009, 137(6), 1112-1123.
[http://dx.doi.org/ 10.1016/j.cell.2009.05.037] [PMID: 19524513]
[60]
Park, Y.H.; Jeong, M.S.; Park, H.H.; Jang, S.B. Formation of the death domain complex between FADD and RIP1 proteins in vitro. Biochim. Biophys. Acta, 2013, 1834(1), 292-300.
[http://dx.doi.org/ 10.1016/j.bbapap.2012.08.013] [PMID: 22922561]
[61]
Meylan, E.; Burns, K.; Hofmann, K.; Blancheteau, V.; Martinon, F.; Kelliher, M.; Tschopp, J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol., 2004, 5(5), 503-507.
[http://dx.doi.org/10.1038/ni1061] [PMID: 15064760]
[62]
Ha, H.; Han, D.; Choi, Y. TRAF-mediated TNFR-family signaling. Curr.Protoc.Immunol, 2009. 11 Unit11 9D.
[63]
(a)Bork, P.; Sudol, M. The WW domain: A signalling site in dystrophin? Trends Biochem. Sci., 1994, 19(12), 531-533.
[http://dx.doi.org/10.1016/0968-0004(94)90053-1] [PMID: 7846762]
(b)Sudol, M. Structure and function of the WW domain. Prog. Biophys. Mol. Biol., 1996, 65(1-2), 113-132.
[http://dx.doi.org/10.1016/S0079-6107(96)00008-9] [PMID: 9029943]
[64]
Huang, X.; Poy, F.; Zhang, R.; Joachimiak, A.; Sudol, M.; Eck, M.J. Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat. Struct. Biol., 2000, 7(8), 634-638.
[http://dx.doi.org/10.1038/77923] [PMID: 10932245]
[65]
Chen, H.I.; Sudol, M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA, 1995, 92(17), 7819-7823.
[http://dx.doi.org/10.1073/pnas.92.17.7819] [PMID: 7644498]
[66]
Ermekova, K.S.; Zambrano, N.; Linn, H.; Minopoli, G.; Gertler, F.; Russo, T.; Sudol, M. The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem., 1997, 272(52), 32869-32877.
[http://dx.doi.org/10.1074/jbc.272.52.32869] [PMID: 9407065]
[67]
Bedford, M.T.; Sarbassova, D.; Xu, J.; Leder, P.; Yaffe, M.B. A novel pro-Arg motif recognized by WW domains. J. Biol. Chem., 2000, 275(14), 10359-10369.
[http://dx.doi.org/10.1074/jbc.275.14.10359] [PMID: 10744724]
[68]
Lu, P.J.; Zhou, X.Z.; Shen, M.; Lu, K.P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science, 1999, 283(5406), 1325-1328.
[http://dx.doi.org/10.1126/science.283.5406.1325] [PMID: 10037602]
[69]
Salah, Z.; Aqeilan, R.I. WW domain interactions regulate the Hippo tumor suppressor pathway. Cell Death Dis., 2011, 2, e172.
[http://dx.doi.org/10.1038/cddis.2011.53] [PMID: 21677687]
[70]
(a)Zhao, B.; Li, L.; Lei, Q.; Guan, K.L. The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version. Genes Dev., 2010, 24(9), 862-874.
[http://dx.doi.org/10.1101/gad.1909210] [PMID: 20439427]
(b)Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell, 2010, 19(4), 491-505.
[http://dx.doi.org/10.1016/j.devcel.2010.09.011] [PMID: 20951342]
[71]
Shi, Z.; Jiao, S.; Zhou, Z. Structural dissection of Hippo signaling. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(1), 29-38.
[http://dx.doi.org/10.1093/abbs/gmu107] [PMID: 25476203]
[72]
a)Yu, F.X.; Guan, K.L. The Hippo pathway: regulators and regulations. Genes Dev., 2013, 27(4), 355-371.
[http://dx.doi.org/ 10.1101/gad.210773.112] [PMID: 23431053]
b)Plouffe, S.W.; Meng, Z.; Lin, K.C.; Lin, B.; Hong, A.W.; Chun, J.V.; Guan, K.L. Characterization of Hippo Pathway Components by Gene Inactivation. Mol. Cell, 2016, 64(5), 993-1008.
[http://dx.doi.org/10.1016/j.molcel.2016.10.034] [PMID: 27912098]
[73]
a)Iglesias-Bexiga, M.; Castillo, F.; Cobos, E.S.; Oka, T.; Sudol, M.; Luque, I. WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands. PLoS One, 2015, 10(1), e0113828.
[http://dx.doi.org/10.1371/journal.pone.0113828] [PMID: 25607641]
b)Verma, A.; Jing-Song, F.; Finch-Edmondson, M.L.; Velazquez-Campoy, A.; Balasegaran, S.; Sudol, M.; Sivaraman, J. Biophysical studies and NMR structure of YAP2 WW domain - LATS1 PPxY motif complexes reveal the basis of their interaction. Oncotarget, 2018, 9(8), 8068-8080.
[http://dx.doi.org/10.18632/oncotarget.23909] [PMID: 29487715]
[74]
Zhao, B.; Lei, Q.Y.; Guan, K.L. The Hippo-YAP pathway: New connections between regulation of organ size and cancer. Curr. Opin. Cell Biol., 2008, 20(6), 638-646.
[http://dx.doi.org/ 10.1016/j.ceb.2008.10.001] [PMID: 18955139]
[75]
Cho, K.O.; Hunt, C.A.; Kennedy, M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron, 1992, 9(5), 929-942.
