Molecularly Imprinted Electrochemical Sensors: Analytical and Pharmaceutical Applications Based on Ortho-Phenylenediamine Polymerization

Author(s): Burcin Bozal-Palabiyik*, Cem Erkmen, Bengi Uslu*

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The molecular imprinting technique has been applied in many fields including separation, artificial antibody mimics, catalysis, sensing studies, and drug delivery. The reasons for the popularity of this technique among the researchers are high selectivity due to the cavities that are formed on the polymer surface for the specific analyte, high robustness, high durability under extreme conditions and low cost. When these advantages are combined with the advantages of electrochemical methods such as rapid response time, ease of use, cheapness and miniaturizability, Molecularly Imprinted Polymer (MIP) based electrochemical sensors turn out to be a widely-preferred sensing tool.

Objective: This article provides the reader with information on MIP-based electrochemical sensors and reviews the applications of the MIP sensors prepared by electropolymerization of orthophenylenediamine, a monomer whose mechanical and chemical stability is very high.

Results and Conclusion: The literature survey summarized in this review shows that cyclic voltammetry is the most widely preferred electrochemical technique for electropolymerization of o-PD. The media chosen is generally acetate or phosphate buffers with different pH values. Although there are numerous solvents used for template removal, generally methanol and NaOH have been chosen.

Keywords: Analysis, electrochemical sensors, molecularly imprinted polymer, ortho-phenylenediamine, Molecularly Imprinted Polymer (MIP), electropolymerization.

[1]
Puoci, F.; Cirillo, G.; Curcio, M.; Iemma, F.; Parisi, O.I.; Spizzirri, U.G.; Picci, N. Molecularly Imprinted Polymers (MIPs) in Biomedical Applications.Biopolymers; Elnashar, M., Ed.; Intech: Rijeka, Croatia, 2010, pp. 547-574.
[http://dx.doi.org/10.5772/10278]
[2]
Li, X.; He, Y.; Zhao, F.; Zhang, W.; Ye, Z. Molecularly imprinted polymer-based sensors for atrazine detection by electropolymerization of o-phenylenediamine. RSC Advances, 2015, 5, 56534-56540.
[http://dx.doi.org/10.1039/C5RA09556E]
[3]
Pohanka, M. Sensors based on molecularly imprinted polymers. Int. J. Electrochem. Sci., 2017, 12, 8082-8094.
[http://dx.doi.org/10.20964/2017.09.67]
[4]
Liang, Y.; Qu, C.; Yang, R.; Qu, L.; Li, J. Molecularly imprinted electrochemical sensor for daidzein recognition and detection based on poly(sodium 4-styrenesulfonate) functionalized graphene. Sens. Actuators B Chem., 2017, 251, 542-550.
[http://dx.doi.org/10.1016/j.snb.2017.05.044]
[5]
Yan, C.; Liu, X.; Zhang, R.; Chen, Y.; Wang, G. A selective strategy for determination of ascorbic acid based on molecular imprinted copolymer of o-phenylenediamine and pyrrole. J. Electroanal. Chem. (Lausanne Switz.), 2016, 780, 276-281.
[http://dx.doi.org/10.1016/j.jelechem.2016.09.046]
[6]
Torkashvand, M.; Gholivand, M.B.; Taherkhani, F. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples. Mater. Sci. Eng. C, 2015, 55, 209-217.
[http://dx.doi.org/10.1016/j.msec.2015.05.031] [PMID: 26117757]
[7]
Frasco, M.F.; Truta, L.A.A.N.A.; Sales, M.G.F.; Moreira, F.T.C. Imprinting technology in electrochemical biomimetic sensors. Sensors (Basel), 2017, 17(3), 1-29.
[http://dx.doi.org/10.3390/s17030523] [PMID: 28272314]
[8]
Hashemi-Moghaddam, H.; Jedi, D.J. Solid-phase microextraction of chlorpyrifos in fruit samples by synthesised monolithic molecularly imprinted polymer fibres. Int. J. Environ. Anal. Chem., 2015, 95, 33-44.
[http://dx.doi.org/10.1080/03067319.2014.983495]
[9]
Ruggieri, F.; D’Archivio, A.A.; Di Camillo, D.; Lozzi, L.; Maggi, M.A.; Mercorio, R.; Santucci, S. Development of molecularly imprinted polymeric nanofibers by electrospinning and applications to pesticide adsorption. J. Sep. Sci., 2015, 38(8), 1402-1410.
[http://dx.doi.org/10.1002/jssc.201500033] [PMID: 25677172]
[10]
Garcia, R.; Cabrita, M.J.; Freitas, A.M.C. Application of molecularly imprinted polymers for the analysis of pesticide residues in food — A highly selective and innovative approach. Am. J. Anal. Chem., 2011, 2, 16-25.
[http://dx.doi.org/10.4236/ajac.2011.228119]
[11]
Li, J.; Xu, Z.; Liu, M.; Deng, P.; Tang, S.; Jiang, J.; Feng, H.; Qian, D.; He, L. Ag/N-doped reduced graphene oxide incorporated with molecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination. Biosens. Bioelectron., 2017, 90, 210-216.
[http://dx.doi.org/10.1016/j.bios.2016.11.016] [PMID: 27898378]
[12]
Pacheco, J.G.; Rebelo, P.; Freitas, M.; Nouws, H.P.A.; Delerue-Matos, C. Breast cancer biomarker (her2-ecd) detection using a molecularly imprinted electrochemical sensor. Sens. Actuators B Chem., 2018, 273, 1008-1014.
[http://dx.doi.org/10.1016/j.snb.2018.06.113]
[13]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[14]
Bozal-Palabiyik, B.; Uslu, B. Voltammetric determination of ropinirole at glassy carbon electrode employing pulsed techniques. Rev. Roum. Chim., 2017, 62, 559-567.
[15]
Karadas, N.; Bozal-Palabiyik, B.; Uslu, B.; Ozkan, S.A. Functionalized carbon nanotubes - with silver nanoparticles to fabricate a sensor for the determination of zolmitriptan in its dosage forms and biological samples. Sens. Actuators B Chem., 2013, 186, 486-494.
[http://dx.doi.org/10.1016/j.snb.2013.06.055]
[16]
Bozal-Palabiyik, B.; Dogan-Topal, B.; Uslu, B.; Can, A.; Ozkan, S.A. Sensitive voltammetric assay of etoposide using modified glassy carbon electrode with a dispersion of multi-walled carbon nanotube. J. Solid State Electrochem., 2013, 17, 2815-2822.
[http://dx.doi.org/10.1007/s10008-013-2184-2]
[17]
Jiang, Z.; Li, G.; Zhang, M. A novel sensor based on bifunctional monomer molecularly imprinted film at graphene modified glassy carbon electrode for detecting traces of moxifloxacin. RSC Advances, 2016, 6, 32915-32921.
[http://dx.doi.org/10.1039/C6RA01494A]
[18]
Ates, M. A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C, 2013, 33(4), 1853-1859.
[http://dx.doi.org/10.1016/j.msec.2013.01.035] [PMID: 23498205]
[19]
Olgun, U.; Gülfen, M. Doping of poly(o-phenylenediamine): spectroscopy, voltammetry, conductivity and band gap energy. React. Funct. Polym., 2014, 77, 23-29.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.02.006]
[20]
Dmitrienko, S.G.; Apyari, V.V. Molecularly Imprinted Polymers: Synthesis, Properties, and Application in Analysis of Real Samples.Nano-Analytics: Nanoobjects and Nanotechnologies in Analytical Chemistry; Shtykov, S.N., Ed.; De Gruyter: Berlin, 2018, pp. 303-341.
[http://dx.doi.org/10.1515/9783110542011-009]
[21]
Yarman, A.; Scheller, F.W. MIP-esterase/tyrosinase combinations for paracetamol and phenacetin. Electroanalysis, 2016, 28, 2222-2227.
[http://dx.doi.org/10.1002/elan.201600042]
[22]
Karimian, N.; Turner, A.P.F.; Tiwari, A. Electrochemical evaluation of troponin T imprinted polymer receptor. Biosens. Bioelectron., 2014, 59, 160-165.
[http://dx.doi.org/10.1016/j.bios.2014.03.013] [PMID: 24727601]
[23]
Adumitrăchioaie, A.; Tertiş, M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int. J. Electrochem. Sci., 2018, 13, 2556-2576.
[http://dx.doi.org/10.20964/2018.03.75]
[24]
Zauscher, S.; Chilkoti, A. Biological applications of polymer brushes. Preface. Biointerphases, 2009, 4(2), FA1-FA2.
[http://dx.doi.org/10.1116/1.3149787] [PMID: 20408712]
[25]
Wu, X.; Shimizu, K.D. Molecular Imprinting for Sensor Applications.Moleculer Recognition and Polymers: Control of Polymer Structure and Self-Assembly; Rotello, V.M.; S., T., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2008, p. 395-429.