[http://dx.doi.org/10.1016/0896-6273(92)90245-9] [PMID: 1419001]
[76]
Doyle, D.A.; Lee, A.; Lewis, J.; Kim, E.; Sheng, M.; MacKinnon, R. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell, 1996, 85(7), 1067-1076.
[http://dx.doi.org/10.1016/S0092-8674(00)81307-0] [PMID: 8674113]
[77]
Trejo, J. Internal PDZ ligands: novel endocytic recycling motifs for G protein-coupled receptors. Mol. Pharmacol., 2005, 67(5), 1388-1390.
[http://dx.doi.org/10.1124/mol.105.011288] [PMID: 15713849]
[78]
Sheng, M.; Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci., 2001, 24, 1-29.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1] [PMID: 11283303]
[79]
Kornau, H.C.; Schenker, L.T.; Kennedy, M.B.; Seeburg, P.H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science, 1995, 269(5231), 1737-1740.
[http://dx.doi.org/10.1126/science.7569905] [PMID: 7569905]
[80]
Cowburn, D. Peptide recognition by PTB and PDZ domains. Curr. Opin. Struct. Biol., 1997, 7(6), 835-838.
[http://dx.doi.org/10.1016/S0959-440X(97)80155-8] [PMID: 9434904]
[81]
Arber, S.; Barbayannis, F.A.; Hanser, H.; Schneider, C.; Stanyon, C.A.; Bernard, O.; Caroni, P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature, 1998, 393(6687), 805-809.
[http://dx.doi.org/10.1038/31729] [PMID: 9655397]
[82]
Bamburg, J.R. Proteins of the ADF/cofilin family: Essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol., 1999, 15, 185-230.
[http://dx.doi.org/10.1146/annurev.cellbio.15.1.185] [PMID: 10611961]
[83]
Lorenz, M.; DesMarais, V.; Macaluso, F.; Singer, R.H.; Condeelis, J. Measurement of barbed ends, actin polymerization, and motility in live carcinoma cells after growth factor stimulation. Cell Motil. Cytoskeleton, 2004, 57(4), 207-217.
[http://dx.doi.org/10.1002/cm.10171] [PMID: 14752805]
[84]
Sumi, T.; Matsumoto, K.; Takai, Y.; Nakamura, T. Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J. Cell Biol., 1999, 147(7), 1519-1532.
[http://dx.doi.org/10.1083/jcb.147.7.1519] [PMID: 10613909]
[85]
Yang, N.; Mizuno, K. Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain. Biochem. J., 1999, 338(Pt 3), 793-798.
[http://dx.doi.org/10.1042/bj3380793] [PMID: 10051454]
[86]
Sabapathy, K. Role of the JNK pathway in human diseases. Prog. Mol. Biol. Transl. Sci., 2012, 106, 145-169.
[http://dx.doi.org/ 10.1016/B978-0-12-396456-4.00013-4] [PMID: 22340717]
[87]
Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta, 2013, 1833(12), 3460-3470.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.028] [PMID: 23850759]
[88]
Gupta, S.; Barrett, T.; Whitmarsh, A.J.; Cavanagh, J.; Sluss, H.K.; Dérijard, B.; Davis, R.J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J., 1996, 15(11), 2760-2770.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00636.x] [PMID: 8654373]
[89]
Lee, M.H.; Koria, P.; Qu, J.; Andreadis, S.T. JNK phosphorylates beta-catenin and regulates adherens junctions. FASEB J., 2009, 23(11), 3874-3883.
[http://dx.doi.org/10.1096/fj.08-117804] [PMID: 19667122]
[90]
Miotto, B.; Struhl, K. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol. Cell, 2011, 44(1), 62-71.
[http://dx.doi.org/10.1016/j.molcel.2011.06.021] [PMID: 21856198]
[91]
Yoshida, I.; Ibuki, Y. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes. Mutat. Res., 2014, 770, 9-18.
[http://dx.doi.org/10.1016/j.mrfmmm. 2014.09.003] [PMID: 25771866]
[92]
Rzeczkowski, K.; Beuerlein, K.; Müller, H.; Dittrich-Breiholz, O.; Schneider, H.; Kettner-Buhrow, D.; Holtmann, H.; Kracht, M. c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies. J. Cell Biol., 2011, 194(4), 581-596.
[http://dx.doi.org/10.1083/jcb.201006089] [PMID: 21859862]
[93]
Gioeli, D.; Black, B.E.; Gordon, V.; Spencer, A.; Kesler, C.T.; Eblen, S.T.; Paschal, B.M.; Weber, M.J. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol. Endocrinol., 2006, 20(3), 503-515.
[http://dx.doi.org/10.1210/me.2005-0351] [PMID: 16282370]
[94]
Shao, Z.; Bhattacharya, K.; Hsich, E.; Park, L.; Walters, B.; Germann, U.; Wang, Y.M.; Kyriakis, J.; Mohanlal, R.; Kuida, K.; Namchuk, M.; Salituro, F.; Yao, Y.M.; Hou, W.M.; Chen, X.; Aronovitz, M.; Tsichlis, P.N.; Bhattacharya, S.; Force, T.; Kilter, H. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo. Circ. Res., 2006, 98(1), 111-118.
[http://dx.doi.org/10.1161/01.RES.0000197781.20524.b9] [PMID: 16306447]
[95]
Kim, M.J.; Futai, K.; Jo, J.; Hayashi, Y.; Cho, K.; Sheng, M. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron, 2007, 56(3), 488-502.