[http://dx.doi.org/10.1002/9780470384053.ch15]
[26]
Beluomini, M.A.; da Silva, J.L.; Sedenho, G.C.; Stradiotto, N.R. D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles. Talanta, 2017, 165, 231-239.
[http://dx.doi.org/10.1016/j.talanta.2016.12.040] [PMID: 28153247]
[27]
Karimian, N.; Stortini, A.M.; Moretto, L.M.; Costantino, C.; Bogialli, S.; Ugo, P. Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly (o-phenylenediamine) polymer. ACS Sens., 2018, 3(7), 1291-1298.
[http://dx.doi.org/10.1021/acssensors.8b00154] [PMID: 29911865]
[28]
de Leon, A.; Advincula, R.C. Intelligent Coatings for Corrosion Control. Intelligent Coatings for Corrosion Control; Tiwari, A.; Rawlins, J; Hihara, L.H., Ed.; Elsevier Inc.: Amsterdam, 2015, pp. 409-430.
[http://dx.doi.org/10.1016/B978-0-12-411467-8.00011-8]
[29]
Sharma, P.S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem., 2012, 402(10), 3177-3204.
[http://dx.doi.org/10.1007/s00216-011-5696-6] [PMID: 22302165]
[30]
Lorenzo, R.A.; Carro, A.M.; Alvarez-Lorenzo, C.; Concheiro, A. To remove or not to remove? The challenge of extracting the template to make the cavities available in Molecularly Imprinted Polymers (MIPs). Int. J. Mol. Sci., 2011, 12(7), 4327-4347.
[http://dx.doi.org/10.3390/ijms12074327] [PMID: 21845081]
[31]
Zhang, Z.; Li, H.; Liao, H.; Nie, L.; Yao, S. Effect of the extraction method on the MIP-sensor. Anal. Lett., 2005, 38, 203-217.
[http://dx.doi.org/10.1081/AL-200045105]
[32]
Tadeo, J.L.; Sánchez-Brunete, C.; Albero, B.; García-Valcárcel, A.I. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J. Chromatogr. A, 2010, 1217(16), 2415-2440.
[http://dx.doi.org/10.1016/j.chroma.2009.11.066] [PMID: 20005520]
[33]
Pavlovic, D.M.; Babic, S.; Horvat, A.J.M.; Kaštelan-Macan, M. Sample preparation in analysis of pharmaceuticals. Trends Analyt. Chem., 2007, 26, 1062-1075.
[http://dx.doi.org/10.1016/j.trac.2007.09.010]
[34]
Li, Y. Conducting Polymers.Organic Optoelectronic Materials: Lecture Notes in Chemistry 91; Li, Y., Ed.; Springer: Heidelberg, 2015, pp. 24-50.
[http://dx.doi.org/10.1007/978-3-319-16862-3_2]
[35]
Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci., 2007, 32, 876-921.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.012]
[36]
Stejskal, J. Progress in polymer science polymers for cell / tissue anti-adhesion. Prog. Polym. Sci., 2015, 44, 28-61.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.10.004]
[37]
Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed; John Wiley & Sons, Inc.: Hoboken, NJ, 2007.
[http://dx.doi.org/10.1002/9780470134955]
[38]
Yao, G.; Yao, Q.; Xia, Z.; Li, Z. Solubility determination and correlation for o-phenylenediamine in (methanol, ethanol, acetonitrile and water) and their binary solvents from t = (283.15-318.15). K. J. Chem. Thermodyn., 2017, 105, 179-186.
[http://dx.doi.org/10.1016/j.jct.2016.10.018]
[39]
Ma, P.; Liang, F.; Wang, D.; Yang, Q.; Cao, B.; Song, D.; Gao, D.; Wang, X. Selective determination of o-phenylenediamine by surface-enhanced raman spectroscopy using silver nanoparticles decorated with α-cyclodextrin. Mikrochim. Acta, 2015, 182, 167-174.
[http://dx.doi.org/10.1007/s00604-014-1314-6]
[40]
Ariffin, A.A.; O’Neill, R.D.; Yahya, M.Z.A.; Zain, Z.M. Electropolymerization of ortho-phenylenediamine and its use for detection on hydrogen peroxide and ascorbic acid by electrochemical impedance spectroscopy. Int. J. Electrochem. Sci., 2012, 7, 10154-10163.
[41]
Mazeikiene, R.; Malinauskas, A. The stability of poly(o-phenylenediamine) as an electrode material. Synth. Met., 2002, 128, 121-125.