[http://dx.doi.org/10.1016/j.neuron.2007.09.007] [PMID: 17988632]
[96]
Komulainen, E.; Zdrojewska, J.; Freemantle, E.; Mohammad, H.; Kulesskaya, N.; Deshpande, P.; Marchisella, F.; Mysore, R.; Hollos, P.; Michelsen, K.A.; Mågard, M.; Rauvala, H.; James, P.; Coffey, E.T. JNK1 controls dendritic field size in L2/3 and L5 of the motor cortex, constrains soma size, and influences fine motor coordination. Front. Cell. Neurosci., 2014, 8, 272.
[http://dx.doi.org/10.3389/fncel.2014.00272] [PMID: 25309320]
[97]
Mori, Y.; Higuchi, M.; Hirabayashi, Y.; Fukuda, M.; Gotoh, Y. JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO J., 2008, 27(1), 76-87.
[http://dx.doi.org/10.1038/sj.emboj.7601935] [PMID: 18046461]
[98]
Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell, 2008, 30(6), 678-688.
[http://dx.doi.org/ 10.1016/j.molcel.2008.06.001] [PMID: 18570871]
[99]
Garai, Á.; Zeke, A.; Gógl, G.; Törő, I.; Fördős, F.; Blankenburg, H.; Bárkai, T.; Varga, J.; Alexa, A.; Emig, D.; Albrecht, M.; Reményi, A. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci. Signal., 2012, 5(245), ra74.
[http://dx.doi.org/10.1126/scisignal.2003004] [PMID: 23047924]
[100]
Sheridan, D.L.; Kong, Y.; Parker, S.A.; Dalby, K.N.; Turk, B.E. Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs. J. Biol. Chem., 2008, 283(28), 19511-19520.
[http://dx.doi.org/10.1074/jbc.M801074200] [PMID: 18482985]
[101]
Echalier, A.; Endicott, J.A.; Noble, M.E. Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochim. Biophys. Acta, 2010, 1804(3), 511-519.
[http://dx.doi.org/ 10.1016/j.bbapap.2009.10.002] [PMID: 19822225]
[102]
Cayrol, C.; Ducommun, B. Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene, 1998, 17(19), 2437-2444.
[http://dx.doi.org/ 10.1038/sj.onc.1202189] [PMID: 9824154]
[103]
Besson, A.; Dowdy, S.F.; Roberts, J.M. CDK inhibitors: cell cycle regulators and beyond. Dev. Cell, 2008, 14(2), 159-169.
[http://dx.doi.org/10.1016/j.devcel.2008.01.013] [PMID: 18267085]
[104]
Drewes, G.; Trinczek, B.; Illenberger, S.; Biernat, J.; Schmitt-Ulms, G.; Meyer, H.E.; Mandelkow, E.M.; Mandelkow, E. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem., 1995, 270(13), 7679-7688.
[http://dx.doi.org/10.1074/jbc.270.13.7679] [PMID: 7706316]
[105]
Drewes, G.; Ebneth, A.; Preuss, U.; Mandelkow, E.M.; Mandelkow, E. MARK, A novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell, 1997, 89(2), 297-308.
[http://dx.doi.org/10.1016/S0092-8674(00)80208-1] [PMID: 9108484]
[106]
Kato, T.; Satoh, S.; Okabe, H.; Kitahara, O.; Ono, K.; Kihara, C.; Tanaka, T.; Tsunoda, T.; Yamaoka, Y.; Nakamura, Y.; Furukawa, Y. Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis. Neoplasia, 2001, 3(1), 4-9.
[http://dx.doi.org/ 10.1038/sj.neo.7900132] [PMID: 11326310]
[107]
Kuhns, S.; Schmidt, K.N.; Reymann, J.; Gilbert, D.F.; Neuner, A.; Hub, B.; Carvalho, R.; Wiedemann, P.; Zentgraf, H.; Erfle, H.; Klingmüller, U.; Boutros, M.; Pereira, G. The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J. Cell Biol., 2013, 200(4), 505-522.
[http://dx.doi.org/10.1083/jcb.201206013] [PMID: 23400999]
[108]
Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol., 1962, 15, 363-377.
[http://dx.doi.org/10.1083/jcb.15.2.363] [PMID: 13978319]
[109]
Li, X.; Thome, S.; Ma, X.; Amrute-Nayak, M.; Finigan, A.; Kitt, L.; Masters, L.; James, J.R.; Shi, Y.; Meng, G.; Mallat, Z. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat. Commun., 2017, 8, 15986.
[http://dx.doi.org/10.1038/ncomms15986] [PMID: 28656979]
[110]
Sutterwala, F.S.; Haasken, S.; Cassel, S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci., 2014, 1319, 82-95.
[http://dx.doi.org/10.1111/nyas.12458] [PMID: 24840700]
[111]
Guo, H.; Callaway, J.B.; Ting, J.P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med., 2015, 21(7), 677-687.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[112]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[113]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439.
[http://dx.doi.org/10.1016/j.tips.2015.04.005] [PMID: 25975227]
[114]
Dar, A.C.; Shokat, K.M. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem., 2011, 80, 769-795.
[http://dx.doi.org/10.1146/annurev-biochem-090308-173656] [PMID: 21548788]
[115]
Jenardhanan, P.; Mannu, J.; Mathur, P.P. The structural analysis of MARK4 and the exploration of specific inhibitors for the MARK family: A computational approach to obstruct the role of MARK4 in prostate cancer progression. Mol. Biosyst., 2014, 10(7), 1845-1868.
[http://dx.doi.org/10.1039/C3MB70591A] [PMID: 24763618]
[116]
Wu, P.; Clausen, M.H.; Nielsen, T.E. Allosteric small-molecule kinase inhibitors. Pharmacol. Ther., 2015, 156, 59-68.
[http://dx.doi.org/10.1016/j.pharmthera.2015.10.002] [PMID: 26478442]
[117]
Gucalp, A.; Sparano, J.A.; Caravelli, J.; Santamauro, J.; Patil, S.; Abbruzzi, A.; Pellegrino, C.; Bromberg, J.; Dang, C.; Theodoulou, M.; Massague, J.; Norton, L.; Hudis, C.; Traina, T.A. Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin. Breast Cancer, 2011, 11(5), 306-311.
[http://dx.doi.org/ 10.1016/j.clbc.2011.03.021] [PMID: 21729667]
[118]
a)Barouch-Bentov, R.; Sauer, K. Mechanisms of drug resistance in kinases. Expert Opin. Investig. Drugs, 2011, 20(2), 153-208.
[http://dx.doi.org/10.1517/13543784.2011.546344] [PMID: 21235428]
b)Bixby, D.; Talpaz, M. Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology (Am. Soc. Hematol. Educ. Program), 2009, 1, 461-476.
[http://dx.doi.org/10.1182/asheducation-2009.1.461] [PMID: 20008232]
[119]
a)Jänne, P.A.; Gray, N.; Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat. Rev. Drug Discov., 2009, 8(9), 709-723.
[http://dx.doi.org/10.1038/nrd2871] [PMID: 19629074]
b)Krishnamurty, R.; Maly, D.J. Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. ACS Chem. Biol., 2010, 5(1), 121-138.
[http://dx.doi.org/ 10.1021/cb9002656] [PMID: 20044834]
[120]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[http://dx.doi.org/ 10.1126/science.1062538] [PMID: 11423618]
[121]
Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 2000, 289(5486), 1938-1942.
[http://dx.doi.org/10.1126/science.289.5486.1938] [PMID: 10988075]
[122]
Jones, S.; Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 13-20.
[http://dx.doi.org/ 10.1073/pnas.93.1.13] [PMID: 8552589]
[123]
Laraia, L.; McKenzie, G.; Spring, D.R.; Venkitaraman, A.R.; Huggins, D.J. Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions. Chem. Biol., 2015, 22(6), 689-703.
[http://dx.doi.org/10.1016/j.chembiol.2015.04.019] [PMID: 26091166]
[124]
Webb, B.; Sali, A. A comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2014, 47, 1-32.
[http://dx.doi.org/10.1002/0471250953.bi0506s47]
[125]
van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; van Dijk, M.; de Vries, S.J.; Bonvin, A.M.J.J. The HADDOCK2.2 Web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol., 2016, 428(4), 720-725.
[http://dx.doi.org/ 10.1016/j.jmb.2015.09.014] [PMID: 26410586]
[126]
Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 2014, 30(12), 1771-1773.
[http://dx.doi.org/10.1093/bioinformatics/btu097] [PMID: 24532726]
[127]
Lyskov, S.; Gray, J.J. The RosettaDock server for local protein-protein docking. Nucleic Acids Res., 2008, (36), 233-238.
[http://dx.doi.org/10.1093/nar/gkn216]
[128]
Duggal, S.; Jailkhani, N.; Midha, M.K.; Agrawal, N.; Rao, K.V.S.; Kumar, A. Defining the Akt1 interactome and its role in regulating the cell cycle. Sci. Rep., 2018, 8(1), 1303.
[http://dx.doi.org/ 10.1038/s41598-018-19689-0] [PMID: 29358593]
[129]
Bandyopadhyay, S.; Chiang, C.Y.; Srivastava, J.; Gersten, M.; White, S.; Bell, R.; Kurschner, C.; Martin, C.; Smoot, M.; Sahasrabudhe, S.; Barber, D.L.; Chanda, S.K.; Ideker, T. A human MAP kinase interactome. Nat. Methods, 2010, 7(10), 801-805.
[http://dx.doi.org/10.1038/nmeth.1506] [PMID: 20936779]
[130]
Ribas, C.; Penela, P.; Murga, C.; Salcedo, A.; García-Hoz, C.; Jurado-Pueyo, M.; Aymerich, I.; Mayor, F., Jr The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim. Biophys. Acta, 2007, 1768(4), 913-922.
[http://dx.doi.org/10.1016/j.bbamem.2006. 09.019] [PMID: 17084806]
[131]
An, S.; Yang, Y.; Ward, R.; Liu, Y.; Guo, X.X.; Xu, T.R. Raf-interactome in tuning the complexity and diversity of Raf function. FEBS J., 2015, 282(1), 32-53.
[http://dx.doi.org/10.1111/febs.13113] [PMID: 25333451]
[132]
Bialik, S.; Kimchi, A. The DAP-kinase interactome. Apoptosis, 2014, 19(2), 316-328.
[http://dx.doi.org/10.1007/s10495-013-0926-3] [PMID: 24220855]
[133]
Aloy, P.; Russell, R.B. InterPreTS: Protein interaction prediction through tertiary structure. Bioinformatics, 2003, 19(1), 161-162.
[http://dx.doi.org/10.1093/bioinformatics/19.1.161] [PMID: 12499311]
[134]
Mosca, R.; Céol, A.; Aloy, P. Interactome3D: Adding structural details to protein networks. Nat. Methods, 2013, 10(1), 47-53.
[http://dx.doi.org/10.1038/nmeth.2289] [PMID: 23399932]
[135]
Chen, R.; Li, L.; Weng, Z. ZDOCK: An initial-stage protein-docking algorithm. Proteins, 2003, 52(1), 80-87.