[http://dx.doi.org/10.1016/S0379-6779(01)00520-3]
[42]
Li, S.; Yin, G.; Wu, X.; Liu, C.; Luo, J. Supramolecular imprinted sensor for carbofuran detection based on a functionalized multiwalled carbon nanotube-supported pd-ir composite and methylene blue as catalyst. Electrochim. Acta, 2016, 188, 294-300.
[http://dx.doi.org/10.1016/j.electacta.2015.12.010]
[43]
Li, H.; Guan, H.; Dai, H.; Tong, Y.; Zhao, X.; Qi, W.; Majeed, S.; Xu, G. An amperometric sensor for the determination of benzophenone in food packaging materials based on the electropolymerized molecularly imprinted poly-o-phenylenediamine film. Talanta, 2012, 99, 811-815.
[http://dx.doi.org/10.1016/j.talanta.2012.07.033] [PMID: 22967627]
[44]
Duan, Y.; Luo, X.; Zhang, H.; Sun, G.; Sun, X.; Ma, H. A computational approach to design an electrochemical sensor and determination of acephate in aqueous solution based on a molecularly imprinted poly(o-phenylenediamine). Film. Anal. Methods, 2013, 5, 6449-6456.
[http://dx.doi.org/10.1039/c3ay41296b]
[45]
Wang, Q.; Li, S.; Li, J. A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Anal. Bioanal. Chem., 2018, 410(21), 5165-5172.
[http://dx.doi.org/10.1007/s00216-018-1170-z] [PMID: 29922862]
[46]
Roushani, M.; Nezhadali, A.; Jalilian, Z. An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Mikrochim. Acta, 2018, 185(12), 551.
[http://dx.doi.org/10.1007/s00604-018-3083-0] [PMID: 30443812]
[47]
Liu, X.; Li, C.; Wang, C.; Li, T.; Hu, S. The preparation of molecularly imprinted poly(o-phenylenediamine) membranes for the specific O,O-dimethyl-α-hydroxylphenyl phosphonate sensor and its characterization by ac impedance and cyclic voltammetry. J. Appl. Polym. Sci., 2006, 101, 2222-2227.
[http://dx.doi.org/10.1002/app.23514]
[48]
Peng, Y.; Chen, Q. Selective determination of bisphenol a based on molecularly imprinted poly(ortho-phenylenediamine) /multi- walled carbon nanotubes composite film. Curr. Anal. Chem., 2016, 12, 431-438.
[http://dx.doi.org/10.2174/1573411012666151012191416]
[49]
Amatatongchai, M.; Sroysee, W.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode. Talanta, 2018, 179, 700-709.
[http://dx.doi.org/10.1016/j.talanta.2017.11.064] [PMID: 29310297]
[50]
Du, D.; Chen, S.; Cai, J.; Tao, Y.; Tu, H.; Zhang, A. Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-O-phenylenediamine. Electrochim. Acta, 2008, 53, 6589-6595.
[http://dx.doi.org/10.1016/j.electacta.2008.04.027]
[51]
Elshafey, R.; Radi, A.E. Electrochemical impedance sensor for herbicide alachlor based on imprinted polymer receptor. J. Electroanal. Chem. (Lausanne Switz.), 2018, 813, 171-177.
[http://dx.doi.org/10.1016/j.jelechem.2018.02.036]
[52]
Gómez-Caballero, A.; Unceta, N.; Goicolea, M.A.; Barrio, R.J. Voltammetric determination of metamitron with an electrogenerated molecularly imprinted polymer microsensor. Electroanalysis, 2007, 19, 356-363.
[http://dx.doi.org/10.1002/elan.200603731]
[53]
Gómez-Caballero, A.; Unceta, N.; Aranzazu Goicolea, M.; Barrio, R.J. Evaluation of the selective detection of 4,6-dinitro-o-cresol by a molecularly imprinted polymer based microsensor electrosynthesized in a semiorganic media. Sens. Actuators B Chem., 2008, 130, 713-722.
[http://dx.doi.org/10.1016/j.snb.2007.10.036]
[54]
Yan, X.; Deng, J.; Xu, J.; Li, H.; Wang, L.; Chen, D.; Xie, J. A novel electrochemical sensor for isocarbophos based on a glassy carbon electrode modified with electropolymerized molecularly imprinted terpolymer. Sens. Actuators B Chem., 2012, 171-172, 1087-1094.
[http://dx.doi.org/10.1016/j.snb.2012.06.038]
[55]
Karimian, N.; Vagin, M.; Zavar, M.H.A.; Chamsaz, M.; Turner, A.P.F.; Tiwari, A. An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens. Bioelectron., 2013, 50, 492-498.
[http://dx.doi.org/10.1016/j.bios.2013.07.013] [PMID: 23911771]
[56]
Shumyantseva, V.V.; Bulko, T.V.; Sigolaeva, L.V.; Kuzikov, A.V.; Archakov, A.I. Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin. Biosens. Bioelectron., 2016, 86, 330-336.
[http://dx.doi.org/10.1016/j.bios.2016.05.101] [PMID: 27392234]
[57]
Karimian, N.; Zavar, M.H.A.; Chamsaz, M.; Turner, A.P.F.; Tiwari, A. On/off-switchable electrochemical folic acid sensor based on molecularly imprinted polymer electrode. Electrochem. Commun., 2013, 36, 92-95.
[http://dx.doi.org/10.1016/j.elecom.2013.09.014]
[58]
Hai, H.; An, X.; Li, J. Molecularly imprinted electrochemical sensor for selective determination of oxidized glutathione. Anal. Methods, 2015, 7, 2210-2214.
[http://dx.doi.org/10.1039/C4AY02728K]
[59]
Zhao, F.; Li, X.; Xu, W.; Zhang, W.; Ying, X. An electrochemical sensor for l-tryptophan using a molecularly imprinted polymer film produced by copolymerization of o-phenylenediamine and hydroquinone. Anal. Lett., 2014, 47, 1712-1725.
[http://dx.doi.org/10.1080/00032719.2014.880172]
[60]
Yang, L.; Wei, W.; Xia, J.; Tao, H.; Yang, P. Capacitive biosensor for glutathione detection based on electropolymerized molecularly imprinted polymer and kinetic investigation of the recognition process. Electroanalysis, 2005, 17, 969-977.
[http://dx.doi.org/10.1002/elan.200403195]
[61]
Tiwari, A.; Deshpande, S.R.; Kobayashi, H.; Turner, A.P.F. Detection of p53 gene point mutation using sequence-specific molecularly imprinted PoPD electrode. Biosens. Bioelectron., 2012, 35(1), 224-229.
[http://dx.doi.org/10.1016/j.bios.2012.02.053] [PMID: 22484234]
[62]
Wang, X.; Dong, J.; Ming, H.; Ai, S. Sensing of glycoprotein via a biomimetic sensor based on molecularly imprinted polymers and graphene-Au nanoparticles. Analyst (Lond.), 2013, 138(4), 1219-1225.
[http://dx.doi.org/10.1039/c2an36297j] [PMID: 23304694]
[63]
Babamiri, B.; Salimi, A.; Hallaj, R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens. Bioelectron., 2018, 117, 332-339.
[http://dx.doi.org/10.1016/j.bios.2018.06.003] [PMID: 29933224]
[64]
Yarman, A. Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase. Turk. J. Chem., 2018, 42, 346-354.
[http://dx.doi.org/10.3906/kim-1708-68]
[65]
Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens. Bioelectron., 2015, 66, 490-496.
[http://dx.doi.org/10.1016/j.bios.2014.12.009] [PMID: 25499662]
[66]
Si, B.; Song, E. Molecularly imprinted polymers for the selective detection of multi-analyte neurotransmitters. Microelectron. Eng., 2018, 187-188, 58-65.
[http://dx.doi.org/10.1016/j.mee.2017.11.016]
[67]
Zhao, X.; Zhang, Q.; Chen, H.; Liu, G.; Bai, W. Highly sensitive molecularly imprinted sensor based on platinum thin-film microelectrode for detection of chloramphenicol in food samples. Electroanalysis, 2017, 29, 1918-1924.
[http://dx.doi.org/10.1002/elan.201700164]
[68]
Yang, G.; Chen, X.; Pan, Q.; Liu, W.; Zhao, F. A novel photoelectrochemical sensor for thiamphenicol based on porous three-dimensional imprinted film. Int. J. Electrochem. Sci., 2017, 12, 7272-7286.
[http://dx.doi.org/10.20964/2017.08.34]
[69]
Kor, K.; Zarei, K. Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer. Talanta, 2016, 146, 181-187.
[http://dx.doi.org/10.1016/j.talanta.2015.08.042] [PMID: 26695250]
[70]
Liu, J.; Tang, H.; Zhang, B.; Deng, X.; Zhao, F.; Zuo, P.; Ye, B.C.; Li, Y. Electrochemical sensor based on molecularly imprinted polymer for sensitive and selective determination of metronidazole via two different approaches. Anal. Bioanal. Chem., 2016, 408(16), 4287-4295.