[http://dx.doi.org/10.1002/prot.10389] [PMID: 12784371]
[136]
Ohue, M.; Shimoda, T.; Suzuki, S.; Matsuzaki, Y.; Ishida, T.; Akiyama, Y. MEGADOCK 4.0: An ultra-high-performance protein-protein docking software for heterogeneous supercomputers. Bioinformatics, 2014, 30(22), 3281-3283.
[http://dx.doi.org/10.1093/bioinformatics/btu532] [PMID: 25100686]
[137]
Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc., 2017, 12(2), 255-278.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[138]
Katchalski-Katzir, E.; Shariv, I.; Eisenstein, M.; Friesem, A.A.; Aflalo, C.; Vakser, I.A. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA, 1992, 89(6), 2195-2199.
[http://dx.doi.org/10.1073/pnas.89.6.2195] [PMID: 1549581]
[139]
Zhang, C.; Lai, L. SDOCK: A global protein-protein docking program using stepwise force-field potentials. J. Comput. Chem., 2011, 32(12), 2598-2612.
[http://dx.doi.org/10.1002/jcc.21839] [PMID: 21618559]
[140]
Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res., 2006, 34(2), 310-314.
[http://dx.doi.org/10.1093/nar/gkl206]
[141]
Mandell, J.G.; Roberts, V.A.; Pique, M.E.; Kotlovyi, V.; Mitchell, J.C.; Nelson, E.; Tsigelny, I.; Ten Eyck, L.F. Protein docking using continuum electrostatics and geometric fit. Protein Eng., 2001, 14(2), 105-113.
[http://dx.doi.org/10.1093/protein/14.2.105] [PMID: 11297668]
[142]
Ghoorah, A.W.; Devignes, M.D.; Smaïl-Tabbone, M.; Ritchie, D.W. Protein docking using case-based reasoning. Proteins, 2013, 81(12), 2150-2158.
[http://dx.doi.org/10.1002/prot.24433] [PMID: 24123156]
[143]
Garzon, J.I.; Lopéz-Blanco, J.R.; Pons, C.; Kovacs, J.; Abagyan, R.; Fernandez-Recio, J.; Chacon, P. FRODOCK: A new approach for fast rotational protein-protein docking. Bioinformatics, 2009, 25(19), 2544-2551.
[http://dx.doi.org/10.1093/bioinformatics/btp447] [PMID: 19620099]
[144]
Esquivel-Rodríguez, J.; Kihara, D. Evaluation of multiple protein docking structures using correctly predicted pairwise subunits. BMC Bioinformatics, 2012, 13(Suppl. 2), S6.
[http://dx.doi.org/ 10.1186/1471-2105-13-S2-S6] [PMID: 22536869]
[145]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33(Suppl. 2), 363-367.
[http://dx.doi.org/10.1093/nar/gki481]
[146]
Torchala, M.; Moal, I.H.; Chaleil, R.A.; Fernandez-Recio, J.; Bates, P.A. SwarmDock: A server for flexible protein-protein docking. Bioinformatics, 2013, 29(6), 807-809.
[http://dx.doi.org/ 10.1093/bioinformatics/btt038] [PMID: 23343604]
[147]
Zacharias, M. ATTRACT: Protein-protein docking in CAPRI using a reduced protein model. Proteins, 2005, 60(2), 252-256.
[http://dx.doi.org/10.1002/prot.20566] [PMID: 15981270]
[148]
Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28(7), 849-857.
[http://dx.doi.org/10.1021/jm00145a002] [PMID: 3892003]
[149]
Zhu, H.; Pisabarro, M.T. MSPocket: An orientation-independent algorithm for the detection of ligand binding pockets. Bioinformatics, 2011, 27(3), 351-358.
[http://dx.doi.org/ 10.1093/bioinfor-matics/btq672] [PMID: 21134896]
[150]
Laskowski, R. A. SURFNET: A program for visualizing molecular surfaces, cav-ities, and intermolecular interactions. J. Mol. Graph, 1995, 13(5), 323-330.
[151]
Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 2007, 372(3), 774-797.
[http://dx.doi.org/10.1016/j.jmb.2007.05.022] [PMID: 17681537]
[152]
Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J., 2016, 24(4), 413-428.
[http://dx.doi.org/ 10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[153]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm., 2013, 447(1-2), 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[154]
Carles, F.; Bourg, S.; Meyer, C.; Bonnet, P. PKIDB: A Curated, Annotated and Updated Database of Protein Kinase Inhibitors in Clinical Trials. Molecules, 2018, 23(4), E908.
[http://dx.doi.org/ 10.3390/molecules23040908] [PMID: 29662024]
[155]
Gumireddy, K.; Baker, S.J.; Cosenza, S.C.; John, P.; Kang, A.D.; Robell, K.A.; Reddy, M.V.; Reddy, E.P. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 1992-1997.
[http://dx.doi.org/ 10.1073/pnas.0408283102] [PMID: 15677719]
[156]
Cheng, H.C.; Kemp, B.E.; Pearson, R.B.; Smith, A.J.; Misconi, L.; Van Patten, S.M.; Walsh, D.A. A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J. Biol. Chem., 1986, 261(3), 989-992.
[PMID: 3511044]
[157]
Kemp, B.E.; Pearson, R.B.; House, C.M. Pseudosubstrate-based peptide inhibitors. Methods Enzymol., 1991, 201, 287-304.
[http://dx.doi.org/10.1016/0076-6879(91)01026-X] [PMID: 1943770]
[158]
Enslen, H.; Davis, R.J. Regulation of MAP kinases by docking domains. Biol. Cell, 2001, 93(1-2), 5-14.