[http://dx.doi.org/10.1007/s00216-016-9520-1] [PMID: 27100231]
[71]
Bai, H.; Wang, C.; Jun Peng, ; Wu, Y.; Yang, Y.; Cao, Q. A novel sensitive electrochemical sensor for podophyllotoxin assay based on the molecularly imprinted poly-o-phenylenediamine film. J. Nanosci. Nanotechnol., 2015, 15(3), 2456-2463.
[http://dx.doi.org/10.1166/jnn.2015.9824] [PMID: 26413687]
[72]
Kang, J.; Zhang, H.; Wang, Z.; Wu, G.; Lu, X. A novel amperometric sensor for salicylic acid based on molecularly imprinted polymer-modified electrodes. Polym. Plast. Technol. Eng., 2009, 48, 639-645.
[http://dx.doi.org/10.1080/03602550902824499]
[73]
Peng, Y.; Wu, Z.; Liu, Z. An electrochemical sensor for paracetamol based on an electropolymerized molecularly imprinted o-phenylenediamine film on a multi-walled carbon nanotube modified glassy carbon electrode. Anal. Methods, 2014, 6, 5673-5681.
[http://dx.doi.org/10.1039/C4AY00753K]
[74]
Teng, Y.; Fan, L.; Dai, Y.; Zhong, M.; Lu, X.; Kan, X. Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film. Biosens. Bioelectron., 2015, 71, 137-142.
[http://dx.doi.org/10.1016/j.bios.2015.04.037] [PMID: 25897883]
[75]
Gómez-Caballero, A.; Goicolea, M.A.; Barrio, R.J. Paracetamol voltammetric microsensors based on electrocopolymerized-molecularly imprinted film modified carbon fiber microelectrodes. Analyst (Lond.), 2005, 130(7), 1012-1018.
[http://dx.doi.org/10.1039/b502827b] [PMID: 15965523]
[76]
Yang, G.; Zhao, F.; Zeng, B. Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor. Biosens. Bioelectron., 2014, 53, 447-452.
[http://dx.doi.org/10.1016/j.bios.2013.10.029] [PMID: 24211456]
[77]
Liu, Y.; Zhu, L.; Luo, Z.; Tang, H. Fabrication of molecular imprinted polymer sensor for chlortetracycline based on controlled electrochemical reduction of graphene oxide. Sens. Actuators B Chem., 2013, 185, 438-444.
[http://dx.doi.org/10.1016/j.snb.2013.05.044]
[78]
Yang, G.; Zhao, F. A novel electrochemical sensor for the determination of lidocaine based on surface-imprinting on porous three-dimensional film. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2, 10201-10208.
[http://dx.doi.org/10.1039/C4TC02039A]
[79]
Rezaei, B.; Rahmanian, O.; Ensafi, A.A. Sensing lorazepam with a glassy carbon electrode coated with an electropolymerized-imprinted polymer modified with multiwalled carbon nanotubes and gold nanoparticles. Mikrochim. Acta, 2013, 180, 33-39.
[http://dx.doi.org/10.1007/s00604-012-0897-z]
[80]
Lian, W.; Liu, S.; Yu, J.; Li, J.; Cui, M.; Xu, W.; Huang, J. Determination of oxytetracycline with a gold electrode modified by chitosan-multiwalled carbon nanotube multilayer films and gold nanoparticles. Anal. Lett., 2013, 46, 1117-1131.
[http://dx.doi.org/10.1080/00032719.2012.751540]
[81]
Li, T.; Yao, T.; Zhang, C.; Liu, G.; She, Y.; Jin, M.; Jin, F.; Wang, S.; Shao, H.; Wang, J. Electrochemical detection of ractopamine based on a molecularly imprinted poly-: o -phenylenediamine/gold nanoparticle-ionic liquid-graphene film modified glass carbon electrode. RSC Advances, 2016, 6, 66949-66956.
[http://dx.doi.org/10.1039/C6RA11999A]
[82]
Dechtrirat, D.; Sookcharoenpinyo, B.; Prajongtat, P.; Sriprachuabwong, C.; Sanguankiat, A.; Tuantranont, A.; Hannongbua, S. An electrochemical mip sensor for selective detection of salbutamol based on a graphene / pedot: pss modi fi ed screen printed carbon electrode. RSC Advances, 2018, 8, 206-212.
[http://dx.doi.org/10.1039/C7RA09601A]
[83]
Rezaei, B.; Rahmanian, O.; Ensafi, A.A. An electrochemical sensor based on multiwall carbon nanotubes and molecular imprinting strategy for warfarin recognition and determination. Sens. Actuators B Chem., 2014, 196, 539-545.
[http://dx.doi.org/10.1016/j.snb.2014.02.037]
[84]
Nateghi, M.R.; Mosslemin, M.H.; Hakimi, A.; Kavoosi, S. Imprinted poly (o-phenylenediamine-co-aniline) electrode for warfarin assay in human samples by differential pulse voltammetry. Asian J. Chem., 2010, 22, 3516-3524.
[85]
Waffo, A.F.T.; Yesildag, C.; Caserta, G.; Katz, S.; Zebger, I.; Lensen, M.C.; Wollenberger, U.; Scheller, F.W.; Altintas, Z. Fully electrochemical MIP sensor for artemisinin. Sens. Actuators B Chem., 2018, 275, 163-173.
[http://dx.doi.org/10.1016/j.snb.2018.08.018]
[86]
Jin, X.; Fang, G.; Pan, M.; Yang, Y.; Bai, X.; Wang, S. A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosens. Bioelectron., 2018, 102, 357-364.
[http://dx.doi.org/10.1016/j.bios.2017.11.016] [PMID: 29172144]
[87]
Yan, C.; Li, J.; Meng, T.; Liu, X.; Zhang, R.; Chen, Y.; Wang, G. Selective recognition of ciprofloxacin hydrochloride based on molecular imprinted sensor via electrochemical copolymerization of pyrrole and O-phenylenediamine. Int. J. Electrochem. Sci., 2016, 11, 6466-6476.
[http://dx.doi.org/10.20964/2016.08.56]
[88]
Que, X.; Liu, B.; Fu, L.; Zhuang, J.; Chen, G.; Tang, D. Molecular imprint for electrochemical detection of streptomycin residues using enzyme signal amplification. Electroanalysis, 2013, 25, 531-537.
[http://dx.doi.org/10.1002/elan.201200468]
[89]
Yarman, A.; Scheller, F.W. The first electrochemical MIP sensor for tamoxifen. Sensors (Basel), 2014, 14(5), 7647-7654.
[http://dx.doi.org/10.3390/s140507647] [PMID: 24776936]
[90]
Pedroso, M.M.; Foguel, M.V.; Silva, D.H.S.; Sotomayor, M. del P.T.; Yamanaka, H. Electrochemical sensor for dodecyl gallate determination based on electropolymerized molecularly imprinted polymer. Sens. Actuators B Chem., 2017, 253, 180-186.
[http://dx.doi.org/10.1016/j.snb.2017.06.127]
[91]
Liu, Y.; Song, Q.J.; Wang, L. Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer. Microchem. J., 2009, 91, 222-226.
[http://dx.doi.org/10.1016/j.microc.2008.11.007]
[92]
Feng, S.; Wei, X.; Zhong, L.; Li, J. A novel molecularly imprinted photoelectrochemical sensor based on g-c 3 n 4 -aunps for the highly sensitive and selective detection of triclosan. Electroanalysis, 2018, 30, 320-327.
[http://dx.doi.org/10.1002/elan.201700514]
[93]
Zheng, X.; Lin, R.; Zhou, X.; Zhang, L.; Lin, W. Electrochemical sensor of 4-aminobutyric acid based on molecularly imprinted electropolymer. Anal. Methods, 2012, 4, 482-487.
[http://dx.doi.org/10.1039/c2ay05629a]
[94]
Wang, H.; Xu, Q.; Wang, J.; Du, W.; Liu, F.; Hu, X. Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing. Biosens. Bioelectron., 2018, 100, 105-114.
[http://dx.doi.org/10.1016/j.bios.2017.08.063] [PMID: 28881228]
[95]
Zhao, X.; Zhang, W.; Chen, H.; Chen, Y.; Huang, G. Disposable electrochemical ascorbic acid sensor based on molecularly imprinted poly(o-phenylenediamine)-modified dual channel screen-printed electrode for orange juice analysis. Food Anal. Methods, 2014, 7, 1557-1563.
[http://dx.doi.org/10.1007/s12161-013-9788-0]
[96]
Duan, Y.; Luo, X.; Qin, Y.; Zhang, H.; Sun, G.; Sun, X.; Yan, Y. Determination of epigallocatechin-3-gallate with a high-efficiency electrochemical sensor based on a molecularly imprinted poly(o-phenylenediamine). Film. J. Appl. Polym. Sci., 2013, 129, 2882-2890.