[http://dx.doi.org/ 10.1016/S0248-4900(01)01156-X] [PMID: 11730322]
[159]
Ho, D.T.; Bardwell, A.J.; Abdollahi, M.; Bardwell, L. A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates. J. Biol. Chem., 2003, 278(35), 32662-32672.
[http://dx.doi.org/10.1074/jbc.M304229200] [PMID: 12788955]
[160]
Beene, D.L.; Scott, J.D. A-kinase anchoring proteins take shape. Curr. Opin. Cell Biol., 2007, 19(2), 192-198.
[http://dx.doi.org/ 10.1016/j.ceb.2007.02.011] [PMID: 17317140]
[161]
Newhall, K.J.; Criniti, A.R.; Cheah, C.S.; Smith, K.C.; Kafer, K.E.; Burkart, A.D.; McKnight, G.S. Dynamic anchoring of PKA is essential during oocyte maturation. Curr. Biol., 2006, 16(3), 321-327.
[http://dx.doi.org/10.1016/j.cub.2005.12.031] [PMID: 16461287]
[162]
Vijayaraghavan, S.; Goueli, S.A.; Davey, M.P.; Carr, D.W. Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J. Biol. Chem., 1997, 272(8), 4747-4752.
[http://dx.doi.org/10.1074/jbc.272.8.4747] [PMID: 9030527]
[163]
Bagella, L.; Sun, A.; Tonini, T.; Abbadessa, G.; Cottone, G.; Paggi, M.G.; De Luca, A.; Claudio, P.P.; Giordano, A. A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo. Oncogene, 2007, 26(13), 1829-1839.
[http://dx.doi.org/10.1038/sj.onc.1209987] [PMID: 17043661]
[164]
Ferguson, M.; Luciani, M.G.; Finlan, L.; Rankin, E.M.; Ibbotson, S.; Fersht, A.; Hupp, T.R. The development of a CDK2-docking site peptide that inhibits p53 and sensitizes cells to death. Cell Cycle, 2004, 3(1), 80-89.
[http://dx.doi.org/10.4161/cc.3.1.603] [PMID: 14657672]
[165]
Chin, K.T.; Ohki, S.Y.; Tang, D.; Cheng, H.C.; Wang, J.H.; Zhang, M. Identification and structure characterization of a Cdk inhibitory peptide derived from neuronal-specific Cdk5 activator. J. Biol. Chem., 1999, 274(11), 7120-7127.
[http://dx.doi.org/10.1074/jbc.274.11.7120] [PMID: 10066770]
[166]
Mendoza, N.; Fong, S.; Marsters, J.; Koeppen, H.; Schwall, R.; Wickramasinghe, D. Selective cyclin-dependent kinase 2/cyclin A antagonists that differ from ATP site inhibitors block tumor growth. Cancer Res., 2003, 63(5), 1020-1024.
[PMID: 12615717]
[167]
Scott, J.D.; Fischer, E.H.; Demaille, J.G.; Krebs, E.G. Identification of an inhibitory region of the heat-stable protein inhibitor of the cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA, 1985, 82(13), 4379-4383.
[http://dx.doi.org/10.1073/pnas.82.13.4379] [PMID: 2989819]
[168]
Ward, N.E.; O’Brian, C.A. Inhibition of protein kinase C by N-myristoylated peptide substrate analogs. Biochemistry, 1993, 32(44), 11903-11909.
[http://dx.doi.org/10.1021/bi00095a020] [PMID: 8218262]
[169]
Pearson, R.B.; Misconi, L.Y.; Kemp, B.E. Smooth muscle myosin kinase requires residues on the COOH-terminal side of the phosphorylation site. Peptide inhibitors. J. Biol. Chem., 1986, 261(1), 25-27.
[PMID: 3941075]
[170]
Luo, Y.; Smith, R.A.; Guan, R.; Liu, X.; Klinghofer, V.; Shen, J.; Hutchins, C.; Richardson, P.; Holzman, T.; Rosenberg, S.H.; Giranda, V.L. Pseudosubstrate peptides inhibit Akt and induce cell growth inhibition. Biochemistry, 2004, 43(5), 1254-1263.
[http://dx.doi.org/10.1021/bi034515p] [PMID: 14756561]
[171]
Tabatabai, L.B.; Graves, D.J. Kinetic mechanism and specificity of the phosphorylase kinase reaction. J. Biol. Chem., 1978, 253(7), 2196-2202.
[PMID: 632263]
[172]
Nishikawa, K.; Sawasdikosol, S.; Fruman, D.A.; Lai, J.; Songyang, Z.; Burakoff, S.J.; Yaffe, M.B.; Cantley, L.C. A peptide library approach identifies a specific inhibitor for the ZAP-70 protein tyrosine kinase. Mol. Cell, 2000, 6(4), 969-974.
[http://dx.doi.org/ 10.1016/S1097-2765(05)00085-7] [PMID: 11090635]
[173]
Soderling, T.R.; Chang, B.; Brickey, D. Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem., 2001, 276(6), 3719-3722.
[http://dx.doi.org/ 10.1074/jbc.R000013200] [PMID: 11096120]
[174]
Bardwell, A.J.; Flatauer, L.J.; Matsukuma, K.; Thorner, J.; Bardwell, L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem., 2001, 276(13), 10374-10386.
[http://dx.doi.org/10.1074/jbc.M010271200] [PMID: 11134045]
[175]
Bonny, C.; Oberson, A.; Negri, S.; Sauser, C.; Schorderet, D.F. Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes, 2001, 50(1), 77-82.
[http://dx.doi.org/ 10.2337/diabetes.50.1.77] [PMID: 11147798]
[176]
Thomas, G.M.; Frame, S.; Goedert, M.; Nathke, I.; Polakis, P.; Cohen, P.A. GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett., 1999, 458(2), 247-251.
[http://dx.doi.org/10.1016/S0014-5793(99)01161-8] [PMID: 10481074]
[177]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[178]
Peyressatre, M.; Prével, C.; Pellerano, M.; Morris, M.C. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel), 2015, 7(1), 179-237.
[http://dx.doi.org/10.3390/cancers7010179] [PMID: 25625291]
[179]
De Luca, A.; MacLachlan, T.K.; Bagella, L.; Dean, C.; Howard, C.M.; Claudio, P.P.; Baldi, A.; Khalili, K.; Giordano, A. A unique domain of pRb2/p130 acts as an inhibitor of Cdk2 kinase activity. J. Biol. Chem., 1997, 272(34), 20971-20974.
[http://dx.doi.org/ 10.1074/jbc.272.34.20971] [PMID: 9261093]
[180]
Giordano, A.; Bellacchio, E.; Bagella, L.; Paggi, M.G. Interaction between the Cdk2/cyclin A complex and a small molecule derived from the pRb2/p130 spacer domain:A theoretical model. Cell Cycle, 2007, 6(21), 2591-2593.
[http://dx.doi.org/10.4161/cc.6.21.4878] [PMID: 17726381]
[181]
Gondeau, C.; Gerbal-Chaloin, S.; Bello, P.; Aldrian-Herrada, G.; Morris, M.C.; Divita, G. Design of a novel class of peptide inhibitors of cyclin-dependent kinase/cyclin activation. J. Biol. Chem., 2005, 280(14), 13793-13800.
[http://dx.doi.org/10.1074/jbc.M413690200] [PMID: 15649889]
[182]
Russo, A.A.; Jeffrey, P.D.; Pavletich, N.P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol., 1996, 3(8), 696-700.
[http://dx.doi.org/10.1038/nsb0896-696] [PMID: 8756328]
[183]
Morris, M.C.; Gondeau, C.; Tainer, J.A.; Divita, G. Kinetic mechanism of activation of the Cdk2/cyclin A complex. Key role of the C-lobe of the Cdk. J. Biol. Chem., 2002, 277(26), 23847-23853.
[http://dx.doi.org/10.1074/jbc.M107890200] [PMID: 11959850]
[184]
Strauss, M.; Lukas, J.; Bartek, J. Unrestricted cell cycling and cancer. Nat. Med., 1995, 1(12), 1245-1246.
[http://dx.doi.org/ 10.1038/nm1295-1245] [PMID: 7489399]
[185]
Sherr, C.J. Cancer cell cycles. Science, 1996, 274(5293), 1672-1677.
[http://dx.doi.org/10.1126/science.274.5293.1672] [PMID: 8939849]
[186]
Krek, W.; Ewen, M.E.; Shirodkar, S.; Arany, Z.; Kaelin, W.G., Jr; Livingston, D.M. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell, 1994, 78(1), 161-172.
[http://dx.doi.org/ 10.1016/0092-8674(94)90582-7] [PMID: 8033208]
[187]
Krek, W.; Xu, G.; Livingston, D.M. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell, 1995, 83(7), 1149-1158.
[http://dx.doi.org/ 10.1016/0092-8674(95)90141-8] [PMID: 8548802]
[188]
Ong, Z.Y.; Wiradharma, N.; Yang, Y.Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv. Drug Deliv. Rev., 2014, 78, 28-45.
[http://dx.doi.org/10.1016/j.addr.2014.10.013] [PMID: 25453271]
[189]
Vagner, J.; Qu, H.; Hruby, V.J. Peptidomimetics, A synthetic tool of drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 292-296.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.009] [PMID: 18423417]
[190]
Gautier, A.; Pitrat, D.; Hasserodt, J. An unusual functional group interaction and its potential to reproduce steric and electrostatic features of the transition states of peptidolysis. Bioorg. Med. Chem., 2006, 14(11), 3835-3847.
[http://dx.doi.org/10.1016/j.bmc.2006.01.031] [PMID: 16464600]
[191]
Longo, F.; Xie, Y.; Massa, S. Neurotrophin small molecule mimetics: Candidate therapeutic agents for neurological disorders. Curr. Med. Chem. Cent. Nerv. Syst. Agents, 2005, 5(1), 29-41.
[http://dx.doi.org/10.2174/1568015053202769]
[192]
Hruby, V.J.; Li, G.; Haskell-Luevano, C.; Shenderovich, M. Design of peptides, proteins, and peptidomimetics in chi space. Biopolymers, 1997, 43(3), 219-266.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1997)43:3<219:AID-BIP3>3.0.CO;2-Y] [PMID: 9277134]
[193]
Qvit, N.; Rubin, S.J.S.; Urban, T.J.; Mochly-Rosen, D.; Gross, E.R. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov. Today, 2017, 22(2), 454-462.
[http://dx.doi.org/ 10.1016/j.drudis.2016.11.003] [PMID: 27856346]
[194]
Stebbins, J.L.; De, S.K.; Machleidt, T.; Becattini, B.; Vazquez, J.; Kuntzen, C.; Chen, L.H.; Cellitti, J.F.; Riel-Mehan, M.; Emdadi, A.; Solinas, G.; Karin, M.; Pellecchia, M. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc. Natl. Acad. Sci. USA, 2008, 105(43), 16809-16813.