[http://dx.doi.org/10.1002/app.39002]
[97]
Li, J.; Li, S.; Wei, X.; Tao, H.; Pan, H. Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3. Anal. Chem., 2012, 84(22), 9951-9955.
[http://dx.doi.org/10.1021/ac302401s] [PMID: 23101695]
[98]
Cheng, Z.; Wang, E.; Yang, X. Capacitive detection of glucose using molecularly imprinted polymers. Biosens. Bioelectron., 2001, 16(3), 179-185.
[http://dx.doi.org/10.1016/S0956-5663(01)00137-3] [PMID: 11339996]
[99]
Wang, Y.; Tang, J.; Luo, X.; Hu, X.; Yang, C.; Xu, Q. Development of a sensitive and selective kojic acid sensor based on molecularly imprinted polymer modified electrode in the lab-on-valve system. Talanta, 2011, 85(5), 2522-2527.
[http://dx.doi.org/10.1016/j.talanta.2011.08.014] [PMID: 21962678]
[100]
Wang, Z.; Li, J.; Xu, L.; Feng, Y.; Lu, X. Electrochemical sensor for determination of aflatoxin b1 based on multiwalled carbon nanotubes-supported au/pt bimetallic nanoparticles. J. Solid State Electrochem., 2014, 18, 2487-2496.
[http://dx.doi.org/10.1007/s10008-014-2506-z]
[101]
Liu, P.; Zhang, X.; Xu, W.; Guo, C.; Wang, S. Electrochemical sensor for the determination of brucine in human serum based on molecularly imprinted poly-o-phenylenediamine/SWNTs composite film. Sens. Actuators B Chem., 2012, 163, 84-89.
[http://dx.doi.org/10.1016/j.snb.2012.01.011]
[102]
Cui, M.; Huang, J.; Wang, Y.; Wu, Y.; Luo, X. Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosens. Bioelectron., 2015, 68, 563-569.
[http://dx.doi.org/10.1016/j.bios.2015.01.029] [PMID: 25638798]
[103]
Shekarchizadeh, H.; Ensafi, A.A.; Kadivar, M. Selective determination of sucrose based on electropolymerized molecularly imprinted polymer modified multiwall carbon nanotubes/glassy carbon electrode. Mater. Sci. Eng. C, 2013, 33(6), 3553-3561.
[http://dx.doi.org/10.1016/j.msec.2013.04.052] [PMID: 23706246]
[104]
Kan, X.; Liu, T.; Zhou, H.; Li, C.; Fang, B. Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Mikrochim. Acta, 2010, 171, 423-429.
[http://dx.doi.org/10.1007/s00604-010-0455-5]
[105]
Ouyang, R.; Lei, J.; Ju, H.; Xue, Y. A molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid. Adv. Funct. Mater., 2007, 17, 3223-3230.
[http://dx.doi.org/10.1002/adfm.200700143]
[106]
Zhao, X.; Hu, W.; Wang, Y.; Zhu, L.; Yang, L.; Sha, Z.; Zhang, J. Decoration of graphene with 2-aminoethanethiol functionalized gold nanoparticles for molecular imprinted sensing of erythrosine. Carbon N. Y., 2018, 127, 618-626.
[http://dx.doi.org/10.1016/j.carbon.2017.11.041]
[107]
Deng, J.; Ju, S.; Liu, Y.; Xiao, N.; Xie, J.; Zhao, H. Highly sensitive and selective determination of melamine in milk using glassy carbon electrode modified with molecularly imprinted copolymer. Food Anal. Methods, 2015, 8, 2437-2446.
[http://dx.doi.org/10.1007/s12161-015-0134-6]
[108]
Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. Development of sudan II sensor based on modified treated pencil graphite electrode with dna, o-phenylenediamine, and gold nanoparticle bioimprinted polymer. Sens. Actuators B Chem., 2016, 222, 849-856.
[http://dx.doi.org/10.1016/j.snb.2015.09.017]
[109]
Dechtrirat, D.; Yingyuad, P.; Prajongtat, P.; Chuenchom, L.; Sriprachuabwong, C.; Tuantranont, A.; Tang, I.M. A screen-printed carbon electrode modified with gold nanoparticles, poly(3,4-ethylenedioxythiophene), poly(styrene sulfonate) and a molecular imprint for voltammetric determination of nitrofurantoin. Microchim. Acta, 2018, 185


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Page: [350 - 366]
Pages: 17
DOI: 10.2174/1573412915666190304150159
Price: $65

Article Metrics

PDF: 20
HTML: 3