[http://dx.doi.org/ 10.1073/pnas.0805677105] [PMID: 18922779]
[195]
Chen, T.; Kablaoui, N.; Little, J.; Timofeevski, S.; Tschantz, W.R.; Chen, P.; Feng, J.; Charlton, M.; Stanton, R.; Bauer, P. Identification of small-molecule inhibitors of the JIP-JNK interaction. Biochem. J., 2009, 420(2), 283-294.
[http://dx.doi.org/10.1042/BJ20081899] [PMID: 19243309]
[196]
Engel, M.; Hindie, V.; Lopez-Garcia, L.A.; Stroba, A.; Schaeffer, F.; Adrian, I.; Imig, J.; Idrissova, L.; Nastainczyk, W.; Zeuzem, S.; Alzari, P.M.; Hartmann, R.W.; Piiper, A.; Biondi, R.M. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J., 2006, 25(23), 5469-5480.
[http://dx.doi.org/10.1038/sj.emboj.7601416] [PMID: 17110931]
[197]
Gold, M.G.; Barford, D.; Komander, D. Lining the pockets of kinases and phosphatases. Curr. Opin. Struct. Biol., 2006, 16(6), 693-701.
[http://dx.doi.org/10.1016/j.sbi.2006.10.006] [PMID: 17084073]
[198]
Adams, P.D.; Sellers, W.R.; Sharma, S.K.; Wu, A.D.; Nalin, C.M.; Kaelin, W.G. Jr Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol. Cell. Biol., 1996, 16(12), 6623-6633.
[http://dx.doi.org/ 10.1128/MCB.16.12.6623] [PMID: 8943316]
[199]
Lloyd, R.V.; Erickson, L.A.; Jin, L.; Kulig, E.; Qian, X.; Cheville, J.C.; Scheithauer, B.W. p27kip1: A multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol., 1999, 154(2), 313-323.
[http://dx.doi.org/ 10.1016/S0002-9440(10)65277-7] [PMID: 10027389]
[200]
Canela, N.; Orzáez, M.; Fucho, R.; Mateo, F.; Gutierrez, R.; Pineda-Lucena, A.; Bachs, O.; Pérez-Payá, E. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A. J. Biol. Chem., 2006, 281(47), 35942-35953.
[http://dx.doi.org/10.1074/jbc.M603511200] [PMID: 17001081]
[201]
Rechfeld, F.; Gruber, P.; Kirchmair, J.; Boehler, M.; Hauser, N.; Hechenberger, G.; Garczarczyk, D.; Lapa, G.B.; Preobrazhenskaya, M.N.; Goekjian, P.; Langer, T.; Hofmann, J. Thienoquinolines as novel disruptors of the PKCε/RACK2 protein-protein interaction. J. Med. Chem., 2014, 57(8), 3235-3246.
[http://dx.doi.org/ 10.1021/jm401605c] [PMID: 24712764]
[202]
Tal-Gan, Y.; Hurevich, M.; Klein, S.; Ben-Shimon, A.; Rosenthal, D.; Hazan, C.; Shalev, D.E.; Niv, M.Y.; Levitzki, A.; Gilon, C. Backbone cyclic peptide inhibitors of protein kinase B (PKB/Akt). J. Med. Chem., 2011, 54(14), 5154-5164.
[http://dx.doi.org/ 10.1021/jm2003969] [PMID: 21650457]
[203]
Tal-Gan, Y.; Freeman, N.S.; Klein, S.; Levitzki, A.; Gilon, C. Synthesis and structure-activity relationship studies of peptidomimetic PKB/Akt inhibitors: the significance of backbone interactions. Bioorg. Med. Chem., 2010, 18(8), 2976-2985.
[http://dx.doi.org/10.1016/j.bmc.2010.02.031] [PMID: 20347317]
[204]
a)Kaplan, K.B.; Swedlow, J.R.; Morgan, D.O.; Varmus, H.E. c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev., 1995, 9(12), 1505-1517.
[http://dx.doi.org/10.1101/gad.9.12.1505] [PMID: 7541382]
b)Fukui, Y.; O’Brien, M.C.; Hanafusa, H. Deletions in the SH2 domain of p60v-src prevent association with the detergent-insoluble cellular matrix. Mol. Cell. Biol., 1991, 11(3), 1207-1213.
[http://dx.doi.org/10.1128/MCB.11.3.1207] [PMID: 1705002]
c)Petch, L.A.; Bockholt, S.M.; Bouton, A.; Parsons, J.T.; Burridge, K. Adhesion-induced tyrosine phosphorylation of the p130 src substrate. J. Cell Sci., 1995, 108(Pt 4), 1371-1379.
[PMID: 7542255]
[205]
a)Gilmer, T.; Rodriguez, M.; Jordan, S.; Crosby, R.; Alligood, K.; Green, M.; Kimery, M.; Wagner, C.; Kinder, D.; Charifson, P. Peptide inhibitors of src SH3-SH2-phosphoprotein interactions. J. Biol. Chem., 1994, 269(50), 31711-31719.
[PMID: 7527393]
b)Waksman, G.; Shoelson, S.E.; Pant, N.; Cowburn, D.; Kuriyan, J. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell, 1993, 72(5), 779-790.
[http://dx.doi.org/10.1016/0092-8674(93)90405-F] [PMID: 7680960]
[206]
Songyang, Z.; Shoelson, S.E.; McGlade, J.; Olivier, P.; Pawson, T.; Bustelo, X.R.; Barbacid, M.; Sabe, H.; Hanafusa, H.; Yi, T. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol., 1994, 14(4), 2777-2785.
[http://dx.doi.org/10.1128/MCB.14.4.2777] [PMID: 7511210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy